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Abstract. We prove a generalization of Krieger’s embedding theorem, in the spirit of
zero-error information theory. Specifically, given a mixing shift of finite type X, a mixing
sofic shift Y, and a surjective sliding block code π : X → Y , we give necessary and
sufficient conditions for a subshift Z of topological entropy strictly lower than that of Y
to admit an embedding ψ : Z → X such that π ◦ ψ is injective.
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1. Introduction
1.1. Background and statement of main results. In a foundational paper [10] in informa-
tion theory, Shannon introduced a model of a noisy communication channel, in which the
input and output are modeled by stationary probability measures on a space of sequences
of symbols. Shannon gave conditions under which the input can be recovered from the
output, at least with an acceptable rate of error or ambiguity, in the case of a Bernoulli
source, and this work has since been extended to more general sources [4].

This paper is motivated by the particular question of when one can ensure zero error, not
just almost surely as in information theory but, in fact, deterministically. A deterministic
channel can be modeled by a sliding block code, that is, a continuous, shift-commuting
map on a subshift, on which a stationary process could be supported. In this model, we
can apply techniques of symbolic dynamics to investigate the effects of deterministic noise
[8], also called distortion [10], which we can interpret as a failure of injectivity of the
sliding block code representing the channel, even in the absence of random errors.

The main result of this paper, Theorem 1.1, determines the extent to which the
non-injectivity of a sliding block code on a mixing shift of finite type (SFT) can be avoided
by restricting to a subshift of the domain. Interpreting the sliding block code as a channel
with deterministic noise, Theorem 1.1 characterizes the sources with entropy strictly lower
than that of the output which can be transmitted without error or ambiguity. Note that,
given the difference in entropy, there is a finite procedure to check whether the periodic
point condition holds; see §2.2.
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2 S. MacDonald

THEOREM 1.1. Let X be a mixing SFT, Y a mixing sofic shift, and π : X → Y a factor
code. Let Z be a subshift with topological entropy strictly less than that of Y. Then there
exists a subshift Z′ of X conjugate to Z such that π |Z′ is injective if and only if for every
n ≥ 1, the number of periodic points of least period n in Z is at most the number of periodic
points of least period n in Y with a π -preimage of equal least period.

Theorem 1.1 is a generalization of the following theorem of Krieger in the case of
unequal entropy; in particular, Theorem 1.1 reduces to Theorem 1.2 in the case where
Y = X and π is the identity.

THEOREM 1.2. [5, Theorem 2] Let Y be a mixing shift of finite type and Z a subshift.
Then there is a subshift Z′ ⊆ Y conjugate to Z if and only if Z and Y are conjugate or the
(topological) entropy of Z is strictly less than that of Y and, for every n ≥ 1, the number of
periodic points of least period n in Z is at most the corresponding number in Y.

We note that with X, Y , Z, π as in the statement of Theorem 1.1, clearly there exists a
subshiftZ′ of X conjugate to Z such that π |Z′ is injective if and only if there exists a sliding
block code ψ : Z → X such that π ◦ ψ is injective, in which case Z′ = ψ(Z) ⊂ X. To
verify the ‘only if’ statement in Theorem 1.1, suppose that there is a subshift Z′ of X
conjugate to Z such that π |Z′ is injective. Let y ∈ π(Z′) be periodic. Let x = π |−1

Z′ (y)
be the unique preimage of y in Z′. Then the orbit of x is in bijection with the orbit of
y; otherwise, π would fail to be injective on the orbit of x, which is contained in Z′. In
particular, x has finite orbit, so x is periodic, moreover with per(x) = per(y). Thus, every
periodic point in π(Z′) ⊂ Y has a periodic preimage in Z′ ⊂ X of equal least period,
which shows the necessity of the stated condition.

Both Theorems 1.1 and 1.2 give conditions for the existence of an embedding in terms
of entropy and a periodic point condition. The following corollary, which we prove in
§5, shows that the periodic point condition can be removed in exchange for a small loss
of injectivity.

COROLLARY 1.3. Let X be a mixing SFT, Y a mixing sofic shift, and π : X → Y a factor
code. Let Z be a subshift with topological entropy strictly less than that of Y. Then there
exist a subshift Z′, a finite-to-one factor code χ : Z′ → Z, and a sliding block code
ψ : Z′ → X such that π ◦ ψ is injective. Moreover, if Z is mixing sofic with positive
entropy (that is, Z does not consist of a single fixed point), then Z′ can be taken to be
a mixing SFT and χ can be taken to be almost invertible.

The code χ is in fact injective except on points in Z′ whose images in Z are
backward-asymptotic to one of finitely many periodic points in Z. See Lemma 2.3 and
Remark 2.4. From Corollary 1.3, we can immediately conclude the following, with h
denoting the topological entropy of a subshift.

COROLLARY 1.4. Let X be a mixing SFT, Y a mixing sofic shift, and π : X → Y a factor
code. For any ε > 0, there exists a mixing SFT Z ⊂ X with h(Z) > h(Y )− ε such that
π |Z is injective.
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Encoding subshifts through sliding block codes 3

1.2. Overview of the proof and organization of the paper. The proof of Theorem 1.1
adapts the strategy used to prove Theorem 1.2 in [5, 6] and related results in [1]. The
outline of the proof is as follows. We use a marker set, as in the proof of Theorem 1.2,
to break points in Z into moderate blocks and long periodic blocks, separated by marker
coordinates. We code these separately using certain ‘data blocks’ in Y, some of moderate
length and some long and periodic, where the long periodic data blocks come from
periodic points with π -preimages of equal least period in X. A block in Z between marker
coordinates is coded to a data block in Y which is shorter by an additive constant, so that
there are gaps between the data blocks that are filled with repetitions of a ‘blank’ symbol.
We then lift the data blocks from Y to data blocks from X, then replace the blanks with a
‘stamp’ block from X to form a valid point in X. The stamp block is chosen to ensure that
once the point in X is coded into Y by π , the locations of the stamp, and thus of the marker
coordinates, can be recognized.

The strategy, thus described, primarily involves a series of ‘interfaces’ between different
coding constructions, which we give in §3. However, to establish the existence of subshifts
with the properties required to make these interfaces work, we require a certain number
of asymptotic calculations involving entropy, periodic points, and overlaps in long words
or blocks. This quantitative material is deferred mainly to §4, with the results required to
establish Corollary 1.3 being deferred to §5. This organizational decision has the effect
of separating several results from their proofs by several pages. To mitigate difficulties
in following the argument, those results are restated before their proofs, with the specific
effects for each section or subsection noted where appropriate. It is highly recommended
that the reader become familiar with the main constructions in §§3.1 and 3.2, the final
synthesis in the proof of Theorem 1.1 being found at the end of §3.2, before spending
significant time on the rest of the paper.

1.3. Remaining questions. The statement of Theorem 1.2 is false for X merely mixing
sofic and, to date, there is no known characterization of the subshifts that embed into a
given mixing sofic shift, though some sufficient conditions are known [1, 11]. Theorem 1.1
sheds some light on this problem, without resolving it. Salo and Törmä [9] have answered
the following related question: let Y be a mixing sofic shift and Z ⊂ Y a mixing SFT. For
which such Y , Z do there exist a mixing SFT extension π : X → Y and a (mixing SFT)
Z′ ⊂ X such that π |Z′ : Z′ → Z is a conjugacy? However, it is unclear how the conditions
given in that answer compare to those in Theorem 1.1, or to the results given in [11]. As a
final related question, when Y is an SFT and Z is conjugate to Y, the existence of an SFT
Z′ ⊂ X conjugate to Z such that π |Z′ : Z′ → Y is a conjugacy, that is, is surjective as well
as injective, has been studied in [3], continuing the work from [8].

