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POLYNOMIAL DENSITY OF COMMUTATIVE SEMIGROUPS

ANDRZEJ KISIELEWICZ AND NORBERT NEWRLY

An algebra is said to be polynomially n-dense if all equational theories extending
the equational theory of the algebra with constants have a relative base consisting
of equations in no more than n variables. In this paper, we investigate polynomial
density of commutative semigroups. In particular, we prove that, for n > 1, a
commutative semigroup is (n — l)-dense if and only if its subsemigroup consisting
of all n-factor-products is either a monoid or a union of groups of a bounded
order. Moreover, a commutative semigroup is 0-dense if and only if it is a bounded
semilattice. For semilattices, we give a full description of the corresponding lattices
of equational theories.

1. INTRODUCTION

In [4], considering the general problem of describing the lattices of equational
theories of algebras, the authors introduced the concept of well-behaved algebras. They
call an algebra well-behaved if every equation (in the language of the algebra with
all constants), follows from its constant consequences. Such a property implies that
the lattice of equational theories extending the theory of the algebra with constants is
isomorphic to the congruence lattice of the algebra. This was used to prove that all
infinitely distributive algebraic lattices with compact 1, as well as algebraic lattices
with unique dual atom are representable as lattices of equational theories [4, 7].

The property of being well-behaved is equivalence invariant, that is, in fact, the
property of the clone of polynomial functions of the algebra, and roughly speaking, it
means that there is not much space among polynomials to make identifications.

In [6], the concept was extended to the concept of polynomial density as follows.
An equation with constants (a pair of polynomial functions) is n-derivable if it follows
(in the theory of the algebra with constants) from its n-ary consequences. An algebra
is (polynomially) n-dense, if all equations are ra-derivable. This is equivalent to saying
that equational theories extending the equational theory of the algebra with constants
have a relative base consisting of equations in no more than n variables.

In [6], the polynomial density is calculated for some well known classes of algebras.
In particular, finite lattices turn out to be 0-dense (well-behaved), while abelian groups,
modules, unary algebras and commutative monoids are 1-dense.
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In this paper we examine the density of commutative semigroups. One aim is
to provide examples and intuitions for further more general studies. Yet, polynomial
density for semigroups seems to be of an independent interest, because theories involving
constants are closely connected with presentations of semigroups, a classical topic in
semigroup theory.

In Section 1, we deal with semilattices. From [4] it follows that bounded semilattices
are 0-dense. We show that, in general, semilattices are l-dense. In this special case,
it is possible, in fact, to describe the whole lattice of equational theories extending the
theory of a semilattice with constants. If the semilattice does not happen to be 0-dense,
then this lattice is no longer isomorphic to the congruence lattice. Yet, our description
shows, in particular, that it is isomorphic to the congruence lattice of the semilattice
obtained from the original one by adjoining an identity and a zero in a natural way.

Next we turn to characterising the property of being polynomially n-dense for all
commutative semigroups. The case n = 0 turned out to require a separate treatment.
In Section 2, we show that a commutative semigroup is 0-dense (well-behaved) if and
only if it is a bounded semilattice. In Section 3 the remaining cases are handled. In
particular, we show that for n > 1 a commutative semigroup S is (n — l)-dense if
and only if its subsemigroup Ŝ™̂  of n-factor-products is either a monoid or a union of
groups of a bounded order.

We assume that the reader is familiar with basic concepts of semigroup theory,
lattice theory and universal algebra.

Throughout the paper, by Con(A) we denote the lattice of congruence relations of
an algebra A, and by Eqc(A), the lattice of equational theories extending the theory
of A with constants (that is, the type of A is expanded with nullary operations for all
elements of A). In a semigroup, the zero element and the identity element are denoted
by 0 and 1, respectively.

2. SEMILATTICES

Semilattices are idempotent commutative semigroups, and every semilattice term
is of the form u = X\ ... xn. Hence, every equation in the language of the semilattice
with constants is equivalent to one of the form

(a) u-v,
(b) ua = v,
(c) ua = ub,

where u,v are semilattice terms, a,b are constants, and u,v are allowed to be empty
words, if followed by a constant.

