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Abstract

We define the notion of Φ-Carleson measures, where Φ is either a concave growth function or a convex
growth function, and provide an equivalent definition. We then characterize Φ-Carleson measures for
Bergman–Orlicz spaces and use them to characterize multipliers between Bergman–Orlicz spaces.
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1. Introduction

The aim of this paper is to characterize Carleson measures of some weighted spaces
of holomorphic functions AΦ on the unit ball Bn of Cn, that is, measures µ on Bn such
that AΦ embeds continuously into LΨ(µ). The spaces we consider are of Orlicz type
and particular cases thereof are the Bergman spaces. Those results are then applied to
the characterization of multipliers between such spaces.

Let us now give a more precise description of the results. To do so, we first need to
introduce some notations and to recall the classical results on Carleson measures.

Let us denote by dν the Lebesgue measure on the unit ball Bn of Cn and dσ the
normalized measure on Sn = ∂Bn, the boundary of Bn. ByH(Bn), we denote the space
of holomorphic functions on Bn.

For z = (z1, . . . , zn) and w = (w1, . . . ,wn) in Cn, we let

〈z,w〉 = z1w1 + · · · + znwn,

so that |z|2 = 〈z, z〉 = |z1|
2 + · · · + |zn|

2.
We say that a function Φ is a growth function if it is a continuous and nondecreasing

function from [0,∞) onto itself.

c© 2017 Australian Mathematical Publishing Association Inc. 1446-7887/2017 $16.00

63

https://doi.org/10.1017/S1446788717000076 Published online by Cambridge University Press

http://orcid.org/0000-0002-5720-1204
https://doi.org/10.1017/S1446788717000076


64 B. F. Sehba [2]

For α > −1, we denote by dνα the normalized Lebesgue measure dνα(z) = cα(1 −
|z|2)α dν(z), cα being the normalization constant. For Φ a growth function, the weighted
Bergman–Orlicz space AΦ

α (Bn) is the space of all holomorphic functions f such that

‖ f ‖Φ,α = ‖ f ‖AΦ
α

:=
∫
Bn

Φ(| f (z)|) dνα(z) <∞.

We define on AΦ
α (Bn) the following (quasi)-norm:

‖ f ‖lux
Φ,α = ‖ f ‖lux

AΦ
α

:= inf
{
λ > 0 :

∫
Bn

Φ

(
| f (z)|
λ

)
dνα(z) ≤ 1

}
,

which is finite for f ∈ AΦ
α (Bn) (see [17]).

The usual weighted Bergman spaces Ap
α(Bn) correspond to Φ(t) = tp and are defined

by

‖ f ‖pp,α :=
∫
Bn
| f (z)|p dνα(z) <∞.

For 0 < p < ∞, the usual Hardy space H p(Bn) is the space of all f ∈ H(Bn) such
that

‖ f ‖pp := sup
0<r<1

∫
Sn
| f (rξ)|p dσ(ξ) <∞.

Two growth functions Φ1 and Φ2 are said to be equivalent if there exists some
constant c such that

1
c

Φ1

( t
c

)
≤ Φ2(t) ≤ cΦ1(ct).

Such equivalent growth functions define the same Orlicz space.
For any ξ ∈ Sn and δ > 0, the Carleson tube Qδ(ξ) is defined by

Qδ(ξ) = {z ∈ Bn : |1 − 〈z, ξ〉| < δ}.

Let µ be a positive Borel measure on Bn and 0 < s < ∞. We say that µ is an s-
Carleson measure on Bn if there exists a constant C such that for any ξ ∈ Sn and any
0 < δ < 1,

µ(Qδ(ξ)) ≤ Cδns. (1.1)

When s = 1, the above measures are called Carleson measures. Carleson measures
were first introduced in the unit disk of the complex plane C by Carleson [4, 5]. These
measures are pretty adapted to the studies of various questions on Hardy spaces. In
his work, Carleson obtained that a measure µ is a Carleson measure if and only if the
Hardy space Hp embeds continuously into the Lebesgue space Lp(dµ). For s > 1, again
in the unit disk, Duren [9] has proved that a measure µ is an s-Carleson measure if and
only if the Hardy space Hp embeds continuously into the Lebesgue space Lps(dµ). The
characterizations of Carleson measures for Hardy spaces of the unit ball can be found
in [11, 16]. These characterizations can be summarized as follows.
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Theorem 1.1 (Hörmander [11], Power [16]). Let µ be a positive measure on Bn and
s > 0. Then the following assertions are equivalent.

(a) There exists a constant C1 > 0 such that for any ξ ∈ Sn and any 0 < δ < 1,

µ(Qδ(ξ)) ≤ C1δ
ns.

(b) There exists a constant C2 > 0 such that∫
Bn

(1 − |a|2)ns

|1 − 〈a, z〉|2ns dµ(z) ≤ C2

for all a ∈ Bn.
If moreover s ≥ 1, then the above assertions are both equivalent to the following
assertion.