2. Conventions, definitions, and background on symbolic dynamics
2.1. Subshifts and sliding block codes. Let A be a finite set with the discrete topology,
which we will call an alphabet. The set AZ of bi-infinite sequences over A, equipped
with the product topology, is called the full shift over A, so called because the shift action
σ : AZ → AZ, given by (σx)i = xi+1, is a homeomorphism. A closed, shift-invariant
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subset of the full shift is called a subshift. The topology on AZ is generated by cylinders,
which are sets of the form

[w]i := {x ∈ AZ | xi+j = wj , 0 ≤ j ≤ n− 1},

wherew ∈ An is a block or word of length n ∈ N, and i ∈ Z. Note that by shift-invariance,
for any subshift X ⊂ AZ and any block w ∈ A∗, we have X ∩ [w]i �= ∅ for some i ∈ Z if
and only if X ∩ [w]i �= ∅ for all i ∈ Z.

A subshift X ⊂ AZ is characterized by the set B(X) of blocks w ∈ A∗ (where A∗
is the set of all finite blocks or words over A) such that X ∩ [w] �= ∅, called the
language of X. When the intended subshift X is clear, we write [w]i for X ∩ [w]i .
We write Bn(X) = B(X) ∩ An. We can equivalently characterize a subshift by a set of
forbidden words F ⊂ A∗, writing XF := AZ \ ⋃

w∈F
⋃
i∈Z[w]i . Note that, in general,

F � A∗ \ B(XF ). For a given subshift X ⊂ AZ, there may be several different sets of
forbidden words F ⊂ A∗ such that X = XF . An SFT is a subshift X such that X = XF
for some finite set F . A k-step SFT over A is an SFT of the form X = XF for some set
F ⊂ Ak+1.

It is a theorem (the Curtis–Hedlund–Lyndon theorem) that, for subshifts X, Y , a
function φ : X → Y is continuous and shift-equivariant if and only if it is a sliding block
code, which means that there exist m, n ≥ 0 and � : Bm+n+1(X) → B1(Y ) such that for
every x ∈ X and every i ∈ Z, φ(x)i = �(x[i−m,i+n]). By an abuse of notation, we will
refer to the map on blocks, �, by the same symbol as the map on points, φ. For instance,
we do this throughout with π as in Theorem 1.1. We say that φ is a k-block code if
m+ n+ 1 = k. A factor code is a surjective sliding block code, and for a sliding block
code φ defined on a subshift X, we say that the image φ(X) is a factor of X, and that X,
or more properly φ : X → φ(X), is an extension of φ(X). A sofic shift (from the Hebrew
,סופי� ‘sofi’, meaning ‘finite’) is any factor of a shift of finite type. An injective sliding block
code is called an embedding and a bijective sliding block code is called a conjugacy. The
properties of being sofic and of finite type are both invariant under conjugacy.

A subshift X is said to be irreducible if for all u, w ∈ B(X), there exists v ∈ B(X) such
that uvw ∈ B(X), and strongly irreducible with gap g ≥ 1 if, for any u, w, we can take
always take v ∈ Bg(X). Any factor of an irreducible (respectively strongly irreducible)
subshift is irreducible (respectively strongly irreducible). A periodic point in a subshift
X is a point x ∈ X with x = σnx for some n ≥ 1—we say that x has period n. The least
period per(x) of a periodic point x is the least n such that σnx = x. Note that |{σnx | n ∈
Z}| = per(x). We write P(X) for the set of periodic points in a subshift X, Qn(X) for the
set of periodic points of least period n, and qn(X) = |Qn(X)|. The number of periodic
points of a given least period is a conjugacy invariant.

It is a theorem that periodic points are dense in any irreducible shift of finite type. The
period per(X) of an irreducible shift of finite type X is the gcd of the periods of the periodic
points of X. An irreducible SFT with period 1 is said to be aperiodic. An irreducible
SFT is strongly irreducible if and only if it is aperiodic, if and only if it has periodic
points of all sufficiently high periods. For irreducible sofic shifts, strong irreducibility is
equivalent to having periodic points of all sufficiently high periods, which clearly implies
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that the periods have gcd 1, but the reverse implication fails. For example, consider the
odd shift over {0, 1}, in which the block 10n1 is permitted only for odd n. This is an
irreducible sofic shift which contains the fixed point 0∞, so the periods of periodic points
trivially have gcd 1. However, the odd shift has no other periodic points of odd period. We
follow the convention of the literature in referring to strongly irreducible sofic shifts (in
particular, SFTs) as mixing sofic shifts (mixing SFTs), because they are also characterized
by a topological mixing property, but we will not use that property explicitly, so we do not
define it here.

The following definition is new and we use it extensively.

Definition 2.1. Let X and Y be subshifts and let π : X → Y be a factor code. We write
Rn(π) for the set of periodic points y ∈ Y such that y = π(x) for some periodic point
x ∈ X with per(x) = per(y). We write rn(π) = |Rn(π)|.

For a subshift X, the (topological) entropy of X is the value h(X) = infn≥1(1/n) log
|Bn(X)|; in fact, the limit limn→∞(1/n) log |Bn(X)| exists and is equal to h(X).
For a mixing sofic shift (in particular, a mixing SFT) X, we also have h(X) =
limn→∞(1/n) log qn(X). Entropy is non-increasing under factor codes and is thus a
conjugacy invariant, though certainly not a complete invariant. For any irreducible sofic
shift X and any proper subshift V ⊂ X, we have h(V ) < h(X) [6, Corollary 4.4.9]. In §4,
we use the following lemma of Marcus, which allows us to approximate a sofic shift from
the inside by SFTs in terms of entropy.

LEMMA 2.2. [7, Proposition 3] Let Y be a sofic shift. For every ε > 0, there exists an
irreducible SFT U ⊆ Y with h(U) > h(Y )− ε.

For any subshift X and any k ≥ 1, we can form the kth higher block shift X[k] with
alphabet Bk(X), where

w = (a1,1a1,2 . . . a1,k)(a2,1a2,2 . . . a2,k) . . . (a	,1a	,2 . . . a	,k) ∈ B(X[k])

if and only if for each i, j , we have ai,j = ai+1,j−1, so that

w = (a1a2 . . . ak)(a2a3 . . . ak+1) . . . (a	+1a	+2 . . . a	+k),

and a1a2 . . . ak+	 ∈ B(X). Observe that X and X[k] are conjugate for any subshift X and
any k ≥ 1. Moreover, if X is an m-step SFT and k ≤ m− 1, then X[k] is an (m− k)-step
SFT. In particular, every SFT is conjugate to a 1-step SFT, and every sliding block code
on an SFT can be written as a composition of a conjugacy and a 1-block code. We will
therefore frequently assume without loss of generality (WLOG) that a given sliding block
code on an SFT is a 1-block code on a 1-step SFT.

For a sliding block code on an irreducible shift of finite type, either every fiber is a
finite set (indeed, of bounded cardinality), in which case the code is said to be finite-to-one
and the entropy of the image is equal to that of the domain, or every fiber is uncountable,
and the entropy of the image is strictly less than that of the domain. In the finite-to-one
case, the minimum fiber cardinality is generic and is known as the degree. In particular, a
code (on an irreducible SFT) with degree one is said to be almost invertible. It is a theorem
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that every irreducible (respectively mixing) sofic shift is an almost invertible factor of
an irreducible (respectively mixing) SFT. We use the following construction of almost
invertible codes, known as the ‘blowing-up lemma’, in the proof of Corollary 1.3 in §5.

LEMMA 2.3. [6, Lemma 10.3.2] Let Z be a mixing SFT and let z ∈ Z be a periodic point
with least period p. Let M ≥ 1. Then there exist a mixing SFT Z′ and an almost invertible
factor code χ : Z′ → Z such that the preimage of the orbit of z under χ is a single orbit
of length Mp.

Remark 2.4. Note that in [6], the extension χ in Lemma 2.3 is only stated to be
finite-to-one, but the existence of periodic points having unique preimage already implies
almost invertibility. Indeed, the construction in [6], based on work in [1], in fact shows
that χ is injective except on the points that are backward-asymptotic to points in the
preimage of the orbit of z, where we say that two points z, z′ are backward-asymptotic
if d(σnz, σnz′) → 0 as n → −∞.