Assume that u and v are distinct, that is, there is a variable occurring only in
one of them. Then (using idempotency), from u = v one can derive both x = xa and
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a — xa, and in consequence, x = a. Conversely, from x = a one can derive x — y,
and therefore, u = v. This means, that in this case, any u = v is equivalent to x = a,
where a is an arbitrary constant.

Similarly, ua = v is equivalent to x = a, and ua = vb can be easily shown to be
equivalent to the pair of equations: 0 = 6 and xa — a.

If u and v are the same, then equation (a) belongs to every theory, while ua = u
is equivalent to xa = x; and ua = ub implies a = ab and ba = b, and therefore is
equivalent to a — b.

Summarising we have the following

PROPOSITION 1 . Every equationaJ theory extending the equationaJ theory Eo

of a semilattice with constants is determined by the set of equations Eo U £ , where E
contains only equations of the form a — b, x = xa, and xa — a.

In particular, every semilattice is polynomially 1-dense.

If the semilattice S has 1, then an equation of the form x = xa is equivalent to
the equation a = 1; if the semilattice has 0, then an equation of the form xa = a is
equivalent to the equation a — 0. In consequence, we have

COROLLARY 2 . Every bounded semilattice is polynomially 0-dense.

We turn to describing the lattice of equationaJ theories involved here.

For an equational theory E of a semilattice S let V"s D e the set of all pairs (a, b)
for which the equation a = 6 is in E , F%, the set of all elements a of S for which the
equation x = xa is in E , and 7E , the set of all elements a of S for which the equation
xa = a is in S . Clearly ips is a congruence relation of S, F^ is a (meet-semilattice)
filter in S and 7s is an (order) ideal in S. Moreover, each triple (V>, F, I) = (V's, -FE, Is )
satisfies the following conditions:

(Fl) For all a e F and for all c 6 S, the pair (c, ac) is a member of •>]}.

(F2) If (a,b) £ V and a £ F, then be F.

(11) For all a 6 / and for all c G S, the pair (ac,a) is a member of if*.

(12) If (a, b) € V" and a G / , then be I.

We need a concept known as Day's doubling construction. An upper (lower) pseu-
dointerval P of a lattice L is the union of intervals having a common greatest (least)
element. For such a pseudointerval P the lattice L[P) is defined by replacing P in
L by the product P x 2 of P and the two-element chain; the order is extended in a
natural way. For a complete description see [1].

Now, given two order filters Pi and Pi of a lattice L we construct i [Pi] . Then,
the union of Pi and the upper copy of P\ D Pi forms an order filter in this lattice.
Doubling this we get a new lattice, which we denote by l\P\,Pi\.

For a groupoid A let Coni(A) be the set of all congruences of A such that the
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factor groupoid has an identity. Let Cono(A) be the set of all congruences of A such
that the factor groupoid has a zero. Both Coni(A) and Cono(A) are order filters, and
therefore upper pseudointervals of Con(A). For a groupoid A let A + l be the groupoid
with an additional identity element, and A + 0, the groupoid with an additional zero
element.

LEMMA 3 . For every groupoid A, the congruence lattice of A + 1 is isomor-
phic to Con(A)[Coni(A)], and the congruence lattice of A + 0 is isomorphic to
Con(A)[Con0(A)].

PROOF: Every congruence of A can be made to a congruence of A + 1 by adding
a block containing 1 alone. Let ^ be a congruence of A + 1 where 1 is not alone in
its block. Then the restriction of rj> to A, i/> H A2, is a congruence of A, and the
corresponding factor groupoid has an identity, namely the class of those a's with atpl.
For every such a and any b the elements ab, ba and 6 are congruent modulo i/> C\ A2.
Hence, V> D A2 is contained in Coni(A) . The restriction of congruences of A + 1 to A
is a surjective lattice homomorphism under which every congruence of A has at most
two preimages, and it has two preimages if and only if it is contained in Coni(A) . This
establishes an isomorphism between Con(A + 1) and Con(A)[Coni(A)]. The proof of
the second statement is similar. U

For a semilattice S, by Sj we denote the semilattice obtained by adding 0 and
1, whenever either of them is missing. Define L"[Pi,Pi] for two order filters Pi and
P2 of a lattice L to be L[P\,P2], if both Pi and P2 are not the whole lattice L, and
L[0, P2] = L[P2), L[Pi,0] = L[Pi], or Z[0,0] = L if, respectively, Pi, P2, or both are
equal to L. Then we have

THEOREM 4 . For a semilattice S the following lattices are isomorphic:

(i) Eqc(S),
(ii) Con(S)*[Con0(S),C7oni(S)])

(iii) CW(SJ).

