BULL. AUSTRAL. MATH. Soc. Vol. 41 (1990) [323-332]

INTERNAL COMPLETENESS AND INJECTIVITY OF BOOLEAN ALGEBRAS IN THE TOPOS OF *M*-SETS

M. Mehdi Ebrahimi

In this paper we study internal completeness, injectivity and some related notions in the category **MBoo** of Boolean algebras in the topos **MEns** of M-sets, for a monoid M.

In Section 1, we deal with the notion of internal completeness in **MBoo** and show that an algebra A in **MBoo** is internally complete if and only if the embedding $[\cdot]: A \longmapsto N(A)$ of A into the algebra N(A) of (internal) normal ideals of A is an isomorphism.

In Section 2, we study the notion of injectivity and essential extensions in **MBoo** and show that: injectivity implies internal completeness; the injective hull of 2 is H(2), the algebra of all subsets of M, if an only if M is a finite group; for a finite monoid M, 2 is injective if and only if M has a right absorbing element; and for a finite and commutative monoid M, a subalgebra A of H(2) is an essential estenstion of 2 if and only if A is generated by the blocks of a monoid congruence θ on M with M/θ being a group. Further, we give examples to show that the latter result is not true in general.

Finally, in Section 3, we characterise the subdirectly irreducible algebras in MBoo.

0. PRELIMINARIES

0.1 For a monoid M let MEns be the topos of all (left) M-sets (sets with a left M-action) and the equivariant maps between them. Considering M as a category with one object, MEns is the functor category Ens^{M} where Ens is the category of sets. Hence, the subobject classifier Ω of this topos is the set of all left ideals of M (subsets of M which are closed under the left multiplication) together with the action of M on Ω given by division, that is for $t \in M$ and $S \in \Omega$, $tS = \{s \in M \mid st \in S\}$. The

Received 30 May 1989

This work was done during my sabbatical leave spent at McMaster University. I wish to express my deep appreciation to B. Banaschewski for valuable discussions, suggestions and encouragement throughout my work. I must say that without his help and generous assistance I could not have completed this work.

Financial assistance from the Natural Science and Engineering Research Council of Canada, through their operating grant to B. Banaschewski, is gratefully acknowledged. Also, I would like to thank the University of Shahid Beheshti (The National University of Iran) for granting me this sabbatical leave.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/90 \$A2.00+0.00.

M. Mehdi Ebrahimi

true map $1 \longrightarrow \Omega$, where $1 = \{0\}$ is the terminal object of MEns, takes 0 to M, the largest ideal of M. For any subobject $A \xrightarrow{\tau} B$, the classifying map $f_{\tau}: B \longrightarrow \Omega$ is defined by $f_{\tau}(b) = \{x \in M \mid xb \in A\}$. Hence $f_{\tau}(b) = M$ if and only if $b \in A$. Notice that $\Omega = \{\phi, M\}$ if and only if M is a group. For $A \in MEns$, a global element $f: 1 \longrightarrow A$ is given by an element f(0) of A which is fixed under the action of M. Since tS = M if and only if $t \in S$, one can check easily that Ω has exactly two global elements. This shows that the topos MEns is bivalued. But MEns is a Boolean topos if and only if M is a group.

0.2 The power set $\mathcal{P}(M)$ of M is an M-set with the action given by division, and Ω is a pseudo-complemented subalgebra of $\mathcal{P}(M)$. The pseudo-complement of $S \in \Omega$ is

$$S^* = \{s \in M \mid (\forall t \in M)(ts \notin S)\}$$

It is easily checked that Ω is a Stone algebra, that is $S^* \cup S^{**} = M$, if and only if $S^* = \emptyset$ for all $S \neq \emptyset$ in Ω . Also, by [9], Ω is a Stone algebra if and only if M satisfies the (left) Ore condition, that is, for any a, b in M, there exist s, t in M such that sa = ta. In fact, if the Ore condition is satisfied, $S \neq \emptyset$ is in Ω and $a \in S$, then for any $b \in M$, there exist s, t in M with tb = sa. Now, since S is a left ideal of M, $tb = sa \in S$. This gives us that $b \notin S^*$, and hence $S^* = \emptyset$.