2.2. Markers and Markov approximations. We now recall the constructions with
markers and long periodic blocks that are at the heart of the proof of Theorem 1.1. For
an alphabet A, we say that a block w = w1 . . . wn ∈ An is k-periodic, or has self-overlap
of n− k, if w[k+1,n] = w[1,n−k], that is, for 1 ≤ i ≤ n− k, we have wi = wi+k . A given
block may be k-periodic for several different k.

LEMMA 2.5. [1, Lemma 2.3] Let Z be a subshift, let N ≥ 1, and a, b ∈ Z with
b − a ≥ 2N . Let z ∈ Z. If for every i ∈ [a +N , b −N] there exists p ≤ N − 1 such
that z[i−N ,i+N] is p-periodic, then there is at most one periodic point ζ ∈ Z with
per(ζ ) ≤ N − 1 and ζ[a,b] = z[a,b]. If Z is a 1-step SFT, then such a ζ exists.

LEMMA 2.6. [5, Lemma 2] Let Z be a subshift. For any N ≥ 1, there exists a subset
F ⊂ Z, which can be taken to be a finite union of cylinders, such that:
(1) the sets σ iF , 0 ≤ i ≤ N − 1, are all disjoint; and
(2) if z /∈ σ iF for all −(N − 1) ≤ i ≤ (N − 1), then z[−N ,N] is p-periodic for some

p ≤ N − 1.

For any subshift X and any n ≥ 1, we can form the nth Markov approximation Xn,
which is the SFT defined by allowing precisely the blocks of length n which appear
in X. Clearly, Xn+1 ⊂ Xn. It is an exercise to show that for any ε > 0 and any N ≥ 1,
there exists N ′ ≥ N such that h(XN ′) < h(X)+ ε and qn(XN ′) = qn(X) for all n ≤ N .
In Lemma 2.7, we use the Markov approximation, together with higher block shifts, to
show that in the proof of Theorem 1.1, we can assume WLOG that Z is a 1-step SFT,
which allows us to apply Lemma 2.5.

We remark that there are versions of Lemma 2.6 which obviate the need for Lemma 2.5.
However, for our purposes in this paper, embedding Z into an SFT has the additional benefit
that the rate of convergence of (1/n) log qn(Z) to h(Z) can be easily estimated when
Z is an SFT (see e.g. [6, pp. 349–351]), which gives a procedure for deciding whether
a given X, Y , π , Z satisfy the periodic point condition in Theorem 1.1, assuming that
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h(Z) < h(Y ) (namely, computeN ≥ 1 such that for all n ≥ N , qn(Z) < rn(π), then check
all n ≤ N to determine whether qn(Z) ≤ rn(π)).

LEMMA 2.7. Let X be a mixing SFT, Y a mixing sofic shift, and π : X → Y a factor code.
Let Z be a subshift with h(Z) < h(Y ) and qn(Z) ≤ rn(π) for all n ≥ 1. Then there exists
a 1-step SFT Z′ such that Z embeds into Z′, h(Z′) < h(Y ), and qn(Z′) ≤ rn(π) for all
n ≥ 1.

We defer the proof of Lemma 2.7 to §5, as the proof uses a quantitative result
(Proposition 4.3) that is otherwise most at home in §4.

3. Coding
In §3.1, we introduce two coding constructions, namely subshifts with blanks adjoined,
Definition 3.1, and stamps, Definition 3.2, then use them to create one side of an interface
between Z on the one hand and π : X → Y on the other. In §3.2, we use markers in Z to
construct the other side of this interface. To construct subshifts with the properties required
to make this interface work, we need a construction of particular SFTs using stamps, which
we give in §3.3, and some quantitative estimates using the construction in §3.3, which we
defer until §4.2.

3.1. Blanks and stamps. As outlined in §1, the proof of Theorem 1.1 involves coding Z
into X via certain intermediate subshifts which consist of long ‘data’ blocks separated by
blanks. We now define this construction precisely.

Definition 3.1. (Subshift with blanks adjoined) Let W be a subshift and let N , 	 ≥ 1
with 	 < N . Let ∗ be a symbol not appearing in the alphabet of W. Let M ⊂⋃2N
n=1 B(W) be a set of blocks and let Q ⊂ ⋃2N−1

n=1 Qn(W) be a set of periodic
points. Denote by Blanks(M , Q, N , ∗, 	) the subshift in which each point is of the
form . . . w−1 ∗	 w0 ∗	 w1 . . . where either wi ∈ M or wi = yT where y ∈ Q and
T = (−∞, 0], [0, +∞), (−∞, ∞), or [0, m] with m ≥ 2N .

The purpose of the Blanks construction is to provide an interface between the channel
π : X → Y and the subshift Z to be embedded. One side of this interface, namely the
embedding of a Blanks subshift into X, is specified in Proposition 3.6. The construction
involves particular blocks, which we call stamps, that can be unambiguously recognized in
the following sense.

Definition 3.2. (Stamp) Let Y be a subshift, W ⊂ Y a proper subshift, and k ≥ 1. We say
that μ ∈ B(Y ) \ B(W) is a (Y , W , k) stamp if for all u1, u2 ∈ B(W) and v1, v2 ∈ Bk(Y ),
μ appears exactly once in u1v1μv2u2.

Remark 3.3. In Definition 3.2, continuing with the notation there, we do not explicitly
require u1v1μv2u2 to be legal in Y. Doing so would neither affect the results nor simplify
the proofs. In all of the examples we consider, such blocks will, in fact, be legal in Y.
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PROPOSITION 3.4. Let Y be a strongly irreducible subshift with gap g and W ⊂ Y a
proper subshift. For every k ≥ g and every sufficiently large n, there exists a (Y , W , k)
stamp of length n.

We defer the proof of Proposition 3.4 to §4.1, but before applying stamps in
Proposition 3.6, we prove a lemma that expresses how stamps are actually used in our
constructions.

LEMMA 3.5. Let Y be a subshift,W ⊂ Y a proper subshift, k ≥ 1, and μ ∈ B(Y ) \ B(W)
a (Y , W , k) stamp. Let N ≥ |μ|. Then for any γ± ∈ Bk(Y ) and any w ∈ B(W) with
|w| ≥ N , the stamp μ appears exactly twice in the block μγ−wγ+μ.

Proof. By the hypotheses on μ, γ±, and w, and Definition 3.2, μ appears exactly
once in each subblock μγ−w, wγ+μ. An appearance of μ other than at the positions
explicitly indicated must therefore overlap both of these subblocks. Since |w| ≥ |μ|, μ
must therefore be a subblock of w, contradicting the hypothesis that w ∈ B(W) and
μ ∈ B(Y ) \ B(W).

We now give one of the main coding constructions (Proposition 3.6), embedding a
subshift with blanks adjoined, and with blocks from a subshift V ⊂ X, into X via a sliding
block code γ , such that π ◦ γ is injective. The large amount of data in the statement is
representative of the complexity of the construction and the modular nature of the proof.
As indicated in §2.1, we abuse notation and write π for both a 1-block factor code and the
map on symbols by which it is induced.

PROPOSITION 3.6. Let X be a mixing SFT with gap g, let Y be a mixing sofic shift, and let
π : X → Y be a 1-block factor code.

Let V ⊂ X,W = π(V ) ⊂ Y be proper subshifts. Let ∗ be a symbol not appearing in the
alphabets of X, Y . Let N ≥ 1. Let M ⊂ ⋃2N−1

n=1 Bn(W) be a collection of blocks, and let
R ⊂ ⋃N−1

n=1 Rn(π |V ) be a union of finite (that is, periodic) orbits in W with π -preimages
of equal cardinality in V. Let κ : M → B(V ) be an injection such that π ◦ κ(w) = w

for each w ∈ M , and let M̂ = κ(M). Similarly, let λ : R → P(V ) be a shift-commuting
injection such that π ◦ λ(y) = y for each y ∈ R, and let R̂ = λ(R). Then for any 	 ≥ 1,
Blanks(M , R, N , ∗, 	) and Blanks(M̂ , R̂, N , ∗, 	) are conjugate.

