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Solar radiative heating in first-year sea ice
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ABSTRACT. Temperature measurements taken in young, landfast Antarctic sea ice
show daily oscillations consistent with heating by solar radiation. We present and solve a
heat conduction model for the temperature with a non-linear thermal capacity and a
distributed source term for solar power absorption based on Monte Carlo scattering
simulations of penetrating photons. We observe two characteristic modes for solar heating
in sea ice, one dominated by travelling thermal waves or conduction in the upper half, and
the other dominated by in-place solar heating in the lower half. We note that deep thermal
responses to solar radiation are larger by a factor of ~10 than predicted by scattering
measurements, due possibly to the presence of algae and/or dissolved organic material.

INTRODUCTION

Seaice in the Arctic and the Antarctic plays a well-recognized
part in climate and ocean modelling. One aspect of some
interest is the thermal response of sea ice to solar radiation
(e.g. Flato and Brown, 1996; Key and others, 1996; Hanesiak
and others, 1999). In temperature measurements taken to cal-
culate the thermal conductivity we have noted (McGuinness
and others, 1998; Trodahl and others, 2000) daily oscillations
consistent with solar heating. The accuracy and resolution of
these measurements provide a direct measurement of the
thermal effect of solar radiation. A preliminary analysis of
the observed thermal response to solar heating appears in
Trodahl and others (2000), and we seek to extend this work
here. In particular, we seek to analyze more accurately the
conductive and volumetric heating effects.

In this paper we report on the temperature data gathered
in McMurdo Sound, Antarctica, we describe the Monte
Carlo scattering simulations performed to calculate the
absorbed solar power as a function of depth in sea ice, we out-
line and solve a mathematical model for the diffusion of heat
in sea ice that incorporates solar heating as a distributed
source term, and finally we compare and discuss the results.

TEMPERATURE DATA

Thermistor arrays frozen into first-year, landfast sea ice in
McMurdo Sound in 1996 and 1999 yield hourly temperature
measurements at 20 depths spaced 0.1 m apart during winter
and spring. The chosen locations, one about 1km off Arrival
Heights, and the other in the lee of Big Razorback Island off
Cape Evans, had little snow accumulation. The ice in both
locations grows to a thickness of >2 m in winter.

Recorded temperatures are plotted against time in Fig-
ures | and 2. Each line of data corresponds to one thermistor,
so that the higher temperatures correspond to the deeper
(warmer) thermistors. The Omega 44031 thermistors used
are calibrated and uniform to 0.1°C, but their potential reso-
lution is ~0.001 °C. Actual uncertainty is in practice ~0.01 °C.
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Of' some concern is the possibility that the observed tem-
perature oscillations are due to the sun directly heating the
thermistor string, rather than to variations in ice tempera-
ture. The direct heating of the thermistors by sunlight has
been modelled inTrodahl and others (2000) and was found
to be negligibly small in amplitude. Furthermore it would be
in phase with the sun, and this is not observed in our data.

The temperature data show changes forced by variations
in air temperature, and also during some periods in spring a
smaller, faster (daily) oscillation can be seen superimposed on
the slower changes, which we assume is due to solar forcing, It
1s this solar forcing which we investigate further in this paper.

There are periods during spring when no solar forcing is
visible; we believe this is when cloud obscures the sun.

MONTE CARLO SCATTERING

The optical energy absorbed per unit volume at any depth 2
in the ice is given by the product of the average radiance and
the absorption coefficient. However, the average radiance is
not easily determined within the very successful Monte
Carlo models we have developed on the basis of light-
spreading measurements. We have thus adapted these
models to simulate the absorption process.