0.3 For A, B in MEns, B^A is the set of all equivariant maps $f: M \times A \longrightarrow B$, together with the action of M defined by

$$(sf)(t,a) = f(ts,a)$$

for s, t in M and $a \in A$. It is easily sseen that $\Omega^A \cong \operatorname{Sub}(M \times A)$ subobjects of $M \times A$. For any subobject X of $M \times A$, we have

$$X = \bigcup_{s \in M} \{s\} \times X_s$$

where $X_s = \{a \in A \mid (s, a) \in X\}$. Hence we can identify X by a family $(X_s)_{s \in M}$, where for each $s \in M$, X_s is a subset of A with

$$(\forall t \in M)(a \in X_s \Rightarrow ta \in X_{ts}).$$

The action of M on Ω^A is then given by

$$tX = (X_{\bullet t})_{\bullet \in M}.$$

0.4 In the following, MLatt will denote the category of lattices in MEns, with lattice maps preserving the M action, and MBoo is the category of Boolean algebras in MEns. For any algebra A, the underlying object of A is denoted by the same letter A.

1. INTERNAL COMPLETENESS

1.1 For $A \in MLatt$, Id(A) and MId(A) denote the set of ideals of (the lattice) and *M*-ideals of (the *M*-lattice) *A*, respectively. The action of *M* on Id(A) is given by $s \cdot J = [sJ]$, for $s \in M$ and $J \in Id(A)$, where [sJ] is the ideal of *A* generated by the set $sJ = \{sx \mid x \in J\}$. That is

$$s \cdot J = \{a \in A \mid (\exists x \in J)(a \leq sx)\}.$$

The action of M on MId (A) is defined in the same way.

It is clear that the map $\downarrow : A \to Id(A)$ defined by $a \mapsto \downarrow a = \{x \in A \mid x \leq a\}$ is an equivariant map.

1.2 For $A \in MBoo$, the internal ideal lattice $\mathcal{J}(A)$ of A in the topos MEns is given by

$$\mathcal{J}(A) = \{X = (X_s)_{s \in M} \mid (X \in \Omega^A) \& (\forall s \in M) (X_s \in \mathrm{Id}\,(A))\}.$$

For $X = (X_s)_{s \in M}$ and $Y = (Y_s)_{s \in M}$, their meet and join in $\mathcal{J}(A)$ is defined component-wise, that is

$$X \wedge Y = (X_{s} \wedge Y_{s})_{s \in M}$$
 and $X \vee Y = (X_{s} \vee Y_{s})_{s \in M}$,

where $X_{\bullet} \wedge Y_{\bullet}$ is their intersection and $X_{\bullet} \vee Y_{\bullet}$ is their join in Id(A), that is $X_{\bullet} \vee Y_{\bullet} = \{b \vee c \mid b \in X_{\bullet}, c \in Y_{\bullet}\}$. The action of M on $\mathcal{J}(A)$ is the same as the action on Ω^{A} . Notice that if M is a group, then $\mathcal{J}(A) = \text{Id}(A)$.

One also defines a lattice embedding $[\cdot]: A \mapsto \mathcal{J}(A)$ by $[a] = (\downarrow sa)_{s \in M}$, which preserves the action of M.