Moreover, let μ ∈ B(Y ) \ B(W) be a (Y , W , g) stamp such that |μ| ≤ N , and suppose
that M ⊂ ⋃2N−1

n=N Bn(W), that is, M contains no blocks of length less than N. Then there
exists a sliding block code γ : Blanks(M̂ , R̂, N , ∗, |μ| + 2g) → X such that π ◦ γ is
injective.

Proof. First, the conjugacy. LetW [∗] = Blanks(M , R, N , ∗, 	) and V [∗] = Blanks(M̂ , R̂,
N , ∗, 	). Consider the 1-block code π [∗] defined on V [∗] by the block map π [∗](a) =
π(a) for a in the alphabet of V and π [∗](∗) = ∗. We claim that W [∗] = π[∗](V [∗]) and
that π [∗] : V [∗] → W [∗] is a conjugacy. To see that π [∗](V [∗]) ⊆ W [∗], note that any
ξ ∈ V [∗] is of the form

ξ = . . . w−1 ∗	 w0 ∗	 w1 . . . ,
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where either wi ∈ M̂ or wi = xT for some x ∈ R̂ and T an interval with 2N + 1 ≤ |T |.
If wi ∈ M̂ , then π(wi) ∈ M; if wi = xT for some x ∈ R̂, then π(wi) = π(x)T and
π(x) ∈ R. Therefore,

π [∗](ξ) = . . . π(w−1) ∗	 π(w0) ∗	 π(w1) . . . ∈ W [∗].

This shows that indeed π [∗](V [∗]) ⊆ W [∗]. Similarly, any η ∈ W [∗] is of the form

η = . . . w−1 ∗	 w0 ∗	 w1 . . . ,

where either wi ∈ M or wi = yT for some y ∈ R and T an interval with 2N + 1 ≤ |T | ≤
∞. For η of this form, using Lemma 2.5, we can use the injections κ , λ to reconstruct a
unique ξ ∈ V [∗] such that π [∗](ξ) = η, which shows that W [∗] ⊆ π [∗](V [∗]).

We now suppose that each block in M has length at least N and that we have a (Y , W , g)
stamp μ ∈ B(Y ) \ B(W) such that |μ| ≤ N . Under these assumptions, we construct a
sliding block code γ : V [∗] → X and show that π ◦ γ is injective. Fix a π -preimage μ̂ of
μ, and let 	 = |μ| + 2g. Using the hypothesis that X is a mixing 1-step SFT, define maps
γ± : B1(V ) → Bg(X) such that, for a, b ∈ B1(V ), we have μ̂γ−(a)a, bγ+(b)μ̂ ∈ B(X).
We then have a sliding block code γ : V [∗] → X, given by replacing each block b ∗	 a by
bγ+(b)μ̂γ−(a)a, and leaving the non-blank symbols unchanged.

Let

ξ = . . . ∗	 v−1 ∗	 v0 ∗	 v1 ∗	 . . . ∈ V [∗].

Then,

γ (ξ) = . . . μ̂γ−(a0)v0γ
+(b0)μ̂ . . . ,

where ai , bi are respectively the initial and terminal symbols of vi . In turn, we have

π ◦ γ (ξ) = . . . μ(π ◦ γ−(a0))π(v0)(π ◦ γ+(b0))μ . . . .

Moreover, by Lemma 3.5 and the lower bound on lengths of blocks in M, it follows that
μ appears in π ◦ γ (ξ) only where μ̂ appears at the same position in γ (ξ). By replacing,
in π ◦ γ (ξ), each appearance of μ, and the blocks of length k to the left and right of
μ, with ∗	, we obtain the point . . . ∗	 π(v0) ∗	 . . . = π [∗](ξ) ∈ Blanks(M , R, N , ∗, 	),
from which ξ can be recovered since π [∗] is a conjugacy.

3.2. Blanks and markers. We now prove a lemma that encapsulates the use of marker
constructions in our proof of Theorem 1.1.

LEMMA 3.7. Let Z, W be subshifts with Z a 1-step SFT. Let N , 	 ≥ 1 be such that
qn(Z) ≤ qn(W) for n ≤ N − 1 and |Bn(Z)| ≤ |Bn−	(W)| for N + 	 ≤ n ≤ 2N + 	− 1.
Let M ⊂ ⋃2N−1

n=N Bn(W) and Q ⊂ ⋃N−1
n=1 Qn(W) be a union of finite (that is, periodic)

orbits such that |Bn(Z)| ≤ |M ∩ Bn−	(W)| for N + 	 ≤ n ≤ 2N + 	− 1, and qn(Z) ≤
|Q ∩Qn(W)| for n ≤ N − 1. Then Z embeds into Blanks(M , Q, N , ∗, 	).

Remark 3.8. The lower bound on the length of blocks in M is not in fact needed for Lemma
3.7, but it is needed to apply Lemma 3.7 in conjunction with Proposition 3.6 in the proof
of Theorem 1.1 below.
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Proof. Let F be a marker set for Z with parameter N. For z ∈ Z, let A(z) = {i ∈ Z | σ iz ∈
F }. Enumerate each A(z) as {aj (z)}j∈J (z) where the index set J (z) may be the empty
set, or a finite set, or the integers, or the positive or negative natural numbers, and where
aj (z) < aj+1(z) for each j. We refer to the elements of A(z) as marker coordinates for z.
Say that T is a marker interval for z if: T = [aj (z), aj+1(z))where aj (z), aj+1(z) are both
defined; or T = [a0(z), ∞) if a0(z) = max A(z) < ∞; or T = (−∞, a0(z)] if a0(z) =
min A(z) > −∞; or T = (−∞, ∞) if A(z) = ∅.

We construct an embedding of Z into Blanks(M , Q, N , ∗, 	) by constructing a
function � that maps a block occurring between marker coordinates to a data block
padded with ∗	. Let cn : Qn(Z) → Qn(W) be shift-commuting injections for n ≤ N − 1.
Let dn : Bn(Z) → Bn−	(W) be injections for N + 	 ≤ n ≤ 2N + 	− 1. For a block
w ∈ Bn(Z) with N + 	 ≤ n ≤ 2N + 	− 1, let �(w) = ∗	dn(w). For z ∈ Z periodic
with n = per(z) ≤ N − 1, if m ≥ 2N + 	, let �(z[0,m]) = ∗	cn(z)[	,m]. Similarly, let
�(z[0,∞)) = ∗	cn(z)[	,∞). Finally, let �(z(−∞,0]) = cn(z)(−∞,0] and let �(z) = cn(z).
Observe that � is injective, by Lemma 2.5.

Define φ : Z → W by declaring that φ(z)T = �(zT ) whenever T is a marker interval
for z. We need to show that φ is an embedding. Certainly φ is shift-commuting, since if T
is a marker interval for z, then T − 1 is a marker interval for σz, so

φ(σz)T−1 = �((σz)T−1) = �(zT ) = φ(z)T = (σφ(z))T−1.

Thus, indeed φ(σz) = σφ(z). Moreover, φ is injective because the appearances of β in
φ(z) allow us to reconstruct the marker coordinates, and then the injectivity of � allows
us to reconstruct zT for each marker interval T for z.