(c) There exists a constant C3 > 0 such that for any f ∈ Hp(Bn),∫
Bn
| f (z)|ps dµ(z) ≤ C3‖ f ‖sp. (1.2)

The characterization of measures satisfying (1.2) with 0 < s < 1 in the setting of the
unit disk is due to Videnskii [21]. The extension of the results of Carleson and Duren to
the setting of Bergman spaces of the unit disk is due to Hastings [10] and the Bergman-
space version of the result of Videnskii is due to Luecking [15]. The extensions of the
latter results to the unit ball are due to Cima and Wogen [8] and Luecking [12, 13].

Theorem 1.1 translates as follows for Bergman spaces.

Theorem 1.2 (Cima and Wogen [8], Luecking [12]). Let µ be a positive measure on
Bn, s > 0 and α > −1. Then the following assertions are equivalent.

(a) There exists a constant C1 > 0 such that for any ξ ∈ Sn and any 0 < δ < 1,

µ(Qδ(ξ)) ≤ C1δ
(n+1+α)s.

(b) There exists a constant C2 > 0 such that∫
Bn

(1 − |a|2)(n+1+α)s

|1 − 〈a, z〉|2(n+1+α)s dµ(z) ≤ C2

for all a ∈ Bn.
If moreover s ≥ 1, then the above assertions are both equivalent to the following
assertion.

(c) There exists a constant C3 > 0 such that for any f ∈ Ap
α(Bn),∫

Bn
| f (z)|ps dµ(z) ≤ C3‖ f ‖sp,α.

Let us observe that (1.1) can be read as

µ(Qδ(ξ)) ≤
C

Φ

( 1
δn

) ,
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where Φ(t) = ts. Our aim is then to obtain characterizations of such measures
when power functions are replaced by appropriate growth functions. We apply our
characterizations to obtain some first results on the still open question of multipliers
between Bergman–Orlicz spaces.

2. Statement of the results

We recall that the growth function Φ is of upper type q if we can find q > 0 and
C > 0 such that, for s > 0 and t ≥ 1,

Φ(st) ≤ CtqΦ(s). (2.1)

We denote by U q the set of growth functions Φ of upper type q (with q ≥ 1) such that
the function t 7→ Φ(t)/t is nondecreasing. We write

U =
⋃
q≥1

U q.

We also recall that Φ is of lower type p if we can find p > 0 and C > 0 such that,
for s > 0 and 0 < t ≤ 1,

Φ(st) ≤ CtpΦ(s). (2.2)

We denote by Lp the set of growth functions Φ of lower type p (with p ≤ 1) such that
the function t 7→ Φ(t)/t is nonincreasing. We write

L =
⋃

0<p≤1

Lp.

Note that we may always suppose that any Φ ∈L (respectively U ) is concave
(respectively convex) and that Φ is a C 1 function with derivative Φ′(t) w Φ(t)/t.

Definition 2.1. Let µ be a positive measure on Bn and let Φ ∈L ∪U . We say that µ
is a Φ-Carleson measure if there exists a constant C > 0 such that for any ξ ∈ Sn and
any 0 < δ < 1,

µ(Qδ(ξ)) ≤
C

Φ

( 1
δn

) .
The following first result provides an equivalent definition of Φ-Carleson measures.

Theorem 2.2. Let µ be a positive measure on Bn and let Φ ∈ L ∪ U . Then the
following assertions are equivalent.

(i) µ is a Φ-Carleson measure.
(ii) There exists a constant C > 0 such that for any a ∈ Bn,∫

Bn
Φ

( (1 − |a|2)n

|1 − 〈a, z〉|2n

)
dµ(z) ≤ C. (2.3)

Our next result extends Theorem 1.2 to Bergman–Orlicz spaces.
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Theorem 2.3. Let µ be a positive measure on Bn and α > −1. Let Φ1,Φ2 ∈L ∪U .
Then the following assertions are equivalent.

(a) There exists a constant C1 > 0 such that for any ξ ∈ Sn and any 0 < δ < 1,

µ(Qδ(ξ)) ≤
C1

Φ2 ◦ Φ−1
1

( 1
δn+1+α

) . (2.4)

(b) There exists a constant C2 > 0 such that∫
Bn

Φ2

(
Φ−1

1

( 1
(1 − |a|2)n+1+α

) (1 − |a|2)2(n+1+α)

|1 − 〈a, z〉|2(n+1+α)

)
dµ(z) ≤ C2

for all a ∈ Bn.
If moreover Φ2/Φ1 is nondecreasing, then the above assertions are both
equivalent to the following assertion.

(c) There exists a constant C3 > 0 such that for any f ∈ AΦ1
α (Bn) with ‖ f ‖lux

Φ1,α
, 0,∫

Bn
Φ2

(
| f (z)|

C3‖ f ‖lux
Φ1,α

)
dµ(z) ≤ 1. (2.5)

We call a measure satisfying (2.4) a (Φ2 ◦ Φ−1
1 , α)-Carleson measure. If a measure

µ satisfies (2.5), then we say that µ is a Φ2-Carleson measure for AΦ1
α (Bn).