In addition, one defines a lattice embedding $()^{\#}$: Id $(A) \mapsto \mathcal{J}(A)$, preserving the action, by $J^{\#} = ([sJ])_{s \in M}$, for $J \in \text{Id}(A)$. Since $(\downarrow a)^{\#} = [a]$, the following diagram is commutative

$$\begin{array}{ccc} A & \xrightarrow{\left[\cdot\right]} & \mathcal{J}(A) \\ \downarrow & & \uparrow()^{\#} \\ \mathrm{Id}(A) & \underbrace{\qquad} & \mathrm{Id}(A) \end{array}$$

1.3 Recall that a lattice A in MEns in internally complete (see [8], p.147) if there exists an order preserving equivariant map $V: \mathcal{J}(A) \longrightarrow A$ which is (internally) left adjoint to $[\cdot]: A \longmapsto \mathcal{J}(A)$. That is, for $X = (X_s)s \in M$ in $\mathcal{J}(A)$ and $c \in A$,

$$V X \leq c \Longleftrightarrow X \leq [c] \iff (\forall s \in M)(X_s \leq \downarrow sc).$$

By Proposition 5.35 and 5.36 in [8], Ω and Ω^A are internally complete.

PROPOSITION 1.4. If $A \in MBoo$ is internally complete, then A is complete in Boo and the action of M on A is complete (that is preserves the join).

PROOF: Since the underlying functor $U: MBoo \longrightarrow Boo$ has a left adjoint, which preserves pullbacks, A is complete as a Boolean algebra (see Proposition 5.6) [8]). In fact the join map $\tilde{V}: \operatorname{Id}(A) \longrightarrow A$ is given by the following commutative diagram

That is, $\tilde{V}J = VJ^{\#}$, for $J \in \text{Id}(A)$. Since the maps ()[#] and V are both equivariant, so is \tilde{V} .

The converse of the above proposition is not true in general. Consider the initial object 2 of MBoo. By [9], 2 is internally complete if an only if Ω is a stone algebra, that is if and only if M satisfies the left Ore condition (see 0.2).

If M is a group, then $A \in MBoo$ is internally complete if and only if $A \in Boo$ is complete. This is because $\mathcal{J}(A) = \mathrm{Id}(A)$, and the actions are isomorphism (onto) and hence complete, for the join in **Boo** is defined by means of the order and the actions preserve the order.

Let $A \in MBoo$ and $J \in \mathcal{J}(A)$. The (internal) pseudo-complement J^* of J is defined by

$$J_{s}^{*} = \{x \in A \mid (\forall t \in M)(t \ x \in (J_{ts})^{*})\}$$
$$= \bigcap_{t \in M} t^{-1}(J_{ts})^{*}$$

for each $s \in M$. We now prove that J^* is indeed the pseudo-complement of J.

LEMMA 1.5. J^* is the pseudo-complement of J.

PROOF: J^* is in $\mathcal{J}(A)$, because each $(J_{ts})^*$ is in Id(A) and, since $t^{-1}(J_{ts})^*$ is in Id(A), $J^*_{s} = \bigcap_{t \in M} t^{-1}(J_{ts})^*$ belongs to Id(A). If $x \in J^*_{s}$ and $t_0 \in M$, then for any $t \in M$, $t(t_0x) = (tt_0)x$ belongs to $(J_{tt_0s})^*$, and hence $t_0x \in J^*_{t_0s}$. Now, $x \in J_s \cap J^*_s$ implies that $x \in J_s$ and $x \in J^*_s$. Hence $tx \in (J_{ts})^*$, for all $t \in M$, which implies that $x \in (J_s)^*$. Hence, by the definition of $(J_s)^*$, $x = x \wedge x = 0$.

Now let $J \wedge H = 0$, for some $H \in \mathcal{J}(A)$. Then $J_s \cap H_s = 0$, for all $x \in M$. To show that $H_s \subseteq J_s^*$, let $h \in H_s$. To see that $th \in (J_{ts})^*$, for all $t \in M$, let $b \in J_{ts}$. Now $th \wedge b \in J_{ts}$ and since $th \in H_{ts}$, $th \wedge b \in H_{ts}$. Then $th \wedge b$ being in $J_{ts} \cap H_{ts} = 0$ implies that $th \in (J_{ts})^*$. Hence J^* is indeed the pseudo-complement of J.

