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Abstract. In this paper, the Khintchine-type theorems of Beresnevich (Acta Arith.
90 (1999), 97) and Bernik (Acta Arith. 53 (1989), 17) for polynomials are generalised
to incorporate a natural restriction on derivatives. This represents the first attempt to
solve a problem posed by Bernik, Kleinbock and Margulis (Int. Math. Res. Notices
2001(9) (2001), 453). More specifically, the main result provides a probabilistic criterion
for the solvability of the system of inequalities |P(x)| < �1(H) and |P′(x)| < �2(H) in
integral polynomials P of degree ≤ n and height H, where �1 and �2 are fairly general
error functions. The proof builds upon Sprindzuk’s method of essential and inessential
domains and the recent ideas of Beresnevich, Bernik and Götze (Compositio Math.
146 (2010), 1165) concerning the distribution of algebraic numbers.
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1. Introduction. First some notation. Throughout this paper, �i : �+ → �+ (i =
1, 2) denote real positive functions, #S stands for the cardinality of S and μ denotes
Lebesgue measure in �. Given an interval J ⊂ �, |J| will denote the length of J. Also,
B(x, ρ) will denote the interval in � centred at x of radius ρ. Given n ∈ �, Pn will be the
set of integral polynomials of degree ≤ n. Given a polynomial P, H(P) will denote the
maximum of the absolute values of its coefficients and referred to as the height of P. By
	 (
) we will mean the Vinogradov symbol with the implicit constant depending on n
only. We shall write a � b when the inequalities a 	 b and a 
 b hold simultaneously.

In this paper, we will be concerned with the measure theoretic properties of the set

Pn(�1, �2) =
{

x ∈ [− 1
2 , 1

2

]
:

|P(x)| < �1(H(P))

|P′(x)| < �2(H(P))
for i.m. P ∈ Pn

}
, (1)

where ‘i.m.’ stands for ‘infinitely many’.
Using the fact that |x| ≤ 1/2, one easily verifies that the bottom line inequality

in (1) imposes no restriction when �2(H) ≥ 4H. In this case, the set Pn(�1, �2) is
characterised by the first inequality only. Hence, for simplicity, Pn(�1, 4H) will be
denoted by Pn(�1). Thus,

Pn(�1) = {
x ∈ [− 1

2 , 1
2

]
: |P(x)| < �1(H(P)) for i.m. P ∈ Pn

}
.

The measure theoretic characterisation of the set Pn(�1) has been the catalysis of the
development of metric number theory over the last century. In the case n = 1, it was
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670 N. BUDARINA

first described in 1924 by Khintchine [23] in his beautiful discovery of a zero-one law
stated below in a slightly stronger modern version, see [8].

THEOREM (Khintchine [23]).

μ(P1(�)) =
{

0 if
∑∞

h=1 �(h) < ∞,

1 if
∑∞

h=1 �(h) = ∞ and �(h) is monotonic.
(2)

When n > 1, the measure theoretic characterisation of Pn(�) goes back to the
conjecture of Mahler (1932) that Pn(�) has zero measure whenever �(h) = h−n−ε for
any ε > 0. The conjecture was studied in depth for over 30 years and proved in full
generality by Sprindzuk in 1965, see [25]. The problem of establishing an analogue
of Khintchine’s theorem, this time for polynomial approximations, is attributed to
Alan Baker [2]. The complete solution to Baker’s problem was given by Bernik [13]
(convergence case) and Beresnevich [3] (divergence case). These results assume that �

is monotonic. However, more recently, Beresnevich [5] has shown that the condition
that � is monotonic can be dropped from the convergence case, thus establishing the
following complete analogue of Khintchine’s theorem for all degrees n:

THEOREM (Beresnevich [3, 5]). For any n ∈ �

μ(Pn(�)) =
{

0 if
∑∞

h=1 hn−1�(h) < ∞,

1 if
∑∞

h=1 hn−1�(h) = ∞ and �(h) is monotonic.
(3)

Bearing in mind the monotonicity of �, Khintchine-type theorems for polynomials
have been subsequently established in the case of complex [20] and p-adic [12] variables
and for simultaneous approximation in �, � and �p [15, 16, 17]. Also, in the
case of monic polynomials, Khintchine-type results have been obtained in [19] and
[22]. In the more general case of Diophantine approximation on non-degenerate
manifolds, Khintchine-type theorems have been established in [4, 11, 18] and for
the inhomogeneous case in [1]. Furthermore, it has been shown in [21] that the
monotonicity of � can be omitted in the case of Diophantine approximation on
arbitrary non-degenerate curves. Also, recently Khintchine-type theorems have been
established in the case of simultaneous Diophantine approximation, see [6, 9, 26] and
references therein.