Note that in [6] and [7], it is proved that (2.5) holds if and only if there exists δ0
such that for any δ ∈ (0, δ0),

µ(Qδ(ξ)) ≤
C1

Φ2 ◦ Φ−1
1

( 1
δn+1+α

) .
Moreover, the proof in both papers uses, among others, a maximal function
characterization of Bergman–Orlicz spaces. Here, we provide a more direct proof that
generalizes the classical proof for the power-function case (see for example [20]).

Let X and Y be two analytic function spaces which are metric spaces, with
respective metrics dX and dY . We say that an analytic function g is a multiplier from X
to Y if there exists a constant C > 0 such that for any f ∈ X,

dY ( f g, 0) ≤ CdX( f , 0).

We denote byM(X, Y) the set of multipliers from X to Y . The question of multipliers
between Bergman spaces has been considered in [1–3, 14, 22, 23]. In particular, Attele
obtained the characterization of multipliers between unweighted Bergman spaces of
the unit disk of the complex plane in [1], while the case of weighted Bergman spaces
of the same setting was handled by Zhao in [23]. The proofs in [23] heavily make use
of Carleson measures for Bergman spaces. We also use here our characterization of
Carleson measures to extend the result of [23] on multipliers between the Bergman
spaces Ap

α(Bn) and Aq
β(B

n) with 0 < p ≤ q < ∞ to a corresponding situation for
Bergman–Orlicz spaces.

Let us introduce two subsets of growth functions. We say that a growth function
Φ ∈U q belongs to Ũ if:

https://doi.org/10.1017/S1446788717000076 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788717000076


68 B. F. Sehba [6]

(a1) there exists a constant C1 > 0 such that for any 0 < s <∞ and any t ≥ 1,

Φ(st) ≤ C1Φ(s)Φ(t); (2.6)

(a2) there exists a constant C2 > 0 such that for any a, b ≥ 1,

Φ

(a
b

)
≤ C2

Φ(a)
bq . (2.7)

As examples of functions in Ũ , we have power functions and, for nontrivial examples,
we have the functions t 7→ tm logγ(C + t), where m ≥ 1, γ > 0 and the constant C > 0
is large enough.

We say that a growth function Φ ∈Lp belongs to L̃ if Φ satisfies condition (2.6)
and if there exists a constant C3 > 0 such that for any a, b ≥ 1,

Φ

(a
b

)
≤ C3

ap

Φ(b)
. (2.8)

Clearly, power functions are in L̃ . For nontrivial examples, we have the functions
t 7→ tm logγ(C + t), where 0 < m ≤ 1, γ < 0 and the constant C > 0 is large enough. To
see that the latter satisfies (2.6), use that if Φ ∈Lp, then for any t ≥ 1, tp ≤ CΦ(t), with
C the constant in (2.2).

Before stating our result on multipliers of Bergman–Orlicz spaces, let us introduce
another space of analytic functions. Let ω : (0, 1] −→ (0,∞). An analytic function f in
Bn is said to be inH∞ω (Bn) if

‖ f ‖H∞ω := sup
z∈Bn

| f (z)|
ω(1 − |z|)

<∞.

Clearly,H∞ω (Bn) is a Banach space.
Here is our result on pointwise multipliers between Bergman–Orlicz spaces for the

families of growth functions introduced above.

Theorem 2.4. Let Φ1 ∈ L ∪ U and Φ2 ∈ L̃ ∪ Ũ . Assume that Φ2/Φ1 is
nondecreasing. Let α, β > −1 and define, for 0 < t ≤ 1, the function

ω(t) =

Φ−1
2

( 1
tn+1+β

)
Φ−1

1

( 1
tn+1+α

) .
Then the following assertions hold.

(i) If ω is nonincreasing on (0, 1], then

M(AΦ1
α (Bn), AΦ2

β (Bn)) = H∞ω (Bn).

(ii) If ω is equivalent to 1, thenM(AΦ1
α (Bn), AΦ2

β (Bn)) = H∞(Bn).
(iii) If ω is nondecreasing on (0, 1] and limt→0 ω(t) = 0, then

M(AΦ1
α (Bn), AΦ2

β (Bn)) = {0}.
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Note that if the function ω in the last theorem is nondecreasing and limt→0 ω(t) , 0,
then ω is equivalent to 1.

The proofs of the first two theorems will be given in Section 4 and applications
to embeddings between Bergman–Orlicz spaces and the pointwise multipliers of
Bergman–Orlicz spaces will be provided in Section 5. In the next section, we recall
some results from the literature needed in our proofs.

All through the text, we assume without loss of generality that our growth functions
Φ are such that Φ(1) = 1. Finally, all through the text, C will be a constant not
necessarily the same at each occurrence. We recall that given two positive quantities
A and B, the notation A . B means that A ≤ CB for some positive constant C. When
A . B and B . A, we write A v B.

3. Some preliminaries

We provide in this section some useful results, which are mostly related to growth
functions.