PROOF: In view of Proposition 1 every equational theory S in Eqc(S) is uniquely
determined by its triple (V>E, / s j Fj;) • On the other hand, every triple (ip,I,F) satis-
fying (Fl), (F2), (II) and (12) gives rise to such a theory.

If / E is not empty, then / s is a block of the congruence ^E because of condition
(12), and it is the least block because of condition (II). Hence, if i s is not empty,
then V"E belongs to Con0(S) and /E is uniquely determined by VE - If Fs is not
empty, then Fs is a block of the congruence tps because of condition (F2), and it is the
greatest block because of condition (Fl). Hence, if Fs is not empty, then ^s belongs
to Coni(S) and Fj; is uniquely determined by the congruence rps. If the semilattice
S has 0, then it is always contained in / j , and Cono(S) = Cem(S). If S has 1, then
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it is always contained in F s , and Coni(S) = Con(S).

Therefore, in view of Lemma 3, the isomorphism between the lattices Eqc(S) and
Con(S)*[Con0(S),Coni(S)] can be defined in the following way. If S has no 0 and no
1, than an equational theory £ is mapped upon the congruence ^ s , whenever Fs and
/ s are empty, or upon the corresponding copy of i}>s , whenever Fs or / E or both are
not empty (for example, if F% is empty, and Is not, then it is mapped on the copy of
V>E in the upper level of the doubled filter Coni(S), et cetera).

If S has 0, but no 1, then Con(S)*[Con0(S),Con1(S)] = Con(S)[C<m1(S)) and
the isomorphism is defined analogously, according to whether Fs is or is not empty.
The case with 1, but no 0 is similar. If there are both 0 and 1 in S, then Eqc(S) is
isomorphic to Con(S). U

The results above can be interpreted in the following way: If there are 1 and 0 in a
semilattice, all equations follow from their constant consequences. If 1 or 0 are missing,
then equations ax = x or ax = a are substitutes for the constant equations a = 1 or
a — 0. No other equations are needed to describe the lattice of equational theories.

3. CHARACTERISATION OF 0-DENSE COMMUTATIVE SEMIGROUPS

For two unary terms f,g in the language of a semigroup S with constants, R(f,g)
denotes the congruence of S generated by all pairs (f(a),g(a)) with a running over
the elements of S (see [3]). Then we have

LEMMA 5 . In a commutative semigroup S , a unary equation f — g is 0-deriva.ble
if and only if either f = g holds, or there are pairs (ai,bi) € R(f,g) and integers n;
(i - 0 , . . . ,k), such that the equations f - xn°a0, xnibt = asn<+»Oi+i (i = 0 , . . . ,k-\),
and g = xn*bk hold.

PROOF: It is not hard to see that an equation s = t is 0-derivable if and only
if there are terms p; and p[ in the language of an algebra A with constants, t =
0 , . . . , k, such that a — po , p\ = pi+i (i = 0 , . . . , A: — 1), and t — p'k hold in A , with
Pi = U(xi,... ,xn,d,... , c m ) , p'i = U(xi,... ,xn,di,... , d m ) , for s o m e t e r m U, a n d
Cj congruent to dj modulo R{s,i) (see [4, 3], or [6]). Restricting to unary equations
and commutative semigroups yields the desired result. D

Using this, we prove the following

THEOREM 6. A commutative semigroup is 0-dense if and only if it is a bounded
semilattice.

In view of Corollary 2 we only need to prove that if a commutative semigroup S is
0-dense, then it is a semilattice with 0 and 1. To this end it is enough to consider just
two equations.
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LEMMA 7 . If an equation x = a is O-derivable, then S is a monoid with 0.