We need to show finally that φ is continuous, that is, that for z ∈ Z, φ(z)0 depends
only on z[−L,L] for some finite L independent of z. To see this, let L′ be such that
F is a union of cylinders on [−L′, L′]. Let L = L′ + 2N . By examining z[−L,L], we
can determine whether there are marker coordinates for z in [−2N , 0) and/or [0, 2N].
If each of these intervals contains a marker coordinate, then φ(z)0 is determined by
zT , where T ⊂ [−2N , 2N] is the unique marker interval for z containing 0. If at
least one of [−2N , 0), [0, 2N] has no marker coordinates, then 0 is in a long marker
interval for z. If there is a marker coordinate in (−	, 0], then φ(z)0 = ∗. Otherwise, by
Lemma 2.5, φ(z)0 is determined by any subblock z[a,b] where a < 0 ≤ b, b − a ≥ 2N ,
and [a, b] contains no marker coordinate for z. This concludes the proof that φ is
continuous.

The remainder of the proof of Theorem 1.1 follows from the following proposition, the
proof of which is taken up in §4.

PROPOSITION 3.9. Let X be a mixing SFT with gap g, Y a mixing sofic shift, and
π : X → Y a factor code. Let Z be a subshift with h(Z) < h(Y ) and qn(Z) ≤ rn(π)

for every n ≥ 1. Then there exist: N ≥ 1, subshifts V ⊂ X, W = π(V ) ⊂ Y , and a
(Y , W , g) stamp μ ∈ B(Y ) \ B(W), such that |μ| ≤ N , qn(Z) ≤ rn(π |V ) for n ≤ N − 1
and |Bn(Z)| ≤ |Bn−	(W)| for N + 	 ≤ n ≤ 2N + 	− 1, where 	 = |μ| + 2g.

https://doi.org/10.1017/etds.2023.56 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.56


Encoding subshifts through sliding block codes 11

We state Theorem 1.1 in an equivalent form using the notation developed so far (as
opposed to the statement in the introduction, where notation was minimized for clarity on
a reader’s first encounter with the result), and give the proof.

THEOREM. (Theorem 1.1) Let X be a mixing SFT, Y a mixing sofic shift, and π : X → Y

a factor code. Let Z be a subshift with h(Y ) < h(Z). Then there exists a sliding block
code ψ : Z → X such that π ◦ ψ is injective, if and only if for every n ≥ 1, we have
qn(Z) ≤ rn(π).

Proof of Theorem 1.1. By Lemma 2.7, assume WLOG that Z is a 1-step SFT. Let N,
	, V ⊂ X, W = π(V ) ⊂ Y , and μ be as in Proposition 3.9. Let M ⊂ ⋃2N−1

n=N Bn(W)
be as in Lemma 3.7, and let R ⊂ ⋃N−1

n=1 Rn(π |V ) be a union of finite orbits, such that
qn(Z) ≤ |R ∩ Rn(π |V )| for n ≤ N − 1. Each of the orbits in R is, by the definition of
Rn, necessarily the image of an orbit with equal cardinality in V. Here, R takes the
role that Q plays in Lemma 3.7, but in Lemma 3.7, there was no channel π , and thus
no preimage requirement, hence the change in notation. By Lemma 3.7, let φ : Z →
Blanks(M , R, N , ∗, 	) be an embedding.

Let M̂ , R̂ be as in Proposition 3.6, let π [∗] : Blanks(M̂ , R̂, N , ∗, 	) → Blanks(M , R,
N , ∗, 	) be a conjugacy, and let γ : Blanks(M̂ , R̂, N , ∗, 	) → X be an embedding such
that π ◦ γ is injective (by Proposition 3.6, using μ). Thenψ = γ ◦ (π [∗])−1 ◦ φ : Z → X

is a sliding block code such that π ◦ ψ is injective.

3.3. Stamps and SFTs. In this subsection, we prove Lemma 3.11, which, in conjunction
with Lemma 2.2, allows us, in Proposition 4.4, to construct a mixing SFT V ⊂ X such that
the image π(V ) ⊂ Y is a proper subshift of Y but has entropy at least h(Y )− ε for a given
ε > 0. It may be possible to give a more efficient construction of such a V, but we have
not found one. We first prove Lemma 3.10, which is related to the characterization of SFTs
among S-gap shifts [2, Theorem 3.3].

LEMMA 3.10. Let X be a mixing SFT with gap g and let V0 ⊂ X be an SFT. Let k ≥ g and
let μ ∈ B(X) \ B(V0) be an (X, V0, k) stamp. Let N ≥ |μ| and let V1 ⊂ X be the closure
of the set of points of the form

. . . v−1γ
+
−1μγ

−
0 v0γ

+
0 μγ

−
1 v1 . . . ∈ X,

where, for each i, γ±
i ∈ Bk(X) and vi ∈ B(V0) with |vi | ≥ N . Then V1 is a mixing SFT.

Proof. Assume without loss of generality that X is a 1-step SFT. We first perform a small
recoding for convenience, specifically to make it easier to recognize stamps, by replacing
X by a conjugate shift X̂. For each x ∈ X, define x̂ as follows: if x[i,i+|μ|) = μ, then for
each i ∈ [−k, |μ| + k), let a = xi and let x̂i = â, where for symbols a, b in the alphabet
of X, we have â = b̂ if and only if a = b, and the set of symbols with hats is disjoint from
the alphabet of X. If there is no j ∈ (i − (|μ| + k), i + k] with x[j ,j+|μ|) = μ, then let
x̂i = xi . Clearly, the map x �→ x̂ is a sliding block code, and it is just as clearly injective,
since we recover x from x̂ by dropping hats. Therefore, X̂ = {x̂ | x ∈ X} is a mixing SFT,
conjugate to X.
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Denote by V̂1 ⊂ X̂ the image of V1 under the map x �→ x̂. Let 	 = |μ| + 2k. Since μ is
an (X, V0, k) stamp and N ≥ |μ|, blocks of the form γ+

i μγ
−
i+1 do not overlap in any point

in V1 by Lemma 3.5, so symbols with hats occur in V̂1 in blocks of length exactly 	. The
blocks of symbols with hats are separated by blocks from V0. Since V̂1 is the image of V1

under a conjugacy X → X̂, V1 is an SFT if and only if V̂1 is an SFT.
Let m ≥ max N , 	 be such that X̂ and V0 are m-step SFTs. We claim that if x̂ ∈ X̂ is

such that x̂[i,i+m] ∈ Bm+1(V̂1) for all i ∈ Z, then x̂ ∈ V̂1, which means precisely that V is
an m-step SFT. To prove this claim, let F ⊂ Bm+1(X) be the set of blocks of lengthm+ 1
which contain at least one of the following: a block of length greater than 	 in which all
symbols have hats; a block without hats that is not in B(V0); a block of symbols with
hats of length less than 	, bounded on both sides by symbols without hats; or a block
of symbols without hats, of length less than N, bounded on both sides by symbols with
hats. Note that F is disjoint from Bm+1(V̂1). Suppose that x̂[i,i+m] /∈ F for all i ∈ Z.
Then any block of symbols with hats in x̂ has length exactly 	, and is thus of the form
γ+μγ−, where γ± ∈ Bg(X) (with hats added). Furthermore, the blocks separating the
blocks with hats must have length at least N and must be in B(V0), since every subblock
of length m+ 1 is in B(V0) and V0 is an m-step SFT. Thus, indeed x̂ ∈ V̂1, so V̂1 is indeed
an SFT.

To see that V1 is irreducible, let u−, u+ ∈ B(V1). We need to construct u0 ∈ B(V )
such that u−u0u+ ∈ B(V1). We do so as follows. Extend u− on the right to form a block
v− ∈ B(V1), which begins with u− and ends with γ+

−1μγ
−
0 where γ+

−1, γ−
0 ∈ Bk(V1).

(It is possible that u− overlaps γ+
−1μγ

−
0 .) Let v0 ∈ BN(V0) be such that v−v0 ∈ B(X).