For a ∈ Bn, a , 0, let ϕa denote the automorphism of Bn taking 0 to a and defined
by

ϕa(z) =
a − Pa(z) − (1 − |z|2)1/2Qa(z)

1 − 〈z, a〉
,

where Pa is the projection of Cn onto the one-dimensional subspace span of a and
Qa = I − Pa, where I is the identity. It is easy to see that

ϕa(0) = a, ϕa(a) = 0, ϕaoϕa(z) = z,

1 − |ϕa(z)|2 =
(1 − |a|2)(1 − |z|2)
|1 − 〈z, a〉|2

.

For 0 < r < 1 and a ∈ Bn, we write rBn := {z ∈ Bn : |z| < r} and define the (pseudo-
hyperbolic metric) ball ∆(a, r) by

∆(a, r) = {z ∈ Bn : |ϕa(z)| < r}.

Clearly, ∆(a, r) = ϕa(rBn). One easily checks the following (for details, see [20]).

Lemma 3.1. For any a ∈ Bn and 0 < r < 1, there exist ξ ∈ Sn and δ > 0 such that
∆(a, r) ⊂ Qδ(ξ). Moreover, δ v 1 − |a|2.

We have the following estimate (see [17, 18]).

Lemma 3.2. Let Φ ∈L ∪U , −1 < α <∞. There is a constant C > 0 such that for any
f ∈ AΦ

α (Bn) and any a ∈ Bn,

| f (a)| ≤ CΦ−1
( 1
(1 − |a|2)n+1+α

)
‖ f ‖lux

Φ,α. (3.1)

The next lemma provides a useful function in AΦ
α (Bn) (see [18]).
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Lemma 3.3. Let −1 < α < ∞, a ∈ Bn. Suppose that Φ ∈L ∪U . Then the following
function is in AΦ

α (Bn):

fa(z) = Φ−1
( 1
(1 − |a|)n+1+α

)( 1 − |a|2

1 − 〈z, a〉

)2(n+1+α)
.

Moreover, ‖ fa‖lux
Φ,α . 1.

4. Proof of Theorems 2.2 and 2.3

Proof of Theorem 2.2. The proof follows the same idea as in the power-function case
(see, for example, [24]). We provide details here.

(i) ⇒ (ii): for |a| ≤ 3
4 , (2.3) is obvious since the measure is necessarily finite. Let

3
4 < |a| < 1 and choose ξ = a/|a|. For any nonnegative integer k, let rk = 2k−1(1 − |a|),
k = 1, 2, . . . , N, where N is the smallest integer such that 2N−2(1 − |a|) ≥ 1. Let
E1 = Qr1 (ξ) and Ek = Qrk (ξ) − Qrk−1 (ξ), k ≥ 2. We have

µ(Ek) ≤ µ(Qrk (ξ)) ≤
C

Φ

( 1
2(k−1)n(1 − |a|)n

) .
Moreover, if k ≥ 2 and z ∈ Ek, then

|1 − 〈a, z〉|= |1 − |a| + |a|(1 − 〈ξ, z〉)|

≥ −(1 − |a|) + |a| |1 − 〈ξ, z〉|

≥ 3
4 2k−1(1 − |a|) − (1 − |a|)

≥ 2k−2(1 − |a|).

We also have for z ∈ E1,

|1 − 〈z, a〉| ≥ 1 − |a| > 1
2 (1 − |a|).

Let us put

Ka(z) =
(1 − |a|2)n

|1 − 〈a, z〉|2n ,

so that for z ∈ Ek,

Ka(z) ≤
1

22(k−2)n(1 − |a|)n .
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Using the above estimates and putting ε = 1 if Φ ∈U , and ε = p if Φ ∈L is of lower
type 0 < p < 1,

L :=
∫
Bn

Φ

( (1 − |a|2)n

|1 − 〈a, z〉|2n

)
dµ(z)

=

∫
Bn

Φ(Ka(z)) dµ(z)

=

N∑
k=1

∫
Ek

Φ(Ka(z)) dµ(z)

≤ C
N∑

k=1

Φ

( 1
22(k−2)n(1 − |a|)n

)
Φ

( 1
2(k−1)n(1 − |a|)n

)
≤ C

N∑
k=1

1
2knε < C̃ <∞.

(ii) ⇒ (i): let a , 0, a ∈ Bn. Set δ = 1 − |a|2 and ξ = a/|a|. We remark that for
z ∈ Qδ(ξ), |1 − 〈z, a〉| ≤ 2(1 − |a|2). Hence, using (2.1) for Φ ∈ U and the fact that the
function Φ(t)/t is nonincreasing for Φ ∈L ,

µ(Qδ(ξ))Φ
( 1
δn

)
.

∫
Bn

Φ

( (1 − |a|2)n

|1 − 〈a, z〉|2n

)
dµ(z)

≤C.

The proof is complete. �

Proof of Theorem 2.3. We observe that the implication (b)⇒ (a) follows in the same
way as in the proof of the implication (ii)⇒ (i) in Theorem 2.2. We will then only
prove that (a)⇒ (c)⇒ (b).

