TORSION FREE GROUPS GENERATED BY A PAIR OF RATIONAL PARABOLIC MÖBIUS TRANSFORMATIONS

John Bamberg and Grant Cairns

Let T be a subgroup of $P S L(2, \mathbb{Q})$ generated by a pair of rational parabolic matrices P_{1}, P_{2}, and let \mathcal{J} be the Jørgensen number. We prove that T has a non-trivial element of finite order if and only if $\mathcal{J}=4 / n^{2}$ or $\mathcal{J}=9 / n^{2}$ for some non-zero integer n.

Recall that a matrix $A \in S L(2, \mathbb{Q})$ is parabolic if $\operatorname{Tr}(A)= \pm 2$ and $A \neq \pm I$. In 1975, Charnow proved that if m is rational, then the group Γ_{m}, generated by the parabolic matrices $\left(\begin{array}{cc}1 & m \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{cc}1 & 0 \\ m & 1\end{array}\right)$, has an element of finite order if and only if m is the reciprocal of an integer [1]. The aim of this note is to observe that Charnow's proof can be slightly modified to give the following more general result.

Theorem. Let T be a subgroup of $\operatorname{PSL}(2, \mathbb{Q})$ generated by a pair of rational parabolic elements P_{1}, P_{2}, and let $\mathcal{J}=\left|T r^{2}\left(P_{1}\right)-4\right|+\left|T r\left[P_{1}, P_{2}\right]-2\right|$ be the Jørgensen number. Then T has a non-trivial element of finite order if and only if $\mathcal{J}=4 / n^{2}$ or $\mathcal{J}=9 / n^{2}$ for some natural number n.

Proof: Let $\mu: S L(2, \mathbb{Q}) \rightarrow \operatorname{PSL}(2, \mathbb{Q})$ be the natural quotient map. Choose parabolic matrices $P_{1}^{+}, P_{2}^{+} \in S L(2, \mathbb{Q})$ with positive trace such that $\mu\left(P_{1}^{+}\right)=P_{1}$ and $\mu\left(P_{2}^{+}\right)=P_{2}$ and let T^{+}be the subgroup of $S L(2, \mathbb{Q})$ generated by P_{1}^{+}and P_{2}^{+}. First notice that T has a non-trivial element of finite order if and only if T^{+}has an element of finite order not in the centre $\{ \pm I\}$ of $S L(2, \mathbb{Q})$. Secondly, it is well known and easy to prove (see [2]) that T^{+}is conjugate in $S L(2, \mathbb{C})$ to the group G_{x} generated by the matrices $A=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 0 \\ x & 1\end{array}\right)$, where $x=\operatorname{Tr}\left(P_{1}^{+} P_{2}^{+}\right) / 2-1$. Note that $4 x^{2}=\mathcal{J}$. So it remains to show that G_{x} has an element of finite order not in $\{ \pm I\}$ if and only if $x=1 / n$ or $x=3 / 2 n$ for some non-zero integer n.

Let $n \in \mathbb{Z} \backslash\{0\}$ and $C=A^{-1} B^{n}$. If $x=1 / n$, then $C=\left(\begin{array}{cc}-1 & -2 \\ 1 & 1\end{array}\right)$ and $C^{4}=I$. If $x=3 / 2 n$, then $C=\left(\begin{array}{cc}-2 & -2 \\ 3 / 2 & 1\end{array}\right)$ and $C^{3}=I$. So in both cases, G_{x} has an element of finite order not equal to $\pm I$.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/00 \$A2.00+0.00.

Conversely, assume G_{x} has a non-trivial element of finite order. So G_{x} has an element C whose order is a prime, p say. Recall that $S L(2, \mathbb{Q})$ only has elements of prime order p for $p=2$ and $p=3$. Indeed, if C has order p, then the eigenvalues λ, λ^{-1} of C are primitive $p^{\text {th }}$ roots of unity. In particular, the degree of λ over \mathbb{Q} is $p-1$. But as the characteristic polynomial of C is quadratic, λ has degree at most 2 . Hence $p \leqslant 3$.

It is not difficult to show that since $C \in G_{x}, C$ can be written in the form

$$
C=\left(\begin{array}{cc}
1+2 x f_{1}(x) & 2 f_{2}(x) \\
x f_{3}(x) & 1+2 x f_{4}(x)
\end{array}\right)
$$

where f_{1}, \ldots, f_{4} are polynomials with integer coefficients. Let $x=m / n$, where $m \in \mathbb{N}$, $n \in \mathbb{Z} \backslash\{0\}$ and $(m, n)=1$.

If $p=2, C=-I$. In particular, $1+2 x f_{1}(x)=-1$, and so $x f_{1}(x)+1=0$. Applying the Rational Roots Test (see for example [3]), one obtains $m=1$.

If $p=3, \lambda=(-1 \pm \sqrt{3 i}) / 2$ and so $\operatorname{Tr}(C)=-1$. This gives

$$
\begin{equation*}
2 x\left(f_{1}(x)+f_{4}(x)\right)+3=0 \tag{*}
\end{equation*}
$$

So by the Rational Roots Test, $m=1$ or $m=3$. Finally, if $m=3$ then (*) gives $2\left(f_{1}(x)+f_{4}(x)\right)+n=0$, which implies that n is even. This completes the proof.

Remark. The theorem does not hold in $S L(2, \mathbb{Q})$. For example, consider the parabolic matrices $A=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{cc}-1 & 0 \\ 5 / 6 & -1\end{array}\right)$. Here $\mathcal{J}=25 / 9$, which is evidently not of the form $4 / n^{2}$ or $9 / n^{2}$. However $A B A^{3} B A B^{3}=-I$ and hence $\langle A, B\rangle$ has an element of order 2.

References

[1] A. Charnow, 'A note on torsion free groups generated by pairs of matrices', Canad. Math. Bull. 17 (1975), 747-748.
[2] F.M. Goodman, P. de la Harpe and V.F.R. Jones, Coxeter graphs and towers of algebras (Springer-Verlag, Berlin, Heidelberg, New York, 1989).
[3] A. Jones, S.A. Morris and K.R. Pearson, Abstract algebra and famous impossibilities (Springer-Verlag, Berlin, Heidelberg, New York, 1991).

[^1]
[^0]: Received 15th September, 1999
 The authors would like to thank Peter Stacey for his valuable comments.

[^1]: School of Mathematics
 La Trobe University
 Melbourne Vic 3083
 Australia
 e-mail: jbam1@students.latrobe.edu.au
 G.Cairns@latrobe.edu.au