Notice that, since $(t \cdot J)^* = t \cdot J^*$, the map $()^* : \mathcal{J}(A) \longrightarrow \mathcal{J}(A)$ is equivariant.

LEMMA 1.6. If $A \in MBoo$ is internally complete and $J \in \mathcal{J}(A)$, then

$$J^* = [(VJ)']$$

where ()' is complementation in A.

PROOF: Let c = VJ. To see that for each $s \in M$,

$$\mathcal{J}_{s}^{*} = \{x \mid tx \in (J_{ts})^{*}\} = \downarrow sc',$$

Let $x \in J_s^*$. Then we have

$$\begin{aligned} x \leqslant sc' &\iff sc \leqslant x' \\ &\iff sVJ \leqslant x' \\ &\iff Vs \cdot J \leqslant x' \qquad (by 1.4) \\ &\iff s \cdot J \leqslant [x'] \qquad (definition of V) \\ &\iff (\forall t \in M)((s \cdot J)_t \leqslant \downarrow tx') \\ &\iff (\forall t \in M)(J_{st} \leqslant \downarrow tx') \\ &\iff (\forall t \in M)(J_{st} \leqslant \downarrow tx') \\ &\iff (\forall t \in M)((\downarrow tx')^* \leqslant (J_{st})^*) \\ &\iff (\forall t \in M)(\downarrow tx \leqslant (J_{st})^*) \\ &\iff (\forall t \in M)(tx \in (J_{st})^*) \\ &\iff (x \in J_s^*). \end{aligned}$$

1.7 Let $N(A) = \{J \in \mathcal{J}(A) \mid J = J^{**}\} = \{J^* \mid J \in \mathcal{J}(A)\}$. That is N(A) is the equaliser of $()^{**}: \mathcal{J}(A) \longrightarrow \mathcal{J}(A)$ and the identity map $\mathcal{J}(A) \longrightarrow \mathcal{J}(A)$. We call this the algebra of (internal) normal ideals of A. Since $[\cdot]^* = [()']$, the embedding $[\cdot]: A \longmapsto \mathcal{J}(A)$ factors through N(A). This shows that any algebra A in MBoo can be embedded into an internally complete one. That N(A) is internally complete follows from the fact that the usual proof is constructively valid.

The above lemma shows that

PROPOSITION 1.8. $A \in MBoo$ in internally complete if and only if $[\cdot]: A \longrightarrow N(A)$ is an isomorphism.

2. INJECTIVITY IN MBOO

2.1 Recall that an object A in a category is *injective* if and only if for any morphism $h: B \longrightarrow A$ and any monomorphism $g: B \longmapsto C$, there exists a morphism $f: C \longrightarrow A$ such that fg = h. Further, a monomorphism $h: A \longmapsto B$ is called *essential* if any

Π

M. Mehdi Ebrahimi

 $g: B \longrightarrow C$ for which gh is a monomorphism is itself a monomorphism. In MBoo, one checks easily that $h: A \longmapsto B$ is essential if and only if every *M*-ideal of *B* with zero inverse image by *h* is itself zero. The result of Ebrahimi [4] and the classical facts about Boolean algebras show that for any Grothendieck topos, and hence in particular for MEns, every algebra $A \in$ MBoo has an *injective hull* (that is an essential injective extension). That is, the category MBoo has enough injectives.

2.2 Consider the following adjointness

$$\mathbf{MEns} \xleftarrow[H]{U} \mathbf{Ens}$$

with the underlying functor U a left adjoint of the functor H defined by : for any $X \in \text{Ens}$, H(X) is the set of all functions from the set M to the set X, with the action of M on H(X) given by (sf)(t) = f(ts), for $f \in H(X)$ and $s, t \in M$. This adjointness can be lifted to

$$\mathbf{MBoo} \xleftarrow[H]{U}{H} \mathbf{Boo}$$

denoted by the same letters. Since H has a left adjoint U which preserves finite limits, and hence monomorphisms, H preserves injective and complete Boolean algebras. In particular, for $2 \in Boo$, the algebra H(2) of all subsets of M is injective and internally complete.