(a)⇒ (c): we fix 1
2 < r < 1 and z ∈ Bn. We recall that by Lemma 3.1, ∆(z, r) ⊂ Qδ(ξ)

for some ξ ∈ Sn and δ > 0 with δ w 1 − |z|2. Under (a), this implies that

µ(∆(z, r)) ≤ µ(Qδ(ξ)) ≤
C1

Φ2 ◦ Φ−1
1

( 1
(1 − |z|2)n+1+α

) . (4.1)

Next, we recall that if Φ ∈L with lower type 0 < p < 1, then the growth Φp(t) =

Φ(t1/p) belongs to U (see [18]). We will also use the notation Φp for Φ ∈ U , noting
that in this case p = 1. As | f |p (0 < p ≤ 1) is M-subharmonic, we obtain using
inequality (4.3) of [19] and the convexity of Φp that

Φ(| f (z)|) = Φp(| f (z)|p)

≤C2

∫
∆(z,1/2)

Φp(| f (w)|p)(1 − |w|2)−(n+1+α) dνα(w)

= C2

∫
∆(z,1/2)

Φ(| f (w)|)(1 − |w|2)−(n+1+α) dνα(w).
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That is,

Φ(| f (z)|) = C2

∫
∆(z,1/2)

Φ(| f (w)|)(1 − |w|2)−(n+1+α) dνα(w). (4.2)

Let K1 = max{1,C1C2, (CC1C2)1/p}, where C is the constant in (2.2), C1 the constant
in (4.1) and C2 the constant in the last inequality. Put K = max{C′, K1}, where C′ is
the constant in (3.1). Using (4.2) and Fubini’s lemma,

L :=
∫
Bn

Φ2

(
| f (z)|

K‖ f ‖lux
Φ1,α

)
dµ(z)

≤ C2

∫
Bn

dµ(z)
∫

∆(z,1/2)
Φ2

(
| f (w)|

K‖ f ‖lux
Φ1,α

)
(1 − |w|2)−(n+1+α) dνα(w)

≤ C2

∫
Bn

(∫
Bn
χ∆(z,1/2)(w) dµ(z)

)
Φ2

(
| f (w)|

K‖ f ‖lux
Φ1,α

)
(1 − |w|2)−n−1 dν(w).

Using the fact that χ∆(z,1/2)(w) ≤ χ∆(w,r)(z) for each z ∈ Bn and w ∈ Bn, we deduce that

L ≤ C2

∫
Bn

Φ2

(
| f (w)|

K‖ f ‖lux
Φ1,α

)
(1 − |w|2)−n−1µ(∆(w, r)) dν(w).

Now, using the fact that the function Φ2/Φ1 is nondecreasing and (3.1),

L ≤C2

∫
Bn

Φ1

(
| f (w)|

K‖ f ‖lux
Φ1,α

)Φ2

(
| f (w)|

K‖ f ‖lux
Φ1,α

)
Φ1

(
| f (w)|

K‖ f ‖lux
Φ1,α

) (1 − |w|2)−n−1µ(∆(w, r)) dν(w)

≤C2

∫
Bn

Φ1

(
| f (w)|

K‖ f ‖lux
Φ1,α

)Φ2 ◦ Φ−1
1

( 1
(1 − |w|2)n+1+α

)
Φ1 ◦ Φ−1

1

( 1
(1 − |w|2)n+1+α

)
× (1 − |w|2)−n−1µ(∆(w, r)) dν(w).

Finally, using (4.1),

L ≤C1C2

∫
Bn

Φ1

(
| f (w)|

K‖ f ‖lux
Φ1,α

)
dνα(w)

≤

∫
Bn

Φ1

(
| f (w)|
‖ f ‖lux

Φ1,α

)
dνα(w) ≤ 1.

That is, ∫
Bn

Φ2

(
| f (z)|

K‖ f ‖lux
Φ1,α

)
dµ(z) ≤ 1.

(c)⇒ (b): let a ∈ Bn. Recall with Lemma 3.3 that the function

fa(z) = Φ−1
1

( 1
(1 − |a|)n+1+α

)( 1 − |a|2

1 − 〈z, a〉

)2(n+1+α)
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is uniform in AΦ1
α (Bn). Thus, the implication follows by testing (c) with fa and

using the monotonicity of Φ or the monotonicity of the function Φ(t)/t. The proof is
complete. �

5. Embeddings and multipliers between Bergman–Orlicz spaces

We start this section with an embedding result between Bergman–Orlicz spaces.