Understanding the behaviour of derivatives of polynomials (and more generally
linear forms of smooth functions) has been somewhat crucial within the above
advances. Building upon the landmark results [24] of Kleinbock and Margulis, in
2001, Bernik et al. [18] found a far-reaching generalisation of Sprindzuk’s theorem
(Mahler’s conjecture), which incorporated a condition on derivatives of this ilk. Their
theorem treats linear forms of non-degenerate families of functions and in the case of
polynomials reduces to the following statement.

THEOREM (Bernik, Kleinbock & Margulis [18]). For any n ∈ �

μ(Pn(�1, �2)) = 0 (4)

when �1(h) = h−w−λ and �2(h) = h1−λ for some λ ≥ 0 and w > n − 2λ.

https://doi.org/10.1017/S0017089511000255 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089511000255


ON A PROBLEM OF BERNIK, KLEINBOCK AND MARGULIS 671

In the same paper, Bernik et al. set up a problem about finding optimal conditions
on �1 and �2 which ensure the validity of (4). In other words, they asked for establishing
a Khintchine-type theorem for Pn(�1, �2). The present paper represents the first
attempt to tackle this obviously hard and demanding problem.

Before we state the main result, it is convenient to introduce some auxiliary
functions, which are determined by �1 and �2 and carry various ‘technical’ restrictions
on �1 and �2. At this point, it is enough to say that these auxiliary functions naturally
arrear in the proof. They are

�̄1(h) = min
{
�1(h), �−1

2 (h)h1−n
}
,

ψ(h) = K−1�̄1(h)�−1
2 (h),

ρ(h) = K2h−n+1�−2
2 (h),

where K = (3ν−1)n−1c1n is a sufficiently large constant depending on n only.
Following Beresnevich, Dickinson and Velani [8], we will say that a function f is

2-regular if there is a positive λ < 1 such that f (2t+1) ≤ λf (2t) for all sufficiently large
t. Also, we will say that f is quasi-monotonic if there are constants z and c1 such that
0 < z < 1 ≤ c1 and f (zx) ≤ c1f (x) for all sufficiently large x.

THEOREM 1. Let �1, �2 : �+ → �+ be such that �1�2 is a monotonically
decreasing function. Let n ≥ 2 be an integer.

(1) Suppose that �2(h) ≥ h1/2+ε , ε > 0, then

μ(Pn(�1, �2)) = 0 if
∞∑

h=1

hn−2�1(h)�2(h) < ∞.

(2) Suppose that Kh
−n+2

3 ≤ �2(h) < k0Kh and that ψ or ρ is 2-regular, where k0 is
a positive constant depending on n only. Furthermore, suppose that ψ is quasi-
monotonic. Then

μ(Pn(�1, �2)) = 1 if
∞∑

h=1

hn−2�1(h)�2(h) = ∞.

2. Proof of Theorem 1: the divergence case. The proof of Case (2) of Theorem 1
is based on two techniques: the ubiquity technique of Beresnevich et al. [8] and the
construction of Beresnevich, Bernik and Götze [10] of a system of close conjugate
algebraic numbers. The construction of Beresnevich et al. [10] is modified to suite our
main goal. Throughout this paper, we deal with algebraic numbers in �. Let n ≥ 2.
Recall that complex algebraic numbers are called conjugate (over �) if they are roots of
the same irreducible (over �) polynomial with rational integer coefficients. Here and
elsewhere, H(α) denotes the height of an algebraic number α defined to be the absolute
height of the minimal polynomial of α over �.
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We begin by stating the following important auxiliary result established as
Lemma 4 in [10]. In what follows, ξ0, . . . , ξn ∈ �+ will satisfy the conditions

ξi 	 1, when 0 ≤ i ≤ m − 1,

ξi 
 1, when m ≤ i ≤ n,

ξ0 < ε, ξn > ε−1,

(5)

for some 0 < m ≤ n and ε > 0, where the implied constants depend on n only. Assume
also that

n∏
i=0

ξi = 1. (6)

LEMMA 1. For every n ≥ 2, there are positive constants δ0 and c0 depending on n
only with the following property. For any interval J ⊂ [− 1

2 , 1
2 ] there is a sufficiently small

ε = ε(n, J) > 0 such that for any ξ0, . . . , ξn satisfying (5) and (6) there is a measurable
set GJ ⊂ J satisfying

μ(GJ) ≥ 3
4
|J| (7)

such that for every x ∈ GJ there are n + 1 linearly independent primitive irreducible
polynomials P ∈ �[x] of degree exactly n such that

δ0ξi ≤ |P(i)(x)| ≤ c0ξi for all i = 0, . . . , n. (8)

Furthermore, let 0 < ν < 1, Q > 1 and An,ν(Q) be the set of algebraic numbers
α1 ∈ � of degree n and height H(α1) satisfying

νQ ≤ H(α1) ≤ ν−1Q (9)

such that

ν ≤ |α1 − α2|
Q−1�2(Q)

≤ ν−1 for some α2 ∈ � conjugate to α1. (10)

The following lemma generalises [10, Theorem 2] and represents the stepping stone for
establishing the divergence case of Theorem 1.

