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INTERNAL COMPLETENESS AND INJECTIVITY
OF BOOLEAN ALGEBRAS IN THE TOPOS OF M-SETS

M. MEHDI EBRAHIMI

In this paper we study internal completeness, injectivity and some related notions
in the category MBoo of Boolean algebras in the topos MEns of M-sets, for a
monoid M.

In Section 1, we deal with the notion of internal completeness in MBoo
and show that an algebra A in MBoo is internally complete if and only if the
embedding [•]: A i—• N(A) of A into the algebra N(A) of (internal) normal ideals
of A is an isomorphism.

In Section 2, we study the notion of injectivity and essential extensions in
MBoo and show that: injectivity implies internal completeness; the injective hull
of 2 is H(2) , the algebra of all subsets of M, if an only if M is a finite group; for a
finite monoid M, 2 is injective if and only if M has a right absorbing element; and
for a finite and commutative monoid M, a subalgebra A of H(2) is an essential
estenstion of 2 if and only if A is generated by the blocks of a monoid congruence
0 on M with M/6 being a group. Further, we give examples to show that the
latter result is not true in general.

Finally, in Section 3, we characterise the subdirectly irreducible algebras in
MBoo.

0. PRELIMINARIES

0.1 For a monoid M let MEns be the topos of all (left) M-sets (sets with a left
M-action) and the equivariant maps between them. Considering M as a category with
one object, MEns is the functor category Ens where Ens is the category of sets.
Hence, the subobject classifier fi of this topos is the set of all left ideals of M (subsets
of M which, are closed under the left multiplication) together with the action of M
on (I given by division, that is for t G M and 5 e ft, tS = {s e M \ st G 5} . The

Received 30 May 1989
This work was done during my sabbatical leave spent at McMaster University. I wish to express my deep
appreciation to B. Banaschewslri for valuable discussions, suggestions and encouragement throughout
my work. I must say that without his help and generous assistance I could not have completed this
work.
Financial assistance from the Natural Science and Engineering Research Council of Canada, through
their operating grant to B. Banaschewski, is gratefully acknowledged. Also, I would like to thank the
University of Shahid Beheshti (The National University of Iran) for granting me this sabbatical leave.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/90 SA2.00+0.00.

323

https://doi.org/10.1017/S0004972700018141 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700018141


324 M. Mehdi Ebrahimi [2]

true map 1 —> ft, where 1 = {0} is the terminal object of MEns, takes 0 to M,
the largest ideal of M. For any subobject A i—> B, the classifying map fT : B —> ft
is defined by fT(b) = {x e M \ xb e A}. Hence fT(b) = M if and only if b G A.
Notice that ft = {<f>, M} if and only if M is a group. For A G MEns, a global element
/ : 1 —» A is given by an element /(0) of A which is fixed under the action of M.
Since tS = M if and only if i G 5 , one can check easily that ft has exactly two global
elements. This shows that the topos MEns is bivalued. But MEns is a Boolean topos
if and only if M is a group.

0.2 The power set 7>(M) of M is an Af-set with the action given by division, and
ft is a pseudo-complemented subalgebra of 'P(Af). The pseudo-complement of S G ft
is

5* = {s G M | (Vt G M){ts i 5)}

It is easily checked that ft is a Stone algebra, that is 5* U 5** = M, if and only if
S* — 0 for all S ̂  0 in ft. Also, by [9], fi is a Stone algebra if and only if M satisfies
the (left) Ore condition, that is, for any a, b in M, there exist s, t in M such that
sa = ta. In fact, if the Ore condition is satisfied, S ^ 0 is in ft and a G 5 , then for
any b G M, there exist s, t in M with tb = sa. Now, since 5 is a left ideal of M,
tb = sa G S. This gives us that b £ S*, and hence S* = 0.

0.3 For A, B in MEns, BA is the set of all equivariant maps f:MxA —> B,
together with the action of M defined by

(sf)(t,a) = f(ts,a)

for s, t in M and a G A. It is easily sseen that ClA = Sub(M x A) subobjects of
M x A. For any subob ject X of M x A, we have

X = |J {a} x X.

where X, — {a G -A | (s,a) G X} . Hence we can identify X by a family (-^
where for each a G M, X, is a subset of A with

(V* G M)(a eX.=>ta€ Xu).

The action of M on ft"4 is then given by

tX=(X.t).eM.

0.4 In the following, MLatt will denote the category of lattices in MEns, with
lattice maps preserving the M action, and MBoo is the category of Boolean algebras
in MEns. For any algebra A, the underlying object of A is denoted by the same letter
A.
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1. INTERNAL COMPLETENESS

1.1 For A 6 MLatt, Id (A) and Mid (.A) denote the set of ideals of (the lattice)
and M-ideals of (the M— lattice) A, respectively. The action of M on Id (.A) is given
by s • J — [sj], for s £ M and J G Id (A), where [sJ] is the ideal of A generated by
the set sJ = {sx\x £J}. That is

s • J — {a G A | (3x G J)(a ^ ax)}.