The core element in the Monte Carlo models is the
tracing of many randomly scattered light paths for rays
impinging on the surface. The effects of scattering are
modeled by a depth-dependent scattering length (mean-
free-path) whose magnitude and depth dependence are
chosen to reproduce experimentally-determined beam-
spreading profiles (Haines and others, 1997). In the present
case, where we wish to simulate the heat absorbed in the ice,
we follow the paths through many layers of thickness Az
centred at depths z; = (i +3)Az and record for each
traverse j of a ray through that layer the path length ¢; spent
in the layer, binned by the total path L; that the ray has
followed before reaching that level. Then the absorbed power
per unit volume at that depth due to a flux FyAM falling on
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Fig. 1. Temperatures measured in 1996, plotted against time.
Each line s the temperature recorded by one thermustor at a
constant depth. The upper plot shows temperatures during
winter and spring at depths 0.7—2.0 m, with the coldest tem-
peratures being from the 0.7 m deep thermustor. The lower plot
shows more detail during spring, and s for depths 0.5-2.0 m.
Day zero is 12 Fune.

the surface in wavelength bands A to A + A\, and summed
over all wavelengths, is

P(z)=P = ]\?LAAZ a {F)\HA 2}: [(Z gi)jeHAL,/] }»
(1)

where N is the number of rays used in the Monte Carlo
model, and k) 1s the absorption coefficient for pure ice in
the wavelength band A to A + AX The wavelength range
used 1s 300—1400 nm. The specific models, specified by the
depth-dependent scattering length, include three of those
determined for McMurdo Sound first-year ice (Haines and
others, 1997). We note that they all display a strongly
scattering surface layer and a more weakly scattering
interior, and these features will be seen below to influence
the light-absorption profiles. Such a two-layer structure is
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Fig. 2. Temperatures measured in spring 1999, ploited against
time, from thermistors at depths 0.4—1.9 m. Data from 0.6 and
11m are missing, due to_faulty thermistors. Day zero is 14
October.

also apparent in studies of Arctic first-year sea ice (e.g.
Perovich and others, 1998).

The base ten logarithms of the resulting power densities
are plotted against depth in Figure 3. The models used range
from the most transparent (curve c¢), through an intermediate
case (curve a), to the most opaque or turbid (curve b) of those
developed by Haines and others (1997). The powers are for
midday during spring, and are used as an estimate of the
peak-to-peak variation of solar power. They are used in the
distributed source term in the heat-conduction modelling in
the next section, and they are the most important factor in
determining the amplitudes of temperature oscillations in
the ice due to solar radiation penetration.

MATHEMATICAL MODELLING

We model the temperature field in the sea ice with a one-
dimensional heat-diffusion equation. Heating by solar
radiation is included as a distributed source term, as

log10(P)

3k,

O 02 04 06 08 1 12 14 16 e 2
Z {m) g,

Fig. 3. The base ten logarithm of solar power absorbed per unit
volume ( Fm ), vs depth in the sea ice, calculated by Monte
Carlo scattering, and using scattering lengths fitted to 1986
experiments. The labels a, b, ¢ on the curves correspond to cases
864, 86B and 86C, respectively, used by Haines and others
(1997). The power is that at midday on a typical spring day
wn McMurdo Sound.
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calculated in the previous section. The equation describing
the conduction of heat in the sea ice is

o 0 ~
5 = DO 55 +Q(0.2) (1 + Ae), (2)

where the diffusivity is

D(0) = O (3)
and the solar driving term is
_ P(»)

where temperature is the real part of 6 in °C, 6 is a complex-
valued function of depth z and time ¢, k is thermal
conductivity, here taken to be 2W m 'K, p is the density of
the sea ice, and P is the solar power absorbed per unit volume
(Jm ¥ of sea ice. A complex-valued 6 is computationally
convenient for analyzing oscillations. Depth z is zero at the
upper icefair interface, and has been rescaled to give z =1 at
the lower ice/water interface, using the factor L, the total ice
thickness, which is taken to be L = 2 during spring.