LEMMA 2. Let n ≥ 2 be an integer and let �2 : �+ → �+ satisfy the inequality
Q

−n+2
3 ≤ �2(Q) < k0Q for all Q ∈ � and some constant k0 > 0. Then, there is a constant

ν > 0 depending on n only such that for any interval J ⊂ [− 1
2 , 1

2 ], for all sufficiently
large Q

μ

⎛
⎝ ⋃

α1∈An,ν (Q)

B(α1, Q−n+1/�2
2 (Q)) ∩ J

⎞
⎠ ≥ 3

4
|J|. (11)
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Proof. The proof will follow the line of arguments of [10, Theorem 2]. Let δ0 and
c0 be the same as in Lemma 1. Define the following parameters:

ξ0 = ηQ−n+1�−1
2 (Q), ξ1 = η−n�2(Q), ξi = ηQ (2 ≤ i ≤ n), (12)

where 0 < η < 1 is a sufficiently small fixed parameter depending on n only which will
be specified later. Fix any interval J ⊂ [− 1

2 , 1
2 ] and let ε = ε(n, J) be the same as in

Lemma 1. Then, (5) is satisfied with m ∈ {1, 2} for sufficiently large Q. Also, the validity
of (6) easily follows from (12). Let GJ be the set arising from Lemma 1 and x ∈ GJ .
Then, by Lemma 1, there is a primitive irreducible polynomial P ∈ �[x] of degree n
satisfying (8).

Finding α1. Let y ∈ � be such that |y − x| = Q−n+1�−2
2 (Q). Using the fact that �2(Q) ≥

Q
−n+2

3 , we have |y − x| < 1. Furthermore, by Taylor’s formula,

P(y) =
n∑

i=0

1
i!

P(i)(x)(y − x)i. (13)

Using the inequality |x − y| < 1, �2(Q) ≥ Q
−n+2

3 , (8) and (12), we verify that

|P(i)(x)(y − x)i| ≤ ηc0Q−n+1�−1
2 (Q) for i ≥ 2 . (14)

Also, by (8) and (12), |P(x)| ≤ ηc0Q−n+1�−1
2 (Q). Therefore,

∑
i �=1

∣∣∣∣ 1
i!

P(i)(x)(y − x)i
∣∣∣∣ ≤ ηc0Q−n+1�−1

2 (Q)
n∑

i=0

1
i!

< 3ηc0Q−n+1�−1
2 (Q). (15)

On the other hand,

|P′(x)(y − x)| (8)&(12)≥ δ0η
−n�2(Q)Q−n+1�−2

2 (Q) ≥ δ0η
−1Q−n+1�−1

2 (Q). (16)

It follows from (15) and (16) that P(y) has different signs at the endpoints of the interval
|y − x| ≤ Q−n+1�−2

2 (Q) provided that η ≤ 1
2δ

1/2
0 c−1/2

0 . By the continuity of P, there is
a root α1 of P in this interval, that is

|x − α1| < Q−n+1�−2
2 (Q) . (17)

Finding α2. Let yρ = x + ρQ−1�2(Q), where 2 ≤ |ρ| < Q1/2�
−1/2
2 (Q). For ρ to exist

one should impose the condition

�2(Q) < Q/4. (18)

Now we will again use (13), this time with y = yρ . Using |x − y| < 1, |ρ| <

Q1/2�
−1/2
2 (Q), (8) and (12), we verify that

|P(i)(x)(yρ − x)i| < η|ρ|c0Q−1�2
2 (Q) for i ≥ 3 . (19)

By (8), (12) and the facts that �2(Q) ≥ Q
−n+2

3 and |ρ| ≥ 2, we have that

|P(x)| ≤ ηc0Q−n+1�−1
2 (Q) ≤ |ρ|ηc0Q−1�2

2 (Q)
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and

|P′(x)(yρ − x)| ≤ η−nc0�2(Q)|ρ|Q−1�2(Q) = η−nc0|ρ|Q−1�2
2 (Q).

The latter two estimates together with (19) give

∑
i �=2

∣∣∣∣ 1
i!