The action of M on Mid (A) is defined in the same way.
It is clear that the map | : A —> Id (A) defined by a i—• J. a = {x G A | x ^ a} is an

equivariant map.
1.2 For A G MBoo, the internal ideal lattice J(A) of A in the topos MEns is

given by

= {x = (x.).eM | (x e nA) &(v, e M)(X. G

For X = (X, ) j £ M and F = ( y * ) , ^ , their meet and join in J(A) is defined
component-wise, that is

X A Y = (X, A Y.),e M and X V Y = (X. V Y,),€M,

where X, A Y, is their intersection and X, V Y, is their join in Id (A), that is X, V Y, =
{6 V c | 6 G X,, c G y ,} . The action of M on J{A) is the same as the action on QA.
Notice that if M is a group, then J{A) = Id (A).

One also defines a lattice embedding [•]: A i—> J(A) by [a] = (j sa)t^M, which
preserves the action of M.

In addition, one defines a lattice embedding ( ) : Id (A) i—> J{A), preserving the
action, by J* = ([•S«/]),GM' ^or ^ ^ Id (A). Since (j a) = [a], the following diagram
is commutative

A - i l - J(A)

Id (A) = U(A)

1.3 Recall that a lattice A in MEns in internally complete (see [8], p.147) if there
exists an order preserving equivariant map V: J{A) * A which is (internally) left
adjoint to [•]: A .—> J{A). That is, for X = (X.)s G M in J(A) and c G A,

V X < c <!=> X ^ [c] «=*• (Vs G M)(X, < | sc).

By Proposition 5.35 and 5.36 in [8], fi and ilA are internally complete.
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PROPOSITION 1 .4 . If A £ MBoo is internally complete, then A is complete
in Boo and the action of M on A is complete (that is preserves the join).

PROOF: Since the underlying functor U: MBoo —> Boo has a left adjoint, which
preserves pullbacks, A is complete as a Boolean algebra (see Proposition 5.6) [8]). In
fact the join map V: Id (A) —> A is given by the following commutative diagram

ld(A)

That is, VJ - VJ* , for J G Id (A). Since the maps ( ) # and V are both equivariant,
so is V.

The converse of the above proposition is not true in general. Consider the initial
object 2 of MBoo. By [9], 2 is internally complete if an only if il is a stone algebra,
that is if and only if M satisfies the left Ore condition (see 0.2).

If M is a group, then A G MBoo is internally complete if and only if A G Boo is
complete. This is because J(A) = Id (A), and the actions are isomorphism (onto) and
hence complete, for the join in Boo is defined by means of the order and the actions
preserve the order.

Let A G MBoo and J G J(A). The (internal) pseudo-complement J* of J is
defined by

= n «
for each s G M. We now prove that J* is indeed the pseudo-complement of J . D

LEMMA 1 . 5 . J* is the pseudo-complement of J.

PROOF: J* is in J~(A), because each (Ju)* is in Id(j4) and, since t~1(Ju)* is
in Id{A), J* = P) ^{JtsT belongs to Id(A). If x G J* and t0 G M, then for any

t G M, t(tox) = (tto)x belongs to (J«o,)*, and hence to^ £ ^tOf Now, x G J,C\ J*
implies that x G J, and x G J* • Hence ( i £ (Jts)* > for all t G M, which implies that
x G (Ji)* • Hence, by the definition of (J,)*, x = x A x = 0.

Now let J A H = 0, for some H G J{A). Then J.HH. = 0, for all x G M. To
show that H, C J*, let h G H.. To see that th G (Ju)*, for all t G M, let 6 G Ju •
Now th A 6 G Jt. and since th G Hu , th A b G Ht, • Then th A b being in Ju r\Hu-Q
implies that th G (Ju)* • Hence J* is indeed the pseudo-complement of J . D

Notice that, since (t • J)* = t • J*, the map ( )*: J(A) —> J(A) is equivariant.
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LEMMA 1.6 . If Ae MBoo is internally complete and J G J{A), then

r = [(VJ)1}

where ( ) is complementation in A.

PROOF: Let c=VJ. To see that for each s e M,

j ; = {x | tx £ (Jt.)*} = | sc1,

Let x G J*. Then we have

sVJ < x'

Fs . J < z' (by 1.4)

s • J < [x'\ (definition of V)

(Vt G M)((s • J)t < | tx')

(V< G

(V<GM)(te €(/.*)*)

D
1.7 Let JV(i4) - {J G J(i4) | J = J**} = {J* \ J G J ( ^ ) } - That is N(A) is

the equaliser of ( )**: J(A) —> J(A) and the identity map J(A) —» J{A). We call
this the algebra of (internal) normal ideals of A. Since [•]* = [( ) ], the embedding
[•]: A i—> J{A) factors through N(A). This shows that any algebra A in MBoo can
be embedded into an internally complete one. That N(A) is internally complete follows
from the fact that the usual proof is constructively valid.