PROOF: In view of Lemma 5 there are positive integers k,n{ and a,-,6j 6 S,
i = 0 , . . . ,k, such that x = x n o ao , xnibi = xni+lai+1, i = 0 , . . . ,Jfe-l, and xn*bk = a.
From the first equation we can conclude that i a j ° = xn°al£0+1 = xn°ao — x, so
a£° = 1 is an identity. Next, by substituting 1 for x we can conclude that ao = 1,
bi = Oj+i for t = 0, . . . , & , where at+i = a. Define d to be ai . . . ak+i • Then
xd = xai ...ak+1 = x n ° a i ...ak+i = xnia2 .. .ak+1ax - xn* a3 .. .ak+1a1a2 = ... -

xnkak+\a\ ... ak = ai ... at+i = d. Consequently, d is a zero. D

LEMMA 8 . If S is a commutative monoid and the equation x = x2 is O-derivable,

then it holds, that is, S is a semilattice.

PROOF: AS previously, using Lemma5 and the existence of 1, we see that there are
positive integers k,rii and elements a; congruent to 1 modulo i ? ( z , z 2 ) , i — 0 , . . . ,k,

such that x = xn° , i ^ - ' o i = xnia.i for t = 1 , . . . ,k and xnk = x2. Define d to be
a-i .. .ak. Then, xd = xa,\ ... ak = xn°a\ ... ak = xnia2 .. -akai = a;™203 . . .0^0102 =
. . . = xnkai ... ak = x2a\ ... ak = x2d. Hence, xd — x2d, and d is also congruent to 1
modulo R(x,x2). What we wish to show is that d = 1.

From Malcev's description of congruence relations (see [2]), a pair (c, d) of elements
of A is congruent modulo R(x,x2) if and only if there exist elements ai in A and
unary polynomial functions p,- of A, i = 0, . . . ,k such that c 6 {po(oo)>Po (ao)}>
{pi_1(ai_i),pj_i(a?_1)}n{pi(a,),pi(a?)}^ 0, and d€ {pk{ak), pk{a\)}. Since every
unary polynomial function pi can be written in the form Pi{x) = xn*bi, we can replace
Oj by a"* and assume that every p,- is the multiplication by a constant 6 .̂ Hence,
d is congruent to 1 modulo R(x,x2} iff there exist elements a; and 6̂  in S, such
that 1 G {aoVaoM, {ai-i&t-i,ai_i&i-i} H {a.ibi,a2bi} ± % for i = 1,. . . ,k and
d 6 {akbk,cL\bk}. From the first statement we get that both ao and 60 are units (that
is, divisors of 1). Since a product ab is a unit if and only if both factors a and b are
units, it follows by simple induction that all a; and b{, and in consequence, also d, are
units.

It follows that there is an element a such that ad = 1. But a — aad = a2d = ad =

1, since xd — x2d, so d is the identity, as required. D

The above lemmas prove the "only if" part of the theorem.

4. CHARACTERISATION OF TI-DENSE COMMUTATIVE SEMIGROUPS FOR n ^ 1

In this section, we characterise the class of all polynomially n-dense commutative
semigroups for n ^ 1. We begin with a necessary condition, which will turn out to be
also sufficient. A term t (in the expanded language of a semigroup S) is called uniquely

reprvsentable in S, if all the equations t = u belonging to the equational theory of S
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with constants are trivial (that is, s is equal to t up to associativity and commutativity).
In particular, there are no uniquely representable terms in monoids. Note also that, if
t is uniquely representable, then every subterm of t is uniquely representable.

LEMMA 9 . If the term Xi ... xn with n ^ 2 is uniquely representable in S, then
S is not (n — l)-dense.

PROOF: Let ip be the equivalence relation on the set of terms which identifies all
terms but those of the form XJJ . . . z,-t with k ^ n. Since x\... xn and all its subterms
are uniquely representable, i]) is a fully invariant congruence relation of the term algebra
(with constants). The same is true for ip' 3 Y>, in which also all terms x^ . . . x,-t with
k = n are identified with the constants. Clearly, the equation xi ... xn — c is in rji', for
any constant c. Moreover, all (n — l)-ary consequences of this equation are in ij>, since
the difference between ij> and ip' consists only of equations containing more than n — 1
variables. But x\ .. .xn = c is not in ij), which shows that S is not (n — l)-dense. D

Given a semigroup S, let Ŝ™) denote the subsemigroup of those elements a £ S
for which there are n elements a i , . . . , an such that a = a\... an. We show how S^n^
is related to the polynomial density of the semigroup S.