P(i)(x)(yρ − x)i
∣∣∣∣ ≤ η−n|ρ|c0Q−1�2

2 (Q)
n∑

i=0

1
i!

< 3η−n|ρ|c0Q−1�2
2 (Q). (20)

On the other hand,∣∣∣∣ 1
2!

P′′(x)(yρ − x)2

∣∣∣∣ (8)&(12)≥ 1
2
δ0ηQ|ρ|2Q−2�2

2 (Q) = 1
2
δ0ηρ

2Q−1�2
2 (Q). (21)

It follows from (20) and (21) that P(y) has the same signs at the points y±ρ0 (same
as P′′(x)) with ρ0 = 7c0η

−n−1δ−1
0 . Obviously, ρ0 should satisfy the inequality ρ0 <

Q1/2�
−1/2
2 (Q). This imposes another condition on �2. Together with the estimation

(18) this gives

�2(Q) < k0Q with k0 = min
{

1
4
,

1

ρ2
0

}
.

On the other hand, arguing the same way as during ‘Finding α1’, one readily
verifies that P(y2) and P(y−2) have different signs. Therefore, P(y) changes sign on one
of the intervals

[−ρ0Q−1�2(Q),−2Q−1�2(Q)] or [2Q−1�2(Q), ρ0Q−1�2(Q)].

By the continuity of P, there is a root α2 of P in that interval, that is

2Q−1�2(Q) ≤ |x − α2| < ρ0Q−1�2(Q). (22)

Combining (17) and (22) gives Q−1�2(Q) ≤ |α1 − α2| ≤ (ρ0 + 1)Q−1�2(Q), thus
establishing (10).

Estimates for the height. Using the fact that |x| ≤ 1
2 , (8) and (12) we verify that

|an| =
∣∣∣∣ 1
n!

P(n)(x)

∣∣∣∣ � Q,

|an−1| =
∣∣∣∣ 1
(n − 1)!

P(n−1)(x) − nanx
∣∣∣∣ 	 Q,

|ak| =
∣∣∣∣∣ 1
k!

P(k)(x) −
n∑

i=k+1

i!
k!(i − k)!

aixi−k

∣∣∣∣∣ 	 Q, for 0 ≤ k ≤ n − 2.

The upshot is that H(α1) � Q. This establishes (9) and completes the proof of
Lemma 2. �

REMARK 1. From the fact that |an| � Q and from the well-known property that
|αi| 	 H(αi)/|an| (see [25]), it follows that any αi conjugate to α1 is bounded by a
constant depending on n only.
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We will use the ubiquitous systems technique, which is now briefly recalled in a
simplified form (see [8] for more details and [7] for the related notion of regular systems).
Let I be an interval in � and R := (rα)α∈J be a family of points rα in I indexed by a
countable set J. Let β : J → �+ : α �→ βα be a function on J, which attaches a ‘weight’
βα to points rα. For t ∈ �, let J(t) := {α ∈ J : βα ≤ 2t} and assume J(t) is always finite.

Let ρ : �+ → �+ be a function such that limt→∞ ρ(t) = 0 referred to as ubiquity
function. The system (R; β) is called locally ubiquitous in I relative to ρ if there is an
absolute constant m0 > 0 such that for any interval J ⊂ I

lim inf
t→∞ μ

( ⋃
α∈J(t)

B
(
rα, ρ(2t)

) ∩ J
)

≥ m0 |J|. (23)

Given a function ψ : �+ → �+, let

�R(ψ) := {x ∈ I : |x − rα| < ψ(βα) holds for infinitely many α ∈ J}.

The following lemma is a modification of Theorem 1 in [8].

LEMMA 3. Let (R, β) be a locally ubiquitous system in J0 relative to ρ. Let the
function ψ or ρ is 2-regular. Then μ(�R(ψ)) = |J0| if

∑∞
t=1

ψ(2t)
ρ(2t) = ∞.

Consider the function �3(h) = �̄1(h)�2(h), which is non-increasing. The
monotonicity of �3 easily follows from the inequality min{�1(h1)�2(h1); h1−n

1 } ≥
min{�1(h2)�2(h2); h1−n

2 } for all h2 ≥ h1 and the fact that �1�2 is decreasing function.
Next, we show that the sum

∞∑
h=1

hn−2�3(h) (24)

diverges. Assume that the sum (24) converges. Then, by the monotonicity of �3, we
have

ln−1�3(l) 	
∑

l/2≤h<l

hn−2�3(h) → 0 as l → ∞.