LEMMA 2.3. $[\cdot]: A \longmapsto N(A)$ is essential.

PROOF: Let the composite $A \xrightarrow{[\cdot]} N(A) \xrightarrow{\varphi} B$ be a monomorphism; that is, for $x \in A$, $\varphi[x] = \varphi[(\downarrow sx)_{s \in M}] = 0$ implies that x = 0. Let $X = (X_s)_{s \in M}$ be in N(A) and $\varphi(X) = 0$. Let $X_s \neq 0$, for some $s \in M$. Then $X_s = (s \cdot X)_e \neq 0$, where e is the identity of M. Let $x \in (s \cdot X)_e$, then, for any $t \in M$, $tx \in (s \cdot X)_{te}$, and hence $\downarrow tx \subseteq (s \cdot X)_t$, for $(s \cdot X)_t$ in an ideal of A. Thus $[x] \leq s \cdot X$, and hence $\varphi[x] \leq \varphi(s \cdot X) = s\varphi(X) = 0$. Thus x = 0, and hence $X_s = 0$, which proves the lemma.

PROPOSITION 2.4. If $A \in MBoo$ is injective, then it is internally complete.

PROOF: By the above lemma, N(A) is essential over A and since A is injective $A \cong N(A)$. Hence, by 1.8, A is internally complete.

The converse of the above proposition is not true in general: for a nontrivial (finite) group M, 2 is internally complete in MBoo but it is not injective, since H(2) is an essential extension of 2. In fact we have the following proposition which is a special case of Lemma 1.9 of [3].

PROPOSITION 2.5. H(2) is an essential extension of 2 if and only if M is a finite group.

PROOF: It is clear that an algebra E in MBoo is essential over 2 if and only if it is simple, that is $M \operatorname{Id}(E) \cong 2$. Let M be a finite group, and $I \neq 0$ be an M-ideal of H(2). Let $\emptyset \neq K \in I$, and $s \in K$. Since I is an M-ideal, $sK = \{t \mid ts \in K\}$ in I, and hence $\{e\} \subseteq sK$ is in I. Now, for any $m \in M$, $m^{-1}\{e\} = \{m\}$ is in I. Since M is finite, $M = \bigcup_{m \in M} \{m\}$ belongs to I. This shows that H(2) is simple, and hence essential over 2. Conversely, let H(2) be essential over 2. Let $S \subseteq M$ be the set of all right invertible elements of M. For $K \subseteq S$ and $s \in M$, $sK = \{t \mid ts \in K\}$ is a subset of S. Hence the set of all subsets of S is a (nontrivial) M-ideal of H(2). By essentialness, we get that M = S. This shows that M is a group. Now, since M is a group, it is checked easily that the set $P_f(M)$ of all finite subsets of M is a (nontrivial) M-ideal of H(2). By essentialness, $M \in P_f(M)$ and hence M is finite.

PROPOSITION 2.6. The injective hull of 2 in MBoo is H(2) if and only if M is a finite group.

REMARK 2.7. For any monoid M, the injective hull of 2 in MBoo is $H(2)/\mathcal{J}$ for a maximal M-ideal J of H(2).

PROPOSITION 2.8. For a finite monoid M, 2 is injective in MBoo if and only if M has a "right absorbing" element a (that is, as = a for all $s \in M$).

