Bull. Austral. Math. Soc. Vol. 61 (2000) [151-152]

TORSION FREE GROUPS GENERATED BY A PAIR OF RATIONAL PARABOLIC MÖBIUS TRANSFORMATIONS

JOHN BAMBERG AND GRANT CAIRNS

Let T be a subgroup of $PSL(2,\mathbb{Q})$ generated by a pair of rational parabolic matrices P_1, P_2 , and let \mathcal{J} be the Jørgensen number. We prove that T has a non-trivial element of finite order if and only if $\mathcal{J} = 4/n^2$ or $\mathcal{J} = 9/n^2$ for some non-zero integer n.

Recall that a matrix $A \in SL(2,\mathbb{Q})$ is parabolic if $Tr(A) = \pm 2$ and $A \neq \pm I$. In 1975, Charnow proved that if m is rational, then the group Γ_m , generated by the parabolic matrices $\begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ m & 1 \end{pmatrix}$, has an element of finite order if and only if m is the reciprocal of an integer [1]. The aim of this note is to observe that Charnow's proof can be slightly modified to give the following more general result.

THEOREM. Let T be a subgroup of $PSL(2, \mathbb{Q})$ generated by a pair of rational parabolic elements P_1, P_2 , and let $\mathcal{J} = |Tr^2(P_1) - 4| + |Tr[P_1, P_2] - 2|$ be the Jørgensen number. Then T has a non-trivial element of finite order if and only if $\mathcal{J} = 4/n^2$ or $\mathcal{J} = 9/n^2$ for some natural number n.

PROOF: Let $\mu: SL(2, \mathbb{Q}) \to PSL(2, \mathbb{Q})$ be the natural quotient map. Choose parabolic matrices $P_1^+, P_2^+ \in SL(2, \mathbb{Q})$ with positive trace such that $\mu(P_1^+) = P_1$ and $\mu(P_2^+) = P_2$ and let T^+ be the subgroup of $SL(2, \mathbb{Q})$ generated by P_1^+ and P_2^+ . First notice that T has a non-trivial element of finite order if and only if T^+ has an element of finite order not in the centre $\{\pm I\}$ of $SL(2, \mathbb{Q})$. Secondly, it is well known and easy to prove (see [2]) that T^+ is conjugate in $SL(2, \mathbb{C})$ to the group G_x generated by the matrices $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix}$, where $x = Tr(P_1^+P_2^+)/2 - 1$. Note that $4x^2 = \mathcal{J}$. So it remains to show that G_x has an element of finite order not in $\{\pm I\}$ if and only if x = 1/n or x = 3/2n for some non-zero integer n.

Let
$$n \in \mathbb{Z} \setminus \{0\}$$
 and $C = A^{-1}B^n$. If $x = 1/n$, then $C = \begin{pmatrix} -1 & -2 \\ 1 & 1 \end{pmatrix}$ and $C^4 = I$

If x = 3/2n, then $C = \begin{pmatrix} -2 & -2 \\ 3/2 & 1 \end{pmatrix}$ and $C^3 = I$. So in both cases, G_x has an element of finite order not equal to $\pm I$.

Received 15th September, 1999

The authors would like to thank Peter Stacey for his valuable comments.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/00 \$A2.00+0.00.

Conversely, assume G_x has a non-trivial element of finite order. So G_x has an element C whose order is a prime, p say. Recall that $SL(2,\mathbb{Q})$ only has elements of prime order p for p = 2 and p = 3. Indeed, if C has order p, then the eigenvalues λ, λ^{-1} of C are primitive p^{th} roots of unity. In particular, the degree of λ over \mathbb{Q} is p-1. But as the characteristic polynomial of C is quadratic, λ has degree at most 2. Hence $p \leq 3$.

It is not difficult to show that since $C \in G_x$, C can be written in the form

$$C = \begin{pmatrix} 1 + 2xf_1(x) & 2f_2(x) \\ xf_3(x) & 1 + 2xf_4(x) \end{pmatrix},$$

where f_1, \ldots, f_4 are polynomials with integer coefficients. Let x = m/n, where $m \in \mathbb{N}$, $n \in \mathbb{Z} \setminus \{0\}$ and (m, n) = 1.

If p = 2, C = -I. In particular, $1 + 2xf_1(x) = -1$, and so $xf_1(x) + 1 = 0$. Applying the Rational Roots Test (see for example [3]), one obtains m = 1.

If p = 3, $\lambda = (-1 \pm \sqrt{3i})/2$ and so Tr(C) = -1. This gives

(*)
$$2x(f_1(x) + f_4(x)) + 3 = 0.$$

So by the Rational Roots Test, m = 1 or m = 3. Finally, if m = 3 then (*) gives $2(f_1(x) + f_4(x)) + n = 0$, which implies that n is even. This completes the proof.

REMARK. The theorem does not hold in $SL(2, \mathbb{Q})$. For example, consider the parabolic matrices $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} -1 & 0 \\ 5/6 & -1 \end{pmatrix}$. Here $\mathcal{J} = 25/9$, which is evidently not of the form $4/n^2$ or $9/n^2$. However $ABA^3BAB^3 = -I$ and hence $\langle A, B \rangle$ has an element of order 2.

References

- A. Charnow, 'A note on torsion free groups generated by pairs of matrices', Canad. Math. Bull. 17 (1975), 747-748.
- [2] F.M. Goodman, P. de la Harpe and V.F.R. Jones, Coxeter graphs and towers of algebras (Springer-Verlag, Berlin, Heidelberg, New York, 1989).
- [3] A. Jones, S.A. Morris and K.R. Pearson, Abstract algebra and famous impossibilities (Springer-Verlag, Berlin, Heidelberg, New York, 1991).

School of Mathematics La Trobe University Melbourne Vic 3083 Australia e-mail: jbam1@students.latrobe.edu.au G.Cairns@latrobe.edu.au