The above lemma shows that

PROPOSITION 1.8 . A £ MBoo in internally complete if and only if [•]: A —>
N(A) is an isomorphism.

2. INJECTIVITY IN M B O O

2.1 Recall that an object A in a category is injective if and only if for any morphism
h: B —> A and any monomorphism g: B i—> C, there exists a morphism / : C —> A
such that fg = h. Further, a monomorphism h: A i—* B is called essential if any
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g: B —» C for which gh is a monomorphism is itself a monomorphism. In MBoo,
one checks easily that h: A i—> B is essential if and only if every M-ideal of B with
zero inverse image by h is itself zero. The result of Ebrahimi [4] and the classical facts
about Boolean algebras show that for any Grothendieck topos, and hence in particular
for M E n s , every algebra A £ MBoo has an injective hull (that is an essential injective
extension). That is, the category MBoo has enough injectives.

2.2 Consider the following adjointness

u
MEns «= -̂ Ens

H

with the underlying functor U a left adjoint of the functor H defined by : for any
X € Ens , H(X) is the set of all functions from the set M to the set X, with the
action of M on H{X) given by (sf)(t) = f(ts), for / e H(X) a n d j . i e M . This
adjointness can be lifted to

u
MBoo <— Boo

H

denoted by the same letters. Since H has a left adjoint U which preserves finite limits,
and hence monomorphisms, H preserves injective and complete Boolean algebras. In
particular, for 2 £ Boo, the algebra #(2) of all subsets of M is injective and internally
complete.

LEMMA 2 . 3 . [•]: A i—> N(A) is essential.

PROOF: Let the composite A > N(A) -̂ -> B be a monomorphism; that is, for
x e A, <p[x] = <p[(l sx)t€M] = 0 implies that x = 0. Let X = {X,)l€M be in N(A)
and <p(X) - 0. Let X, ^ 0, for some s 6 M. Then X, = (s • X)c ^ 0, where e
is the identity of M. Let x £ (a • X)e, then, for any t G M, tx £ (s-X)te, and
hence J. tx C [a -X)t, for (a • X)t in an ideal of A. Thus [a;] ^ s • X, and hence
<p[x] ^ <p{a • X) = sip(X) = 0. Thus x = 0, and hence X, — 0, which proves the
lemma. D

PROPOSITION 2 . 4 . H A 6 MBoo is injective, then it is internally complete.

PROOF: By the above lemma, N(A) is essential over A and since A is injective
A = ^(^4). Hence, by 1.8, A is internally complete. D

The converse of the above proposition is not true in general: for a nontrivial (finite)
group M, 2 is internally complete in MBoo but it is not injective, since H(2) is an
essential extension of 2. In fact we have the following proposition which is a special
case of Lemma 1.9 of [3].

PROPOSITION 2 . 5 . H(2) is an essential extension of 2 if and only if M is a
finite group.
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PROOF: It is dear that an algebra E in M B o o is essential over 2 if and only if
it is simple, that is MId(J5) S 2. Let M be a finite group, and J ^ 0 be an M-ideal
of H(2). Let 0 ^ K £ / , and a £ K. Since I is an M-ideal, sK = {t | ta £ i f } in
J , and hence {e} C aK is in / . Now, for any m £ M , Tn-1{e} = {m} is in / . Since
M is finite, M = | J {m} belongs to / . This shows that H(2) is simple, and hence

mGM

essential over 2. Conversely, let i?(2) be essential over 2. Let S C M b e the set of
all right invertible elements of M. For if C 5 and a £ M, aK - {t \ ta £ K} is a
subset of S. Hence the set of all subsets of 5 is a (nontrivial) M-ideal of H(2). By
essentialness, we get that M = S. This shows that M is a group. Now, since M is a
group, it is checked easily that the set Pf(M) of all finite subsets of M is a (nontrivial)
M-ideal of H{2). By essentialness, M £ Pf(M) and hence M is finite. D

PROPOSITION 2 . 6 . The injective hull of 2 in MBoo is H{2) if and only if
M is a finite group.

REMARK 2.7. For any monoid M, the injective hull of 2 in MBoo is H(2)/J for a
maximal M-ideal J of H(2).

PROPOSITION 2 . 8 . For a finite monoid M, 2 is injective in MBoo if and
only if M has a "right absorbing" element a (that is, as = a for all a G M).

