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Abstract

A Latin square is considered to be a set of n cells with three block systems. An automorphism is a
permutation of the cells which preserves each block system. The automorphism group of a Latin
Square necessarily has at least 4 orbits on unordered pairs of cells if n > 2. It is shown that there are
exactly 4 orbits if and only if the square is the composition table of an elementary abelian 2-group or
the cyclic group of order 3.
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1. Introduction

A Latin square D of side n is a set of n2 cells with three block systems upon it,
such that any two blocks from different systems contain just one cell in common.
The blocks in the different systems are usually called rows, columns and letters.

Let R, C, L be the sets of rows, columns, letters. The Latin square D defines a
binary operation ° : R X C -» L given by r ° c = /, where / is the letter contain-
ing the unique cell in row r and column c. Let Q be a set of cardinality n, and ITR,
ITC, TTL be bijections from R, C, L to Q. These bijections induce a closed binary
operation . on Q, given by

(I) <7i-<72 = {WR ' " ^ c ' K -

The definition of a Latin square ensures that (Q,.) is a quasigroup. In general,
different choices of the bijections ITR, 7TC, TTL give rise to different quasigroups. We
shall say that any quasigroup constructed from D in this way is associated with D.
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To be consistent with normal combinatorial usage, we define an automorphism
of D to be any permutation of the cells which preserve the three block systems. In
other words, the permutation y of the cells is an automorphism if it induces
permutations | , TJ, J on the rows, columns, letters such that if cell u is in row r,
column c, letter / then cell uy is in row r£, column CTJ, letter /f. The trio ( ^ ' £ 7 ^ ,
W '̂TJTT,-, IT[1£ITL) of permutations of Q form an autotopism of the quasigroup
{Q,.); the term automorphism has a more restricted meaning for quasigroups (see,
for example, [1], Sections 1.3, 4.1).

Let SR, Sc be the symmetric groups on rows and columns. Then £ G SR,
17 G Sc. Each cell is completely determined by its row and column, so y is
completely determined by £ and TJ. Thus we may identify the group G of
automorphisms of D with a subgroup of SR X Sc.

PROPOSITION 1. G is the subgroup of all (£, TJ) in SR X Sc such that (rt, c,) is in

the same letter as (r2, c2) if and only //(/",£, C,T)) is in the same letter as (/"2£, c2r)).

2. Composition tables of groups

We shall say that the Latin square D is the composition table of a group (H,.)
if one quasigroup, and hence every loop (that is, quasigroup with identity), with
which it is associated is (group-theoretically) isomorphic to H. The automorphism
groups of such squares were found by Schonhardt [4], and later rediscovered by
Sade [3] in their guise of autotopism groups of quasigroups. We restate a result of
[4], Section 10 in the language of this paper.

PROPOSITION 2. If D is the composition table of(H,.) then its automorphism
group is a semidirect product of H X H by Aut H: it consists of the set of all
permutations (Xa, pa) in SR X 5C where

X is the permutation induced by left multiplication by a constant element of H;
p is the permutation induced by right multiplication by a constant element of H;
a is an automorphism of H.

3. Orbits of G

We consider the action of G on unordered pairs of cells in D. It is clear that G
must have at least 4 orbits in this action, corresponding to:

cells in the same row
cells in the same column
cells in the same letter
the rest (unless n — 2).
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In the case where D is the composition table of an elementary Abelian p-group
(H, .) the orbits of G on unordered pairs of cells are given by Table 1. There are
more than 4 orbits unless either (i) p = 2 or (ii) n = p — 3.

TABLE I

Orbits of the automorphism group G of the composition table D of an
elementary Abelian /7-group on unordered pairs of cells

Description

same row
same column
same letter
letter of (p - 2)
Latin squares
orthogonal to D
rest

Condition on pairs
(/-,,<-,), (r2, c2)

r\ = ri, c i ^ C2
r, ^ r2, c, = c2

r^i = >2C2
'•icf = r 2 c |

r,crl = r2crl

other

Size of orbit

n\n - l)/2
«2(« - l)/2
n2(n - l)/2
«2(n - l)/2

«2(« - l)/2
«2(« -p^n- l)/2

4. A classification theorem

This investigation of automorphism groups of Latin squares arose in some
work on the design of experiments [5]. It was important to know which squares
admit automorphism groups G that have just 4 orbits on unordered pairs of cells.
We have shown that the composition tables of elementary Abelian 2-groups
(n ^ 2) and of Z3 satisfy this criterion. In fact they are the only squares which do
so.

THEOREM. / / D is a Latin square whose automorphism group G has just 4 orbits
on unordered pairs of cells then D is the composition table of an elementary Abelian
2-group (not Z2) or of Z3.

We give the proof in a sequence of lemmas.

LEMMA \. If G is a Frobenius group then n — 3 or 4 and so D is the composition
table of Z3 or Z2X Z2.
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PROOF. If G is Frobenius and u is a cell then Gu acts regularly on its orbits,
which therefore have the same length. One orbit consisting of cells in the same
row as u has length w — 1 or (n - l ) /2 ; one consisiting of cells which are in
different rows, columns and letters from u has length (n — \)(n — 2) or
(n — \)(n — 2)/2. Thus n — 2 = 1 or 2. The only Latin squares of side 3 or 4 are
the composition tables of Z3, Z2 X Z2 and Z4. Application of Proposition 2
shows that there are too many orbits if D is the composition table of Z4.

LEMMA 2. The fixed cells of any y in G form a Latin subsquare of D.

Henceforth we assume that G is not a Frobenius group and that n s= 5. Then
some nontrivial y fixes more than one cell and so there exist proper Latin
subsquares of D. Let y be the side of the smallest proper Latin subsquare of D.

LEMMA 3. Any two cells u, v in the same row (column, letter) lie in a unique Latin
subsquare D(u, v) of side y.

PROOF. G is transitive on such pairs of cells, and so each pair lies in a Latin
subsquare of side y. The intersection of two Latin subsquares is itself a Latin
subsquare, so if the pair lies in two Latin subsquares of side y it lies in one of side
m, 2 < m <y, contradicting the minimality of y.

LEMMA 4. If y fixes cells u and v in the same row (column, letter) then it fixes
each cell in D(u, v).

PROOF. Fix(y) and D(u,v) are Latin subsquares containing « and v. The
uniqueness argument above shows that D(u, v) is contained in Fix(y).

LEMMA 5. y = 2.

PROOF. Let u, v be cells in row r, let c be the column containing v, let / be the
cell in column c which has the same letter as u. Then v, t G D(u, v) n c. If y > 2
then there is another cell w in D(u, v) n c. Since n > 5 the orbit of Gu containing
w contains another cell x of c, so there exists y G Gu such that wy = x, where
x ¥= w and x G c. Since w and x are in c, the permutation y fixes c; now, y also
fixes r and so y fixes v. Thus y G Guv and y fixes every point of D(u, v), by
Lemma 4. Hence wy = w, contradictory to assumption.

The lemma needed to conclude the proof is a result of F. P. Hiner, R. B.
Killgrove and others, which is stated in [1], page 51. The proof is published in [2].
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LEMMA 6. If any two cells of D which lie in the same letter lie in a Latin subsquare
of side 2, then D is the composition table of an elementary Abelian 2-group.

That completes the proof of the theorem.
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