PROOF: Let 2 be injective. Since H(2) is injective, there exists $h: H(2) \longrightarrow 2$. Now $h^{-1}\{1\}$ is an *M*-ultrafilter on M(in H(2)). Since *M* is finite, $h^{-1}\{1\}$ is generated by $\{a\}$, for some $a \in M$, that is

$$\bigcap_{\substack{h(X)=1\\X\subseteq M}} X = \{a\}.$$

Now, for any $s \in M$, $h(s\{a\}) = sh(\{a\}) = s \cdot 1 = 1$. This implies that $\{a\} \subseteq s\{a\}$. But $s\{a\} = \{x \in M \mid xs = a\}$, hence as = a for all $s \in M$. Conversely, let $a \in M$ be a right absorbing element. Consider $\mathcal{A} = \{X \mid a \in X \subseteq M\} = \uparrow \{a\}$ in H(2). For any $s \in M$, $a \in sX$, because $sX = \{x \in M \mid xs \in X\}$ and as = a is in X. Hence, for $X \in \mathcal{A}$, $as = a \in X$ implies that $a \in sX$. Thus \mathcal{A} is an M-ultrafilter on M. Thus, there exists $h: H(2) \longrightarrow 2$ given by

$$h(X) = \begin{cases} 1 & \text{if } a \in X \\ 0 & \text{if } a \notin X \end{cases}$$

which is an MBoo morphism. Hence 2 retracts the injective algebra H(2). This shows that 2 is injective.

Notice that the finiteness of M is not needed to prove the converse of the above proposition.

M. Mehdi Ebrahimi

PROPOSITION 2.9. Let M be a finite and commutative monoid. Then a subalgebra A of H(2) is an essential extension of 2 if and only if A is generated by (the blocks) of a monoid congruence θ on M with M/θ being a group.

PROOF: Since M is commutative, the maps $\lambda_t: A \longrightarrow A$ induced by the action of $t \in M$ are endomorphisms. Since A is essential over 2, and hence simple, the λ_t 's are one to one. By finiteness of A, the λ_t 's are isomorphisms. Now, for $\theta = \{(s, t) \mid \lambda_s = \lambda_t\}, M/\theta$ is a group.

To see that A is generated by the θ -blocks, let $E \in A$ be the atom of A containing e, which exists because A is finite. If $\lambda_s = \mathrm{Id} = \lambda_e$, that is $s \in \theta[e]$, the θ block of e, then sE = E and hence $s \in E$. This shows that $\theta[e] = E$. On the other hand, for $s \in E$, $E \subseteq sE$, because $e \in sE$ and E is an atom. Since the λ_t 's are automorphisms, sE is an atom, and hence E = sE. Further s(tE) = tE, by commutativity, and thus $\lambda_s = \mathrm{Id}$, leaving all the atoms of A fixed; every atom of A is of the form tE for some $t \in M$, because $M = t_1 E \cup \ldots \cup t_k E$ for suitable t_1, \ldots, t_k .

Finally, if $\lambda_{\overline{s}} = \lambda_s^{-1}$, then $sE = \theta[\overline{s}]$, because $(xs, e) \in \theta$ if and only if $(x, \overline{s}) \in \theta$. This shows that A is generated by the blocks of a congruence θ on M with M/θ being a group.

Conversely if θ is a monoid congruence on M with M/θ being a group, then $s\theta[e] = \theta[\overline{s}]$ for $s\overline{s} = e$ and the θ -blocks generate a subalgebra A of H(2) which is an essential extension of 2.

EXAMPLE 2.10. Consider the monoid $M = \{e, a, b\}$ with xy = y, for x, y in M. The algebra

in MB00 is an essential extension (in fact the injective hull) of 2, but the partition $\{\{a\}, \{e, b\}\}$ which generates A is not a monoid congruence.

In fact, for the monoid $M = \{e, a_1, \ldots, a_n\}$ with xy = y, for x, y in M, the algebra

is the injective hull of 2.