Theorem 5.1. Let Φ1,Φ2 ∈L ∪U , α, β > −1. Assume that Φ2/Φ1 is nondecreasing.
Then AΦ1

α (Bn) embeds continuously into AΦ2
β (Bn) if and only if there is a constant C > 0

such that
Φ−1

1 (tn+1+α) ≤ Φ−1
2 (Ctn+1+β) for t ∈ [1,∞). (5.1)

Proof. That AΦ1
α (Bn) embeds continuously into AΦ2

β (Bn) is equivalent to saying that
there exists a constant C > 0 such that for every f ∈ AΦ1

α (Bn), with ‖ f ‖lux
Φ1,α
, 0,∫

Bn
Φ2

(
| f (z)|

C‖ f ‖lux
Φ1,α

)
dνβ(z) ≤ 1,

which is equivalent by Theorem 2.3 to saying that νβ is a (Φ2 ◦ Φ−1
1 , α)-Carleson

measure. Hence, we only have to prove that νβ is a (Φ2 ◦ Φ−1
1 , α)-Carleson measure

if and only if (5.1) holds.
Let us first assume that (5.1) holds. Then we easily obtain that for any ξ ∈ Sn and

any 0 < δ < 1,

νβ(Qδ(ξ)) ∼ δn+1+β =
C

Φ2 ◦ Φ−1
2

( C
δn+1+β

) ≤ C

Φ2 ◦ Φ−1
1

( 1
δn+1+α

) .
That is, νβ is a (Φ2 ◦ Φ−1

1 , α)-Carleson measure.
Now assume that νβ is a (Φ2 ◦ Φ−1

1 , α)-Carleson measure. Then, by Theorem 2.3,
there exists a constant K > 0 such that∫

Bn
Φ2

(
Φ−1

1

( 1
(1 − |a|2)n+1+α

) (1 − |a|2)2(n+1+α)

|1 − 〈a, z〉|2(n+1+α)

)
dνβ(z) ≤ K (5.2)

for all a ∈ Bn.
For a ∈ Bn given, let δ = 1 − |a|2 and ξ = a/|a| (a , 0). Then, using the type of Φ2

or the monotonicity of Φ2(t)/t, we obtain from (5.2) that

δn+1+βΦ2 ◦ Φ−1
1

( 1
δn+1+α

)
w νβ(Qδ(ξ))Φ2 ◦ Φ−1

1

( 1
δn+1+α

)
≤ K,

that is,

Φ−1
1

( 1
δn+1+α

)
≤ Φ−1

2

( C
δn+1+β

)
for some constant C > 0. Thus, (5.1) holds. The proof is complete. �
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We next consider multipliers between two Bergman–Orlicz spaces. We start with
the following general result.

Theorem 5.2. Let Φ1,Φ2 ∈L ∪U . Assume that Φ2/Φ1 is nondecreasing. Let α, β >
−1 and define, for 0 < t ≤ 1, the function

ω(t) =

Φ−1
2

( 1
tn+1+β

)
Φ−1

1

( 1
tn+1+α

) .
Then the following assertions hold.

(i) If ω is equivalent to 1, thenM(AΦ1
α (Bn), AΦ2

β (Bn)) = H∞(Bn).
(ii) If ω is nondecreasing on (0, 1] and limt→0 ω(t) = 0, then

M(AΦ1
α (Bn), AΦ2

β (Bn)) = {0}.

Proof. Let us start by proving assertion (i). We first prove the inclusion H∞(Bn) ⊂
M(AΦ1

α (Bn), AΦ2
β (Bn)). Let us assume that g ∈ H∞(Bn). Then, for any f ∈ AΦ1

α (Bn),∫
Bn

Φ2

(
|g(z)‖ f (z)|

C‖g‖∞‖ f ‖lux
Φ1,α

)
dνβ(z)≤

∫
Bn

Φ2

(
| f (z)|

C‖ f ‖lux
Φ1,α

)
dνβ(z)

≤ 1,

where the last inequality follows from Theorem 5.1, with C an appropriate constant.
Now assume that g ∈ M(AΦ1

α (Bn), AΦ2
β (Bn)). First, by Lemma 3.2, there exists a

constant C > 0 such that for any f ∈ AΦ1
α (Bn) and any z ∈ Bn,

|g(z)| | f (z)| = | f (z)g(z)| ≤ CΦ−1
2

( 1
(1 − |z|2)n+1+β

)
‖ f g‖lux

Φ2,α
.

Hence,

|g(z)| | f (z)| ≤ CΦ−1
2

( 1
(1 − |z|2)n+1+β

)
‖ f ‖lux

Φ1,α
. (5.3)

Taking in the above inequality

f (z) = fa(z) = Φ−1
1

( 1
(1 − |a|)n+1+α

)( 1 − |a|2

1 − 〈z, a〉

)2(n+1+α)

with a ∈ Bn fixed, we obtain for the same constant in (5.3) that for any z ∈ Bn,

|g(z)|Φ−1
1

( 1
(1 − |a|)n+1+α

)( 1 − |a|2

|1 − 〈z, a〉|

)2(n+1+α)

≤ CΦ−1
2

( 1
(1 − |z|2)n+1+β

)
.

Taking in particular z = a in the last inequality, we obtain that for any a ∈ Bn,

|g(a)| . C.