LEMMA 10 . For n ^ 2, if S^n) is a monoid, then S is polynomially (n — l)-dense.

PROOF: Assume that S is not (n — l)-dense, and choose / and g such that f = g
is not (n — l)-derivable and the number of variables occuring in / or g is minimal with
respect to this property. Let a be the identity in S^n^.

Assume first, that the equation / = g is regular, that is, / and g have the same
set of variables. Then both / and g have at least n factors, and therefore the equations
f — fa and g — ga hold in S. Hence / can be written as Ex"' c and g can be written

as Hxj'd, where c and d are constants.

Substituting suitably a in / — g, we get as consequences the equations x°'ca =

xi 'da for all i, and ca = da (since a is an idempotent).
Conversely, from these we can conclude

a1 a'

f — z ° l . . . x"kca = x1 * . . . xk
kda — g.

Hence, / = g is in fact 1-derivable, which is a contradiction.
Let f — g be not regular. Then, we may assume that there is a variable x occuring

in / but not in g, and / is of the form xaf for some term / ' not containing x. The
equation / = g clearly is equivalent to the pair of equations af = g and af = f. But
af = g has less variables than / = g, and is therefore (n — l)-derivable. Hence the
equation af — f is not (n — l)-derivable.

We show that this leads to a contradiction. First, / must contain more than
(n — 1) variables, and therefore the equation / = fa holds in S. It follows that the
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equation af — f can be written in the form

oci act Q> OH at,

Xj ...xk ca = x Xj . . . x ^ ca ,

for some constant c. However, this equation is equivalent to the equation ca = xaca,
and hence it is 1-derivable, a contradiction. D

In the next lemma we give a sufficient condition for n-density in the form of an
equation. We shall see later how it is also connected to the subsemigroup S^n^.

LEMMA 1 1 . 1/the equation

( 1 ) Xi . . . X n = Xj . . . X n

holds in a commutative semigroup S for some r ^ 1 and n ^ 2, then S is polynomially

(n — l)-dense.

PROOF: AS before, assume that that / = g is not (n — l)-derivable and is minimal

with respect to the number of variables.

Suppose that / = g is regular, that is, equivalent to an equation of the form

where i runs from 1 to some k ^ n, cti,^ > 0, and a and 6 are constants, perhaps

one or both missing. By replacing all variables with the exception of X{ by zj", we get

the unary consequences

xti+Cira = xfMrb

where c< = £) a;- and c\ = X) a j • ^ n ^ e other hand, replacing all variables by xT,

we derive an equation
xcra = xc'rb

for some positive integers c and c'. By repeated use of these (and (1)) we can conclude

back

/ = Has?'a = U x ? + e i r a =•_•• = Exfi+c'Tb = g.

Hence / = g is again 1-derivable, a contradiction.

Now suppose that / = g is not regular. As in the proof of the previous lemma

we can assume the equation is of the form / = a/ ' , where f = xaf for some / ' not

containing x and some constant a.

At first, assume also that / ' does not contain a constant. Then / = af is of the

form
at aci acL ai at,

XX, . . . Xu — H Z , . . . X . "
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[9] Commutative semigroups 159

with k ^ n — 1, so that (1) can be applied.

Replacing all variables except for x by ar, we derive the unary consequence

for some c > 0, while replacing all variables by xT, we derive

for some c',c" > 0. From these we can conclude

/ _ ~<»,.al , ° t _ r
a

r
c ' T r a i rr"*

J — <C Ju-t . . . I C J > — £ JC iCi . . . JJ •

= xaaxc"rx°l ... x°k = xaaCTaxc"TxX1 ...xk
k

= xaacrxc'rx°l . . . i ° l = aacrx°x ...x°k =g.