Similarly, extend u+ on the left to form a block v+ ∈ B(V1) which ends with u+ and
begins with γ+

0 μγ
−
1 , where γ+

0 , γ−
1 ∈ Bk(V1) and v0γ

+
0 ∈ B(X). Let x± ∈ B(V1) be such

that x−
[0,∞) begins with v− and x+

(−∞,−1] ends with v+. Let x = x−
(−∞,−1]v−v0v+x+

[0,∞).
Then x ∈ X, since X is a 1-step SFT. Moreover, x ∈ V1, since the tails x−

(−∞,−1]v− and
v+x+

[0,∞) appear in V1 and are joined together in a way that creates no violations of
the restrictions defining V1. Letting u0 be the block appearing between u−, u+, such
that v−v0v+ = u−u0u+ ∈ B(V ), the construction is complete, showing that V1 is indeed
irreducible.

To see that V1 is mixing, let u1, u2 ∈ B(V0) with |u1| > m, where m is as above,
and |u2| = |u1| + 1. Let γ±

i ∈ B(X), i = 1, 2, be such that uiγ+
i μγ

−
i ui ∈ B(X). Then

xi = (uiγ
+
i μγ

−
i )

∞ ∈ V1 for both i = 1, 2. Indeed, certainly xi ∈ X, since uiγ+
i μγ

−
i ui ∈

B(X) and X is a 1-step SFT. Moreover, per(xi) divides 	+ |ui |, and gcd(	+ |u1|, 	+
|u2|) = gcd(	+ |u1|, 	+ |u1| + 1) = 1, so gcd(per(x1), per(x2)) = 1. Since V1 is an
irreducible SFT with periodic points of coprime periods, V1 is mixing.

As advertised, we now use Lemma 3.10 to prove the following lemma, which is
applied in the proof of Proposition 4.4, which, in turn, is the main input to the proof of
Proposition 3.9.

LEMMA 3.11. Let X be a mixing SFT, Y a mixing sofic shift, and π : X → Y a 1-block
factor code. Let W0 � Y be an SFT. Then there exists a mixing SFT V1 ⊂ X with W0 ⊂
π(V1) � Y .
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Proof. Let V0 = π−1(W0) ⊂ X. Note that V0 is an SFT since W0 is an SFT. Let g be the
mixing gap of X. Let y ∈ Y \W0 be a periodic point with least period k ≥ g. Such a y
certainly exists because periodic points are dense in Y and W0 is a proper subshift. Let k′
be such that y[0,k′) /∈ Bk′(W0). Let 	 = k + k′. Then every 	-block in y is forbidden in W0.
In particular, for any x ∈ π−1({y}) and any i ∈ Z, we have x[i,i+	) /∈ B(V0).

By Proposition 3.4, let μ be an (X, V0, g) stamp. Let V1 consist of the closure of the set
of points of the form . . . v−1γ

+
−1μγ

−
0 v0γ

+
0 μγ

−
1 v1 . . . ∈ X where each vi ∈ B(V0) with

|vi | ≥ 	 and each γ±
i ∈ Bg(X). By Lemma 3.10, V1 is indeed a mixing SFT. Note that

every point in V1 contains 	-blocks permitted in V0, so V1 is disjoint from π−1({y}), and
therefore π(V1) � Y . In particular, since V0 ⊆ V1, we have π(W0) ⊆ V1 � Y .

4. Counting
In this section, we prove Proposition 3.4 and Proposition 3.9, which state the existence and
properties respectively of the stamps and the shifts V ⊂ X, W ⊂ Y used in §3. Section 4.1
contains two results required for the proof of Proposition 3.4, one (Lemma 4.1) showing
that most blocks in a subshift with positive entropy have little self-overlap, and the other
(Lemma 4.2) showing that one can assume, at the cost of a small loss of entropy, that a
given sufficiently long block appears syndetically in a mixing sofic shift. Section 4.2 then
gives a crucial asymptotic result on the number of periodic points in Y with a preimage of
equal least period in X, and applies the results from §3.3 to construct the shifts V and W.

4.1. Self-overlap and stamps. We begin by showing that most blocks have very little
self-overlap, which we use both to construct stamps and to determine the asymptotic
number of periodic points in Y with a π -preimage of equal least period.

LEMMA 4.1. Let Y be a subshift with h(Y ) > 0. For every α ∈ (0, 1), there exist N ≥ 1
and b > 0 such that for every n ≥ N , there are at least (1 − exp(−bn)) exp(nh(Y )) blocks
w ∈ Bn(Y ) with no self-overlap of more than αn.

Proof. Let ε = 1
2 (α

−1 − 1)h(Y ), so that α(h(Y )+ ε) < h(Y ). Let r = exp(h(Y )) and
s = exp(h(Y )+ ε). Note that sα < r < s and that rn ≤ |Bn(Y )| for every n. Let N0 be
large enough that for all n ≥ N0, we have |Bn(Y )| ≤ sn. Let C1 = ∑N0−1

k=1 |Bk(Y )|. Then
the number of blocks in X of length n with self-overlap of more than αn is at most

�αn�∑
k=1

|Bk(Y )| ≤
N0−1∑
k=1

|Bk(Y )| +
�αn�∑
k=N0

|Bk(Y )|

≤ C1 +
�αn�∑
k=N0

sk

≤ C1 + sαn+2 − sN0

s − 1
≤ C2s

αn,
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where

C2 = C1 + s2

s − 1
.

Let N > ((1 − α)h(Y )− αε)/log C2. Then, for n ≥ N , the number of blocks in Y of
length n with no self-overlap by more than αn is at least

|Bn(Y )| −
�αn�∑
k=1

|Bk(Y )| ≥ rn − C2s
αn

= rn
(

1 − C2

(
sα

r

)n)

> (1 − exp(−bn)) exp(nh(Y )),

where we can take

b = 1
2

log
(
C2

(
r

sα

)N)

= (1 − α)h(Y )− αε − 1
N

log C2,

which is positive by the choice of N.

We now control the entropy loss incurred by requiring a given long block to appear
syndetically.

LEMMA 4.2. Let Y be a strongly irreducible subshift with h(Y ) > 0. For every ε > 0,
there exist β ∈ (0, 1) and N ≥ 1 such that for every n ≥ N and every θ ∈ B�βn�(Y ), the
subshift S ⊂ Y consisting of points y ∈ Y in which θ appears at least once in y[i,i+n) for
every i ∈ Z has entropy at least h(Y )− ε.

Proof. Let g be the gap for Y. Let β = min{ε/(8h(Y )), 1/2} and let N = �4(2g +
1)h(Y )/ε�. Let n ≥ N and fix θ ∈ B�βn�(Y ). For m ≥ n, and for all u1, . . . , uk ∈
B�(1−2β)n�−2g(Y ), where k = �m/n�, there exist v±

1 , . . . , v±
k ∈ Bg(Y ) and v0 ∈

Bm−kn(Y ) such that

v0θv
−
1 u1v

+
1 θv

−
2 u2v

+
2 . . . θv−

k ukv
+
k ∈ Bm(Y ).

Therefore, by manipulation of logarithms and the fact that h(Y ) = inf	≥1(1/	) log |B	(Y )|
by definition,

|Bm(S)| ≥ |B�(1−2β)n�−2g(Y )|�m/n�
1
m

log |Bm(S)| ≥ 1
m

log(|B�(1−2β)n�−2g(Y )|(m−1)/n)

=
(

1 − 1
m

)
1
n

log |B�(1−2β)n�−2g(Y )|

≥
(

1 − 1
m

)
1
n
(�(1 − 2β)n� − 2g)h(Y )

> h(Y )− ε/2
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for large enough m, where the final inequality follows from the choices of β and N. We
conclude that h(S) = lim infm→∞(1/m)|Bn(S)| > h(Y )− ε.

PROPOSITION 3.4. Let Y be a strongly irreducible subshift with gap g and W ⊂ Y a
proper subshift. For every k ≥ g and every sufficiently large n, there exists a (Y , W , k)
stamp of length n.