Hence, g ∈ H∞(Bn). The proof of assertion (i) is complete.
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Proof of (ii): let us assume that g ∈ M(AΦ1
α (Bn), AΦ2

β (Bn)); then, as above, there is
a constant C > 0 such that for any f ∈ AΦ1

α (Bn) and any z ∈ Bn, (5.3) holds. Testing
(5.3) with f (z) = fa(z) = Φ−1

1 (1/(1 − |a|)n+1+α)((1 − |a|2)/(1 − 〈z, a〉))2(n+1+α) with a ∈
Bn fixed and then taking z = a, we obtain that for any a ∈ Bn,

|g(a)| .
Φ−1

2

( 1
(1 − |a|2)n+1+β

)
Φ−1

1

( 1
(1 − |a|)n+1+α

) = Cω(1 − |a|2).

From the hypotheses on the function ω, we have that the right-hand side of the last
inequality goes to 0 as |a| → 1. Hence, by the maximum principle, g(a) = 0 for all
a ∈ Bn. The proof is complete. �

We finish with the following restriction to target growth functions in L̃ ∪ Ũ .

Theorem 5.3. Let Φ1 ∈L ∪U and Φ2 ∈ Ũ . Assume that Φ2/Φ1 is nondecreasing.
Let α, β > −1 and define, for 0 < t ≤ 1, the function

ω(t) =

Φ−1
2

( 1
tn+1+β

)
Φ−1

1

( 1
tn+1+α

) .
Then, if ω is nonincreasing on (0, 1],

M(AΦ1
α (Bn), AΦ2

β (Bn)) = H∞ω (Bn).

Proof. That any function in M(AΦ1
α (Bn), AΦ2

β (Bn)) is an element of H∞ω (Bn) can be
proved following the same idea in the proof of the necessity in assertion (ii) of the
previous theorem.

Let us prove that any g ∈ H∞ω (Bn) is an element of M(AΦ1
α (Bn), AΦ2

β (Bn)). Let
K = max{1,C1C2C3}, where C1 is the constant in (2.1); C2 and C3 are respectively
from conditions (2.6) and (2.7) in the definition of the class Ũ . For C > 0, a constant
whose existence has to be proved, using the condition on g and (2.6),

L :=
∫
Bn

Φ2

(
|g(z)|| f (z)|

KC‖g‖H∞ω ‖ f ‖
lux
Φ1,α

)
dνβ(z)

≤

∫
Bn

Φ2


Φ−1

2

( 1
(1 − |z|2)n+1+β

)
Φ−1

1

( 1
(1 − |z|2)n+1+α

) | f (z)|
KC‖ f ‖lux

Φ1,α

 dνβ(z)

≤ C2

∫
Bn

Φ2


Φ−1

2

( 1
(1 − |z|2)n+1+β

)
Φ−1

1

( 1
(1 − |z|2)n+1+α

)
 Φ2

(
| f (z)|

KC‖ f ‖lux
Φ1,α

)
dνβ(z).
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Now, using (2.7) and (2.1), we deduce that

L ≤C2C3

∫
Bn

1

(1 − |z|2)n+1+β

(
Φ−1

1

( 1
(1 − |z|2)n+1+α

))q Φ2

(
| f (z)|

KC‖ f ‖lux
Φ1,α

)
dνβ(z)

≤C1C2C3

∫
Bn

1

(1 − |z|2)n+1+βΦ2 ◦ Φ−1
1

( 1
(1 − |z|2)n+1+α

)Φ2

(
| f (z)|

KC‖ f ‖lux
Φ1,α

)
dνβ(z)

≤

∫
Bn

1

(1 − |z|2)n+1+βΦ2 ◦ Φ−1
1

( 1
(1 − |z|2)n+1+α

)Φ2

(
| f (z)|

C‖ f ‖lux
Φ1,α

)
dνβ(z).

To conclude, we only have to prove the existence of a constant C > 0 such that∫
Bn

Φ2

(
| f (z)|

C‖ f ‖lux
Φ1,α

)
dµ(z) ≤ 1,

where
dµ(z) =

1

Φ2 ◦ Φ−1
1

( 1
(1 − |z|2)n+1+α

) (1 − |z|2)−(n+1) dν(z).

For this, we know from Theorem 2.3 that it is enough to prove that µ is a (Φ2 ◦Φ−1
1 , α)-

Carleson measure.
Following the proof of the implication (a)⇒ (c) in Theorem 2.3, we see that to

prove that µ is a (Φ2 ◦ Φ−1
1 , α)-Carleson measure it is enough to prove that for any

a ∈ Bn and 0 < r < 1,

µ(∆(a, r)) ≤ C
1

Φ2 ◦ Φ−1
1

( 1
(1 − |a|2)n+1+α

) .
Using that for any z ∈ ∆(a, r), 1 − |z|2 ∼ 1 − |a|2 and that

ν(∆(a, r)) v (1 − |a|2)n+1,

we easily obtain

µ(∆(a, r)) =

∫
∆(a,r)

1

Φ2 ◦ Φ−1
1

( 1
(1 − |z|2)n+1+α

) (1 − |z|2)−(n+1) dν(z)

v
1

Φ2 ◦ Φ−1
1

( 1
(1 − |a|2)n+1+α

) (1 − |a|2)−(n+1)ν(∆(a, r))

v
1

Φ2 ◦ Φ−1
1

( 1
(1 − |a|2)n+1+α

) .
The proof is complete. �
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We also have the following result.