Hence / = g is 1-derivable, a contradiction.
There remains the case when / ' contains a constant, that is, / = af is equivalent

to an equation of the form

x Xj . . . xk o = ax1 ... xk b.

Then we can replace all variables with the exception of x by 6 and obtain

for some c. From this and equation (1) we can get back

/ = xabx?l . . . x ° l = xabCTbx? ... xa
k
k = abcrbx? ... xa

k
k = g,

which completes the proof. D

LEMMA 12. Let S be a commutative semigroup. If there is an element oE S
n

and positive integers a,- with ^ a; > n such that the equation
t=i

x i . . . x n = i " 1 ...x°na

holds in S, then the following equivalent conditions hold:

(i) An equation

n

holds in S for positive integers a,- with £) «» > n •
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(ii) There is an integer r ^ 1 such thai the equation
I \T+1

Xl . . . X n - [Xl . . . X n )

holds in S.
(iii) There is an integer r ^ 1 such that the equation

xi...xn =x\+1x2...xn

holds in S.

PROOF: We prove (i). From the equation in the assumption we can conclude

Uxi = HxiTLx?ai-1)ah

for all integers k ^ 0. Also we can conclude

where s = ^ a,. Therefore we have

a" =a'+1,

(i) =>• (ii) From the equation in (i) we can deduce the equation

Hz,- = Hzillz"*0"1

where g is any permutation on the set {1 , . . . ,n} . Therefore we have

Uxi = HziEz"'"1 = Uxinx'*i+l~1Ilx°'i-1

where s = 53 ai a n ( i an+k is defined to be a* for all fc = l , . . . , n — 1.
(ii) => (iii) From the equation in (ii) it follows that

xn = z ( r + 1 ) n

and also
Uxi = Ux^m+1

for all integers m ^ 0. Therefore we have

(iii) => (i) is trivial.
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REMARK. The equivalence of the conditions (i), (ii), and (iii) also follows from Theorem
7.11 of [5].

Note that the condition in (ii) means that in the subsemigroup Ŝ ™) every element
generates a finite cyclic group, and that the sizes of these groups are bounded (by r) ,
which is equivalent to saying that S^"^ is the union of groups of bounded order. Also
note that if x\...xn does not depend on one of its variables, the semigroup S is n-

nilpotent, and therefore the lemma above holds also for nonnegative integers a; . Hence,
combining all the lemmas above we have

THEOREM 1 3 . For a commutative semigroup S and an integer n ^ 2 the fol-
lowing are equivalent:

(i) S is polynomially (n — l)-dense.
(ii) The term X\ ... xn is not uniquely representable in S.

(iii) Either an equation X\...xn — x\+1xz ...xn holds in S for some r ^ 1

or there is a £ A such that the equation Xi ... xn = x\ ... xna holds in
S.

(iv) The subsemigroup S^ is either a monoid or the union of groups of

bounded order.

In order to illustrate this theorem, we give some examples.

If a commutative semigroup S is (n + l)-nilpotent, but not n-nilpotent, it is poly-
nomially n-dense, but not polynomially (n — l)-dense. This follows from the fact that
S(n+!) has only one element (and is therefore a monoid and a cyclic group), but the
term xi ... xn is uniquely representable (if it could also be written as another term,
this term would have more factors, and would therefore be equal to a constant in S, or
it would have less variables, which shows that X\ ... xn could also be written as a term
with more than n factors).

The semigroup No of all nonnegative integers with addition is a monoid and there-
fore it is polynomially 1-dense. On the other hand, the semigroup N of all positive
integers with addition is not polynomially n-dense for any n . Indeed, it can be eas-
ily seen that N^ — ({n,n + 1 , . . . } ,+ ) , and this is neither a monoid nor a union of
groups.

There exist also finite commutative semigroups which are not polynomially n-dense
for any n . The smallest example we found is a four-element semigroup S with 0, given
by: a2 = a, b2 — b, be = cb = c, and xy = 0 otherwise. Note that this implies that
the lattice Eqc(S) is infinite; as a matter of fact, it is not difficult to see that a finite
algebra S is polynomially n-dense for some n if and only if the lattice Eqc(S) is finite.
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