The factor (1 4 Ae™!) accounts for the daily variation in
amplitude as the sun rises and falls, with frequency w = 27
radd . A has modulus one, which corresponds to the sun
just touching the horizon overnight. The argument of A sets
the zero of time with respect to the sun’s periodic behaviour.
C(0) is the temperature-dependent heat capacity per unit
mass of sea ice (kJkg '°C"), and we use the empirical
formula (Schwerdtfeger, 1963; Ono, 1966; Yen, 1981)

C(#) =2.113 — 0.0033S

5
+ (0.0065 + 0.00085)0 + 18.045/67, (5)

where §'is the salinity in practical salinity units (psu) of the
sea ice, here taken to be 5.5 psu.
The boundary condition used at the seafice interface
where z = 11s to fix the temperature at the value ) =—1.8°C.
For the boundary condition at the upper ice surface z =0,
a Newton-type heat loss is used, with the temperature
gradient at the surface proportional to the difference between
the ice temperature and the air temperature,
% = Ot(9 - 0air)

where a i3 some positive constant. If o = 0, the ice is per-

at z =0, (6)

fectly insulated from the air. If &« — 00, the ice temperature
at the surface is equal to the air temperature there. Equation
(6) corresponds to the sensible-heat flux, mentioned, for
example, in Zeebe and others (1996). Their work suggests
the value o =~ 12 at average wind speeds in McMurdo
Sound.

This boundary condition may appear crude compared,
for example, with that of Zeebe and others (1996), but
incoming and outgoing radiation effects at the upper surface
are already accounted for explicitly by the Monte Carlo simu-
lations through the source term P(z), for wavelengths in the
range 300—1400 nm, and hence are not needed in the bound-
ary condition. Radiation at wavelengths of > 1400nm is
ignored here, because we see very little power in the spectrum
of the solar radiation striking the ice surface above 1400 nm. We
also ignore latent-heat effects at the ice/air interface. For the
Weddell Sea, latent-heat fluxes have been estimated (Eicken,
1992) to be about a quarter of the size of the sensible-heat fluxes.
Furthermore, we find in the following sections that the oscil-
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latory solar forcing solutions are not very sensitive to the
boundary condition used at the upper surface.

Asymptotic analysis

The model equation (2) for temperature is non-linear, and
as it stands it i1s difficult to extract information about
solution responses to penetrating solar radiation. However,
large temperature variations on time-scales of the order of
I week or more (slow time), and smaller daily temperature
oscillations (fast time), are visible in the temperature data
presented in Figures 1 and 2. Hence we will make progress
by proceeding to analyze the daily small-scale changes as
perturbations on the longer-term trends.
We seek a temperature expansion in the form

0 = (1, 2) + ev(t, T, 2) + O(e?), (7)
where (following, e.g., Kevorkian and Cole, 1981) we are using
a multiple time-scales analysis, with ¢ a fast time, € a small
parameter, and 7 = €t a slow time-scale. Note that we are
explicitly taking the leading behaviour 1 to be slowly varying
in time. If we choose @ to also be of size ¢, we find the back-
ground temperature 9 solves the steady-state problem

) -
D)5y =0 (3)
which has a solution of the form
Y(1,2) = E(1) + F(7)2. (9)

Substituting this into the boundary conditions then gives
1
1/}(7', Z) = (1—|——a> [90 + Otoair(T) + 06(90 — 031,,(7-)2)].
(10)

The temperature at the top of the sea ice (2 =0) is
1
/(/)top = (H—a) (90 + Olaair). (1].)

Note that as o — 00, ¥iop — Gair, as expected since large o
corresponds to good thermal contact between ice and air.
The leading temperature behaviour % is linear in z, taking
the values 6y at z =1 and Yo at 2 = 0.
The O(e) problem is
Ov v

v Dl iwty
o DazQ Q(1 + Ae™") <

dgair
2 )a-2) A7),
1+« dr

(12)
where D = D(¢(7, 2)) and Q = Q(z,¢(T, 2)).