Theorem 5.4. Let Φ1 ∈L and Φ2 ∈ L̃ . Assume that Φ2/Φ1 is nondecreasing. Let
α, β > −1 and define, for 0 < t ≤ 1, the function

ω(t) =

Φ−1
2

( 1
tn+1+β

)
Φ−1

1

( 1
tn+1+α

) .
Then, if ω is nonincreasing on (0, 1],

M(AΦ1
α (Bn), AΦ2

β (Bn)) = H∞ω (Bn).

Proof. Again, that any function inM(AΦ1
α (Bn), AΦ2

β (Bn)) is an element of H∞ω (Bn) can
be proved following the same idea in the proof of Theorem 5.2.

Let us prove that any g ∈ H∞ω (Bn) is a multiplier from AΦ1
α (Bn) to AΦ2

β (Bn).
Let K = max{1,C′(C1C3)1/p}, where C′ is the constant in (2.1), C1 is the constant

in (2.6) and C3 is the constant in (2.8). For C > 0, a constant whose existence has to
be proved, using the condition on g and (2.6),

L :=
∫
Bn

Φ2

(
|g(z)|| f (z)|

KC‖g‖H∞ω ‖ f ‖
lux
Φ1,α

)
dνβ(z)

≤

∫
Bn

Φ2


Φ−1

2

( 1
(1 − |z|2)n+1+β

)
Φ−1

1

( 1
(1 − |z|2)n+1+α

) | f (z)|
KC‖ f ‖lux

Φ1,α

 dνβ(z)

≤ C1

∫
Bn

Φ2


Φ−1

2

( 1
(1 − |z|2)n+1+β

)
Φ−1

1

( 1
(1 − |z|2)n+1+α

)
 Φ2

(
| f (z)|

KC‖ f ‖lux
Φ1,α

)
dνβ(z).

Next, using (2.8) and the fact that as Φ2 ∈Lp, Φ−1
2 ∈U 1/p,

L ≤C1C3

∫
Bn

(
Φ−1

2

( 1
(1 − |z|2)n+1+β

))p

Φ2

(
Φ−1

1

( 1
(1 − |z|2)n+1+α

))Φ2

(
| f (z)|

KC‖ f ‖lux
Φ1,α

)
dνβ(z)

≤C1C3(C′)p
∫
Bn

1

(1 − |z|2)n+1+βΦ2

(
Φ−1

1

( 1
(1 − |z|2)n+1+α

))
×Φ2

(
| f (z)|

KC‖ f ‖lux
Φ1,α

)
dνβ(z)

≤

∫
Bn

Φ2

(
| f (z)|

C‖ f ‖lux
Φ1,α

)
dµ(z),
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where
dµ(z) =

1

Φ2 ◦ Φ−1
1

( 1
(1 − |z|2)n+1+α

) (1 − |z|2)−(n+1) dν(z).

Again, to conclude, we only have to prove the existence of a constant C > 0 such that∫
Bn

Φ2

(
| f (z)|

C‖ f ‖lux
Φ1,α

)
dµ(z) ≤ 1.

This follows as at the end of the proof of Theorem 5.3. The proof is complete. �

Theorem 2.4 clearly follows from Theorems 5.2–5.4.
Let f ∈ H(Bn). The radial derivative R f of f is given by

R f (z) =

n∑
j=1

z j
∂ f
∂z j

(z).

An analytic function f in Bn belongs to Λω if R f ∈ H∞tω(Bn), that is,

sup
z∈Bn

(1 − |z|)|R f (z)|
ω(1 − |z|)

<∞.

The space Λω is a Banach space under

‖ f ‖Λω
:= | f (0)| + sup

z∈Bn

(1 − |z|)|R f (z)|
ω(1 − |z|)

.

Note that if ω(t) = t1−λ, 0 < λ < ∞, Λω is just the λ-Bloch space usually denoted Bλ;
B = B1 being the Bloch space.

It is not hard to see that for λ > −1, one hasH∞ω (Bn) = Λω, when ω(t) = t−λ. Indeed,
in this case, the proof of the continuous embedding Λω ↪→H

∞
ω (Bn) follows as in [17,

proof of Lemma 2.10], while the proof of the continuous embedding H∞ω (Bn) ↪→ Λω

follows the first lines of [17, proof of Lemma 2.11].
It follows from the last observation and Theorem 2.4 that we have the following

result.

Corollary 5.5. Let 0 < p ≤ q <∞, α,β > −1. Define λ = (n + 1 + β)/q − (n + 1 + α)/p.
Then the following assertions hold.

(i) If λ > 0, thenM(Ap
α(Bn), Aq

β(B
n)) = Bλ+1.

(ii) If λ = 0, thenM(Ap
α(Bn), Aq

β(B
n)) = H∞(Bn).

(iii) If λ < 0, thenM(Ap
α(Bn), Aq

β(B
n)) = {0}.
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