Proof. It is clearly enough to prove the result for u1, u2 sufficiently long, since we can
then pass to subwords of u1, u2. By Lemma 4.2, let β ∈ (0, 1), m sufficiently large, and
θ ∈ B�βm�(Y ) \ B(W) be such that the subshift S ⊂ Y defined by requiring at least one
appearance of θ in any block of length m has h(S) > 0. Let α ∈ (0, 1) be arbitrary, and
let n > (m+ k)/(1 − α) be large enough that, by Lemma 4.1, there exists μ ∈ Bn(S) such
that μ has no self-overlap by more than αn, in particular, by more than n− (m+ k).

Let u1 ∈ Bk1(U), u2 ∈ Bk2(U) with k1, k2 ≥ m and let v1, v2 ∈ Bk(Y ). Then μ cannot
appear in u1v2μv2u2 except at the position explicitly indicated. Indeed, μ cannot appear at
a position shifted by at most m+ k—otherwise, μ would overlap itself by too much—and
it cannot appear at a position shifted by more than m+ k, as it would then overlap with u1

or u2 in a block of length at least m, contradicting the fact that μ ∈ B(S), and thus has θ
as a subword.

4.2. Entropy and periodic points. We first show that at least a positive fraction of
periodic points in Y of sufficient least period have a preimage of equal least period, and in
particular that their growth is exponential with rate h(Y ).

PROPOSITION 4.3. Let X be a mixing SFT, Y a mixing sofic shift, and π : X → Y a factor
code. Then limn→∞(1/n) log rn(π) = h(Y ).

Proof. Let g be the mixing gap of X. By Lemma 4.1, let b > 0 and N > 3g be such
that, for all n ≥ N , the number of blocks in Y of length n− g with no self-overlap
by more than n/3 is at least c exp(nh(Y )), where we may take c = 1

2 exp(−gh(X)).
For each block v ∈ Bn−g(Y ), there exists a periodic point x ∈ X with π(x)[0,n−g) = v

such that per(x) divides n. Thus, π(x) is also periodic with least period dividing n.
Moreover, if v has no self-overlap by more than n/3, then in fact per(π(x)) = n. Therefore,
rn(π) ≥ c exp(nh(Y )), so lim infn→∞(1/n) log rn(π) ≥ h(Y ), matching

lim sup
n→∞

1
n

log rn(π) ≤ lim
n→∞

1
n

log qn(Y ) = h(Y ),

which concludes the proof.

We now assemble the quantitative results proven so far.

PROPOSITION 4.4. Let X be a mixing SFT, Y a mixing sofic shift, and π : X → Y a factor
code. Let ε > 0 and N0 ≥ 1. Then there exist N1 ≥ N0 and proper subshifts W � Y ,
V = π−1(W) ⊂ X, such that: h(W) > h(Y )− ε; for n ≤ N1, rn(π |V ) = rn(π); and for
n ≥ N1, rn(π |V ) > exp(n(h(Y )− ε)).
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Proof. By Lemmas 2.2 and 3.11, let V1 ⊂ X be a mixing SFT such that h(Y )− ε/2 <
h(π(V1)) < h(Y ). Let W1 = π(V1). By Proposition 4.3, let N1 ≥ N0 be such that for
any n ≥ N1, we have (1/n) log rn(π |V1) > h(W1)− ε/2 > h(Y )− ε. Let W = W1 ∪⋃N1
n=1 Rn(π) and V = π−1(W). Then rn(π |V ) = rn(π) for all n ≤ N1.
To see that W �= Y , observe that the only n-blocks in W that may not be in W1 are

those in the low-order periodic points that have been adjoined, which are bounded in
number by a constant. That is, |Bn(W)| ≤ |Bn(W1)| + C for all n ≥ N1, where we can
take C = ∑N1

k=1 k|Rk(π)|. Thus, h(W) = h(W1) < h(Y ).

Proposition 4.4 is the final input to the proof of Proposition 3.9, and thus of Theorem 1.1.

PROPOSITION 3.9. Let X be a mixing SFT with gap g, Y a mixing sofic shift, and π :
X → Y a factor code. Let Z be a subshift with h(Z) < h(Y ) and qn(Z) ≤ rn(π) for every
n ≥ 1. Then there exist:N ≥ 1, subshifts V ⊂ X,W = π(V ) ⊂ Y , and a (Y , W , g) stamp
μ ∈ B(Y ) \ B(W), such that |μ| ≤ N , qn(Z) ≤ rn(π |V ) for n ≤ N − 1 and |Bn(Z)| ≤
|Bn−	(W)| for N + 	 ≤ n ≤ 2N + 	− 1, where 	 = |μ| + 2g.

Proof. Let ε = h(Y )− h(Z). Let N0 ≥ 1 be large enough that for all n ≥ N0,

1
n

log max{qn(Z), |Bn(Z)|} < h(Z)+ ε

4
.

By Proposition 4.4, let W ⊂ Y , V = π−1(W) ⊂ X, and N1 ≥ N0 be such that h(W) >
h(Y )− ε/4, rn(π |V ) = rn(π) for all n ≤ N1, and (1/n) log rn(π |V ) > h(Y )− ε/4 for
all n ≥ N1. Note that h(W) > h(Z)+ ε/2 and that qn(Z) ≤ rn(π |V ) for all n ≥ 1.

Let g be the mixing gap of X. By Proposition 3.4, let μ ∈ B(Y ) \ B(W) be a (Y , W , g)
stamp. Let 	 = |μ| + 2g. Then since h(Z) < h(W), there exists N sufficiently large
so that for all n ≥ N , in particular, for N + 	 ≤ n ≤ 2N + 	− 1, we have |Bn(Z)| <
|Bn−	(W)|.

5. Proofs of Lemma 2.7 and Corollary 1.3
We first use Proposition 4.3, along with facts about Markov approximations in §2.2, to
prove Lemma 2.7, which reduces Theorem 1.1 to the case where Z is a 1-step SFT.

LEMMA 2.7. Let X be a mixing SFT, Y a mixing sofic shift, and π : X → Y a factor code.
Let Z be a subshift with h(Z) < h(Y ) and qn(Z) ≤ rn(π) for all n ≥ 1. Then there exists
a 1-step SFT Z′ such that Z embeds into Z′, h(Z′) < h(Y ), and qn(Z′) ≤ rn(π) for all
n ≥ 1.

Proof. We use the properties of Markov approximations mentioned in §2. Let ε =
h(Y )− h(Z). Let m0 be such that h(Zm0) < h(Z)+ ε/3, where Zm0 is the m0th Markov
approximation to Z, and such that, by Proposition 4.3, for all n ≥ m0, (1/n) log rn(π) >
h(Y )− ε/3. Let m1 ≥ m0 be such that (1/n) log qn(Zm0) < h(Zm0)+ ε/3 for all
n ≥ m1. Let m2 ≥ m1 be such that for all periodic points z ∈ P(Zm1) \ Z (under
the natural embedding Z ↪→ Zm1 ) with per(z) ≤ m1, we have z[0,m2) /∈ Bm2(Z). Then
Zm2 satisfies qn(Zm2) = qn(Z) ≤ rn(π) for all n ≤ m1. Moreover, since Zm2 ⊂ Zm0 ,
(1/n) log qn(Zm2) ≤ (1/n) log qn(Zm0) for all n; in particular,
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1
n

log qn(Zm2) < h(Zm0)+ ε/3

< h(Z)+ 2ε/3

= h(Y )− ε/3

<
1
n

log rn(π)

for all n ≥ m1. Taking Z′ = Z
[m2]
m2 to be the m2th higher block shift, the lemma is

proved.

To prove Corollary 1.3, in the mixing sofic case, we use Lemma 2.3 to handle low-order
periodic point obstructions, with periodic points of sufficiently high order controlled
by Proposition 4.3. To handle the arbitrary case, we first give an improved Markov
approximation (Lemma 5.2), embedding an arbitrary subshift into a mixing SFT with only
slightly greater entropy. The construction uses Lemma 3.10; in Lemma 5.1, we estimate
the entropy of the mixing SFT constructed in Lemma 3.10. For convenience, we recall
Lemma 3.10.