This is a linear partial differential equation for v. The
righthand side consists of oscillatory and non-oscillatory
forcing terms, and we are only interested in the oscillatory
behaviour of v. Hence we let

v="T(,T,2)+ V(z)e™ (13)

and we want to determine V(z). |V] gives the amplitude and
— arg(V) gives the phase shift of the oscillations in v. Substi-

tution into Equation (12) and equating coefficients of e’ gives
v
D(v) 12wV = —Q(z,¥)4, (14)

which is to be solved for V subject to the boundary conditions
V(1) =0and
dVv

CLoay,
E P

This is a boundary-value problem for a linear inhomo-
geneous second-order ordinary differential equation with
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Fig. 4. Amplitudes of temperature oscillations obtained from
numerical model solutions. The different curves correspond to
different parameter values as explained in the text.

variable coefficients, which cannot be solved by elementary
methods. However, numerical solutions will be discussed in
the following sections, and asymptotic solutions are the
subject of a paper in preparation.

Numerical solutions

Numerical solutions have been obtained for Equation (14),
using Mathematica and a standard numerical procedure
called the shooting method (e.g. Press and others, 1986).
Plots of numerical solutions appear in Figures 4 and 5. The
two major line groupings in the amplitude plot correspond
to the two extreme choices of cases b and c for P(z). The
effect of changing from case b to case c is not as dramatic in
the phase curves. The multiple clusters of lines within these
two major groupings correspond to different choices of the
parameters Y, and c. Numerical solutions can be seen to
be relatively insensitive to these parameters, depending
mainly on the scattering properties of the sea ice (i.e. on
cases b and c). The values actually used for a are 0, 1, 10, 100
and 1000. The value 1000 was found to give results
indistinguishable from infinity, so the full range of surface
boundary conditions are allowed for, from fully insulating
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>
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Ing. 6. Amplitudes of temperature oscillations observed in
spring 1996. The day number refers to the numbering used in
the temperature data (1), and indicates the day near which the
data were obtained.
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Fig. 5. Phases of temperature oscillations obtained from
numerical model solutions. The different curves correspond to
different parameter values as explained in the text.

to perfect thermal contact. Values chosen for the surface air
temperature Yyop range from —5° to —20°C.

Of'some interest in the numerical solutions is the appear-
ance of a solid-state greenhouse effect, with the maximum
in temperature oscillation amplitude appearing at about
0.1 m depth beneath the surface of the ice, for values of a that
correspond to good thermal contact with the air. This is not
observed in the data, since the spacing of the thermistors is
not close enough near the ice surface to resolve it.

DATA AND DISCUSSION

Temperature data from spring of 1996 and of 1999 have
been analyzed to obtain the amplitudes and relative phases
of those oscillations with a period of l1day, and the results
are displayed in Figures 6-9. Note that the scaled depth
z = 1 corresponds to 2 m.

The phases plotted are relative phases, with deep phases
arbitrarily set to zero, and with the allowed range of phase
being from zero to 27

A two-layer structure or behaviour is clearly evident in
the data, and correlates well with what is observed in the
numerical solutions. In a shallow layer we call the conduc-
tive region, up to ~0.8m deep (0 < z < 04), amplitudes
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Fig. 7. Amplitudes of temperature oscillations observed in
spring 1999. The day number refers to the numbering used in
the temperature data (2), and indicates the day near which the
data were obtained.
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Fig. 8. Relative phases of temperature oscillations observed
during spring 1996. The day number refers to the numbering
used in the temperature data (1), and indicates the day near
which the data were obtained.

decrease most rapidly, and the phase varies approximately
linearly with depth, consistent with (damped) travelling
waves of constant velocity. Temperature changes in this con-
ductive region are driven by the rapid changes in amplitude
associated with rapid changes in the solar driving term P.

The fact that much of the incoming solar radiation is
absorbed in a shallow layer is well known, and Zeebe and
others (1996) use this to justify accommodating the effects
of longer wavelengths in their boundary condition at the
surface of the sea ice. What is perhaps surprising here is the
large thermal footprint of the shallow layer, in that the tra-
velling waves originating there can be seen to penetrate
nearly 1 m into the sea ice before their amplitudes diminish
to the size of the deeper layer amplitudes. The size of this
footprint is seen to be reduced after warming the ice, when
deep amplitudes are increased, particularly in Figure 7.