3. SUBDIRECT IRREDUCIBLITY

Recall that an algebra A is a category is subdirectly irreducible if and only if for any monomorphism $f: A \mapsto \prod_{i \in I} A_i$, there exists an $i \in I$ with $p_i f: A \longrightarrow A_i$ a monomorphism, where p_i is the *i*-th projection. For $A \in MBoo$, this is equivalent to A having a smallest nonzero M-ideal. For a different proof of the following see [7].

LEMMA 3.1. If $A \in MBoo$ is subdirectly irreducible, then A can be embedded into H(2).

PROOF: For $A \in \mathbf{MBoo}$, U(A) is in **Boo** (see 2.2) and by the Representation Theorem in **Boo**, there exists a set S with a monomorphism $U(A) \longrightarrow 2^S$. Hence we have

$$A \longmapsto H U(A) \longmapsto H(2^S) \simeq (H2)^S$$

Now, since A is subdirectly irreducible, $A \mapsto H(2)$ is an embedding.

LEMMA 3.2. Every subalgebra A of H(2) is subdirectly irreducible.

PROOF: Suppose A is not subdirectly irreducible. Thus there exists a family $I_{\lambda}(\lambda \in \Lambda)$ of nontrivial M-ideals of A whose intersection is trivial. Since the I_{λ} 's are nontrivial, there are nonempty sets X_{λ} in I_{λ} , for each λ . For each λ , take $s_{\lambda} \in X_{\lambda}$. Since the I_{λ} 's are M-ideals, $s_{\lambda}X_{\lambda} \in I_{\lambda}$, hence the intersection X of the sets $s_{\lambda}X_{\lambda}(\lambda \in \Lambda)$ belongs to the intersection of the M-ideals $I_{\lambda}(\lambda \in \Lambda)$ which is trivial. Now, $X = \{x \in M \mid (\forall \lambda)(xs_{\lambda} \in X_{\lambda})\}$, and hence $e \in X$, that is $X \neq \emptyset$ which is a contradiction.

By the last two lemmas we get

PROPOSITION 3.3. An algebra in MBoo is subdirectly irreducible if and only if it is isomorphic to a subalgebra of the algebra H(2).

References

[1] R. Balbes and P. Dwinger, Distributive Lattices (University of Missouri Press, 1975).

[10]

- [2] B. Banaschewski and K.R. Bhutani, 'Boolean algebras in a localic topos', Math. Proc. Cambridge Philos. Soc. 100 (1986), 43-55.
- [3] S. Burris and M. Valeriote, 'Expanding varieties by monoids of endomorphisms', Algebra Universalis 17 (1983), 150-169.
- [4] M.M. Ebrahimi, 'Algebra in a Grothendieck topos: injectivity in quasi-equational classes.', J. Pure. Appl. Algebra 26 (1982), 269-280.
- [5] R. Goldblatt, Topoi: The Categorical Analysis of Logic (North-Holland, Amsterdam, 1979).
- [6] P. Halmos, Lectures on Boolean Algebras (van Nostrand, Princeton, 1963).
- [7] J. Ježek, 'Subdirectly irreducible and simple Boolean algebras with endomorphisms', in Universal Algebra and Lattice Theory: Lecture Notes in Math. 1149, Proc., Charleston, 1984, pp. 150-162 (Springer-Verlag, Berlin, Heidelberg, New York, 1985).
- [8] P.T. Johnston, Topos Theory (Academic Press, 1977).
- P.T. Johnstone, 'Conditions related to de Morgan's law': Lectuure Notes in Math. 753, Proc., Durham 1977, pp. 479-491 (Springer-Verlag, Berlin, heidelberg, New York).
- [10] S. MacLane, Categories for the Working Mathematician (Graduate Texts in Mathematics, No 5, Springer-Verlag, Berlin, Heidelberg, New York, 1971).
- [11] R. Sikorski, Boolean Algebras (Ergebnisse der Math. Band 25 Springer-Verlag, Berlin, Heidelberg, New York, 1964).

Department of Mathematics University of Shahid Beheshti Tehran Iran