LEMMA 3.10. Let X be a mixing SFT with gap g and let V0 ⊂ X be an SFT. Let k ≥ g and
let μ ∈ B(X) \ B(V0) be an (X, V0, k) stamp. Let N ≥ |μ| and let V1 ⊂ X be the closure
of the set of points of the form

. . . v−1γ
+
−1μγ

−
0 v0γ

+
0 μγ

−
1 v1 . . . ∈ X,

where for each i, γ±
i ∈ Bk(X) and vi ∈ B(V0) with |vi | ≥ N . Then V1 is a mixing SFT.

LEMMA 5.1. Let X be a mixing SFT with gap g and let V0 ⊂ X be an SFT. Let k ≥ g and
let μ ∈ B(X) \ B(V0) be an (X, V0, k) stamp. For any ε > 0, there exists N ≥ |μ| such
that h(V1) < h(V0)+ ε, where V1 (depending on N) is as in Lemma 3.10.

Proof. Let N0 ≥ 1 be such that for all n≥N0, we have (1/n) log |Bn(V0)|<h(V0)+ ε/4.
Let N > 2N0 be such that

1
N

max{log N , log |Bk(X)|2, log |BN0(V0)|} < ε

4
.

We will show that (1/n) log |BN(V1)| < h(V0)+ ε. Consider a block of length N in
V1. Such a block can contain at most one full or partial block of the form γ+μγ−, where
γ± ∈ Bk(X). The μ, if present, can begin at any of the N positions. The rest of the block
of length N, outside the block γ+μγ−, consists of one or two blocks from V0, with length
totaling at most N. We thus have

|BN(V1)| ≤ N |Bk(X)|2 max
0≤	≤N/2

|B	(V0)||BN−	(V0)|.

If 0 ≤ 	 ≤ N0, then |B	(V0)||BN−	(V0)| ≤ |BN0(V0)||BN(V0)|, so

1
N

log(|B	(V0)||BN−	(V0)|) ≤ 1
N

log |BN0(V0)| + 1
N

log |BN(V0)|
< h(V0)+ ε

2
.
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If N0 ≤ 	 ≤ N/2, then

1
N

log(|B	(V0)||BN−	(V0)|) < 1
N

(
	

(
h(V0)+ ε

4

)
+ (N − 	)

(
h(V0)+ ε

4

))

= h(V0)+ ε

4
.

Therefore,

1
N

log |BN(V1)| < 1
N

log N + 1
N

log |Bk(X)|2 + h(V0)+ ε

2
< h(V0)+ ε

by the above choice of N.

We now give the aforementioned lemma improving the construction of the Markov
approximation. For completeness, we include a proof using Lemma 3.10.

LEMMA 5.2. Let Z be a subshift and let ε > 0. Then there exists a mixing SFT V containing
Z with h(V ) < h(Z)+ ε.

Proof. Let m be large enough that h(Zm) < h(Z)+ ε/2, where Zm is the mth Markov
approximation to Z. Let X be the full shift on the alphabet of Z. Certainly, Zm ⊆ X.
If Zm = X, then we can take V = X. If Zm �= X, then by Proposition 3.4, let μ be an
(X, Zm, k) stamp for some k ≥ 0. Let V0 = Zm and V = V1 as in Lemma 3.10 where N is
large enough that, by Lemma 5.1, we have h(V ) < ε/2. Thus, V is indeed a mixing SFT
containing Z with h(V ) < h(Z)+ ε.

We can now prove Corollary 1.3.

COROLLARY 1.3. Let X be a mixing SFT, Y a mixing sofic shift, and π : X → Y a factor
code. Let Z be a subshift with topological entropy strictly less than that of Y. Then there
exist a subshift Z′, a finite-to-one factor code χ : Z′ → Z, and a sliding block code ψ :
Z′ → X such that π ◦ ψ is injective. Moreover, if Z is mixing sofic with positive entropy
(that is, Z does not consist of a single fixed point), then Z′ can be taken to be a mixing SFT
and χ can be taken to be almost invertible.

Proof. We first consider the case in which Z is mixing sofic. Let Z̃ be a mixing SFT
and χ0 : Z̃ → Z an almost invertible factor code. If already qn(Z̃) ≤ rn(π) for all n ≥ 1,
then we can take Z′ = Z̃ and apply Theorem 1.1 immediately to construct the claimed
embeddingψ : Z′ → X. However, if qn(Z̃) > rn(π) for some n, so thatX, Y , π , Z̃ violate
the hypotheses of Theorem 1.1, then we need to construct a further extension of Z̃
which satisfies the hypotheses of Theorem 1.1. The construction, consisting of a tower
of extensions via Lemma 2.3, is as follows.

By Proposition 4.3, since h(Z̃) = h(Z) < h(Y ), there are at most finitely many n such
that qn(Z̃) > rn(π). Let N denote the greatest such n. Let C = ∑N

k=1 max{0, qk(Z̃)−
rk(π)}. That is, C is the number of periodic points by which X, Y , π , Z̃ violate the
hypotheses of Theorem 1.1. For 1 ≤ k ≤ N and 1 ≤ 	 ≤ k−1 max{0, qk(Z̃)− rk(π)},
let zk,	 be periodic points with pairwise disjoint orbits, such that per(zk,	) = k. For a
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given k, the union of the orbits of the points zk,	 has cardinality max{0, qk(Z̃)− rk(π)}.
Let C′ = ∑N

k=1 k
−1 max{0, qk(Z̃)− rk(π)} (counting orbits, rather than points), and let

{z(j)}C′
j=1 = {zk,	}k,	 be an enumeration of the points zk,	.

Again by Proposition 4.3, let M > N be large enough that for all n ≥ M , we have
qn(Z̃)+ Cn ≤ rn(π). We now repeatedly apply Lemma 2.3. Let Z(0) = Z̃. For 1 ≤
j ≤ C′, let Z(j) be a mixing SFT and χ(j) : Z(j) → Z(j−1) an almost invertible factor
code such that the preimage of the orbit of z(j) under χ(j) is a single orbit of length
Mper(z(j)), and such that every periodic point in Z(j−1) not in the orbit of z(j) has a
unique preimage under χ(j). Let η(1) = χ(1) and η(j+1) = η(j) ◦ χ(j+1). Let Z′ = Z(C

′)

and η = η(C
′) : Z′ → Z̃. Certainly, η is almost invertible, so h(Z′) = h(Z̃) < h(Y ).

We claim that qn(Z′) ≤ rn(π) for all n ≥ 1. Indeed, for each j, if per(z(j)) = k, then
we have qk(Z(j)) = qk(Z

(j−1))− k, qMk(Z(j)) = qMk(Z
(j−1))+Mk, and qn(Z(j)) =

qn(Z
(j−1)) for all n /∈ {k, Mk}. Therefore, qk(Z′) = rk(π) and

qMk(Z
′) = qMk(Z̃)+M max{0, qk(Z̃)− rk(π)}

≤ qMk(Z̃)+ CM

≤ rMk(π),

where the last inequality follows from the choice of M. Therefore, X, Y , π , Z′ satisfy the
hypotheses of Theorem 1.1, so there exists a sliding block code ψ : Z′ → X such that
π ◦ ψ is injective. This concludes the proof in the case where Z is mixing sofic.

We now handle the general case, where Z is an arbitrary subshift with h(Z) < h(Y ). By
Lemma 5.2, let V be a mixing SFT containing Z with h(V ) < h(Y ). By the mixing sofic
case, let V ′ be a mixing SFT such that X, Y , π , V ′ satisfy the hypotheses of Theorem 1.1,
and let χ : V ′ → V be an almost invertible factor code. Let Z′ = χ−1(Z). Then χ |Z′ is
still finite-to-one, which concludes the proof.
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