In the deeper layer, observed amplitudes decrease rel-
atively slowly, and phase is almost constant at 7r/2. This cor-
responds physically to simple volumetric solar heating with
negligible conductive heat flow. We observe that after the ice
warms to near —5°C, deep amplitudes increase, and the con-
ductive region shrinks in size. This effect is particularly
apparent in Figures 7 and 9, with day 30 amplitudes raised

Z

Ing. 10. Predicted and observed values of the amplitude of
temperature oscillations, plotted together for comparison. All
of the data have been plotted as circles, and the numerical
results as solid lines.
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Iig. 9. Relative phases of temperature oscillations observed
during spring 1999. The day number refers to the numbering
used in the temperature data (2), and indicates the day near
which the data were obtained.

at depth compared with the other deep amplitudes, and the
conductive region from the phase plot for day 30 noticeably
smaller. Note that day 30 was in a period of significant
warming for the 1999 data (Fig. 2).

NUMERICAL SOLUTION MATCHES

In Figures 10 and 11 the numerical solutions from Figures 4
and 5 are plotted together with all of the observed results in
Figures 69, on the same graph, for comparison purposes.
Relative phases obtained from temperature data have had
the zero adjusted so that the deep phase is 7/2. Otherwise no
fitting has been done; the numerical results are based entirely
on incident solar radiation, model scattering lengths, and the
absorption coefficient for pure ice, as discussed above.

Phase matches between data and numerical model
solutions are excellent, at all depths. The jumps that can be
seen in the phases are due to restricting phase to principal
values between (—, 7).

Amplitudes also match well in the shallow conductive
layer, but the deep amplitudes are larger (by a factor of ~10)
in the measured data than predicted by the model solutions.

Phasc

Fig. 11. Predicted and observed values of the phase of temper-
ature oscillations, plotted together for comparison. All of the
data have been plotted as circles, and the numerical results as
solid lines.
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As noted above, deep amplitudes are largest after the ice has
warmed. Key factors that might account for the discrepancy
are scattering lengths and absorption coefficients. However,
previous studies of the temperature dependence of scattering
lengths in sea ice (Haines and others, 1997) have shown that
the deep scattering lengths are not perceptibly changed by
warming,

This suggests that the anomalously high temperature-
oscillation amplitudes observed at depth may be due to the
extra absorption attributable to the presence of algae (Zeebe
and others, 1996) or dissolved organic material in the deeper
layer (Perovich and others, 1998), since the Monte Carlo
simulations we conducted assumed that attenuation of
photons between scattering centres was due only to pure
ice. The discrepancy between data and numerical solution
amplitudes at depth shows as a deviation in slope on the
semilog plot, suggestive of a distributed effect rather than
any localized concentration of algae in strata. Grenfell
(1991) notes that absorption by algae can reduce transmitted
radiation by more than a factor of ten at certain visible
wavelengths. Perovich and others (1998) discuss possible
mechanisms that could enhance entrapment of organic
matter during the slow growth of congelation ice that
typifies the deeper sea-ice layer, and suggest that an alterna-
tive ice-growth mechanism such as a sub-ice frazil layer or
buoyant anchor ice could bring particles of organic matter
to the ice. We would add to this list the possibility of platelet
ice also bringing organic matter to be incorporated into the
sea-ice matrix (e.g. Crocker and Wadhams, 1989; Jeffries and
others, 1993; Gow and others, 1998; Smith and others, 1999).

The data presented here represent a direct measurement
of the effect of solar radiation penetration in sea ice, and
may serve to further inform parametric models of solar
heating of sea ice, particularly in light of recent results that
emphasize the importance of daily forcing effects (Hanesiak
and others, 1999). We plan to explore more fully the changes
in deep amplitudes and layer thickness as ice temperature
changes, in a future publication. We also plan to take advan-
tage of small parameters that appear in the linearization
Equation (14) and explore the implications of analytic
asymptotic solutions for the oscillatory response of sea-ice
temperature to penetrating solar radiation.
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