PROOF: Let 2 be injective. Since #(2) is injective, there exists h: H(2) —> 2.
Now /i-1{l} is an M-ultrafilter on M(in H[2)). Since M is finite, h~1{l} is generated
by {a}, for some a £ M, that is

n *={«}•
XCM

Now, for any a £ M, h(a{a}) = sh({a}) — a • 1 = 1. This implies that {a} C a{a}.
But a{a} = {x £ M \ xa — a}, hence as — a for all s £ M. Conversely, let a £ M
be a right absorbing element. Consider A — {X \ a £ X C. M} = | {a} in H{2). For
any a £ M, a £ aX, because aX = {x £ M \ xa £ X} and as = a is in X. Hence, for
X £ A, as — a £ X implies that a £ aX. Thus A is an M-ultrafilter on M. Thus,
there exists h: H{2) —> 2 given by

f 1 if a G X
MX) = {

\ 0 if a i X

which is an MBoo morphism. Hence 2 retracts the injective algebra H(2) • This shows
that 2 is injective. 0

Notice that the finiteness of M is not needed to prove the converse of the above
proposition.
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PROPOSITION 2 . 9 . Let M be a finite and commutative monoid. Then a sub-
algebra A of H(2) is an essential extension of 2 if and only if A is generated by (the
blocks) of a monoid congruence 0 on M with M/8 being a group.

PROOF: Since M is commutative, the maps Xt: A —> A induced by the action
of t £ M are endomorphisms. Since A is essential over 2, and hence simple, the Xt 's
are one to one. By finiteness of A, the Xt 's are isomorphisms. Now, for 6 — {(s, t) |
A, = A«}, M/6 is a group.

To see that A is generated by the 0-blocks, let E £ A be the atom of A containing
e, which exists because A is finite. If A, = Id = Ae, that is s £ &[e], the 6 block of
e, then sE = E and hence s £ E. This shows that 6[e] = E. On the other hand, for
s £ E, EC. sE, because e £ sE and E is an atom. Since the A '̂s are automorphisms,
sE is an atom, and hence E = sE. Further s{tE) = tE, by commutativity, and thus
A, = Id, leaving all the atoms of A fixed; every atom of A is of the form tE for some
t £ M, because M = txE U . . . U tkE for suitable tx, ..., tk .

Finally, if Aj = A71, then sE = 0[s], because (xs, e) £ 6 if and only if (x, s) £ 0.
This shows that A is generated by the blocks of a congruence 9 on M with M/6 being
a group.

Conversely if 0 is a monoid congruence on M with M/6 being a group, then
s9[e] = 6[s] for ss = e and the 0-blocks generate a subalgebra A of H(2) which is an
essential extension of 2. U

EXAMPLE 2 . 1 0 . Consider the monoid M = {e, a, 6} with xy = y, for x, y in
M. The algebra

in MBoo is an essential extension (in fact the injective hull) of 2, but the partition
{{a}, {e, 6}} which generates A is not a monoid congruence.

In fact, for the monoid M — {e, 01, . . . , an} with xy = y, for x, y in M, the
algebra
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{a2} . . . {an}

is the injective hull of 2.

3. SUBDIRECT IRREDUCIBLITY

Recall that an algebra A is a category is subdirectly irreducible if and only if for
any monomorphism / : A i—> Y[ -̂ « > there exists an i £ / with pif: A —> A{ a

.6/
monomorphism, where pi is the i-th projection. For A £ MBoo, this is equivalent to
A having a smallest nonzero M-ideal. For a different proof of the following see [7].

LEMMA 3 . 1 . If A £ M B O O is subdirectly irreducible, then A can be embedded
into H(2).

PROOF: For A £ MBoo, U(A) is in Boo (see 2.2) and by the Representation
Theorem in Boo, there exists a set 5 with a monomorphism U(A) > 2 s . Hence we
have

A ^-*HU(A) —^ H(2S) ~ {H2)s.

Now, since A is subdirectly irreducible, A i—> #(2) is an embedding. D

LEMMA 3 . 2 . Every subalgebra A of H(2) is subdirectly irreducible.

PROOF: Suppose A is not subdirectly irreducible. Thus there exists a family
I\(X £ A) of nontrivial M-ideals of A whose intersection is trivial. Since the 7.x 's are
nontrivial, there are nonempty sets X\ in I\, for each A. For each A, take s\ £
X\. Since the I\ 's are M-ideals, s^Xx £ I\, hence the intersection X of the sets
s\X\(\ £ A) belongs to the intersection of the M-ideals /A(A 6 A) which is trivial.
Now, X = {x G M | (VA)(x3A € Xx)}, and hence e e X, that is X ^ 0 which is a
contradiction. D

By the last two lemmas we get

PROPOSITION 3 . 3 . An algebra in MBoo is subdirectly irreducible if and only
if it is isomorphic to a subalgebra of the algebra H{2).
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