It follows that ln−1�3(l) = min{ln−1�1(l)�2(l); 1} → 0 as l → ∞. This is possible only
if ln−1�1(l)�2(l) → 0 as l → ∞. It follows that �3(l) = �1(l)�2(l) for all sufficiently
large l. Therefore, the sum

∑∞
h=1 hn−2�1(h)�2(h) converges, contrary to the fact that

this sum diverges.
Using the monotonicity of �3 we obtain the following inequalities:

2(t+1)(n−1)�3(2t+1) 	
∑

2t≤h<2t+1

hn−2�3(h) 	 2t(n−1)�3(2t).

Summing these over all t ∈ � gives that the sums

∞∑
h=1

hn−2�3(h) and
∞∑

t=0

2t(n−1)�3(2t) (25)

(converge or) diverge simultaneously.
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The ubiquitous system. Define the functions ¯̄�1(q) := �̄1(q)
K2 and �̄2(q) := �2(q)

K , where

q
−n+2

3 ≤ �̄2(q) < k0q and K = (3ν−1)n−1c1n.
Let n ≥ 2. Let R be the set of algebraic numbers α1 ∈ � of degree n such that

|α1 − α2| ≤ ν−1H(α1)−1�̄2(H(α1)) for some α2 ∈ �, conjugate to α1 (26)

and

|αi| 	 ν−1 for any αi ∈ �, conjugate to α1, (27)

where the constant implied by the Vinogradov symbol depends on n only. We
will identify J with R, so that formally rα = α. Furthermore, let βα = νH(α) and
ρ(q) = q−n+1/�̄2

2 (q). Then, by Lemma 2 and Remark 1, there is a constant ν such
that (R, β) is locally ubiquitous in I := [− 1

2 , 1
2 ] with respect to the above ρ. Let

ψ(q) = ¯̄�1(q)/�̄2(q). If ψ or ρ is 2-regular function then Lemma 3 is applicable.
Then ψ(2t)

ρ(2t) = ¯̄�1(2t)�̄2(2t)2t(n−1) = K−3�3(2t)2t(n−1) and, therefore by (25), the sum∑∞
t=1

ψ(2t)
ρ(2t) diverges.

Furthermore, we show that

�R(ψ) ⊂ Pn(c0
¯̄�1, c0n�̄2) ⊂ Pn(�̄1, �2) ⊆ Pn(�1, �2). (28)

First, we show that �R(ψ) ⊂ Pn(c0
¯̄�1, c0n�̄2). By definition, for every x ∈ �R(ψ)

there are infinitely many real algebraic numbers α1 of degree n satisfying (26), (27) and

|x − α1| < ¯̄�1(νH(α1))/�̄2(νH(α1)). (29)

Let ψ be a quasi-monotonic function, then we have that ψ(νq) ≤ c1ψ(q) for some
c1 ≥ 1 and ν, 0 < ν < 1.

Let P denote the minimal polynomial of α1. Then, P(x) = an(x − α1) . . . (x − αn).
By (26), (27) and (29) we get

|x − α1| < c1
¯̄�1(H)/�̄2(H),

|x − α2| ≤ |x − α1| + |α1 − α2| < c1
¯̄�1(H)/�̄2(H) + ν−1H−1�̄2(H),

|x − αk| ≤ |x − α1| + |α1 − α2| + |α2| + |αk| < c1
¯̄�1(H)/�̄2(H)

+ ν−1H−1�̄2(H) + 2ν−1 for 3 ≤ k ≤ n. (30)

The two estimates �̄2
2 (H) ≥ K3H ¯̄�1(H) and �̄2(H) < k0H together with the fact that

|an| ≤ H(P) give

|P(x)| < Hc1
¯̄�1(H)�̄−1

2 (H)2ν−1H−1�̄2(H)(3ν−1)n−2 = c0
¯̄�1(H)

with c0 = 2 · 3n−2c1ν
1−n.

Furthermore,

P′(x) = an

n∑
i=1

(x − α1) · · · (x − αn)
(x − αi)

. (31)
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Estimate every summand in (31) using (30):

|x − α2| · · · |x − αn| < 2 · 3n−2ν1−nH−1�̄2(H),

|x − α1||x − α3| · · · |x − αn| < c1
¯̄�1(H)/�̄2(H)(3ν−1)n−2,

|x − α1| · · · |x − αn|
|x − αi| < 2 · 3n−3ν2−nc1

¯̄�1(H)H−1 for 3 ≤ i ≤ n.

Again, by the previous formulae, the estimates �̄2
2 (H) ≥ K3H ¯̄�1(H), ¯̄�1(H) ≤ �̄2(H),

�̄2(H) < k0H, and the fact that |an| ≤ H(P), we get |P′(x)| < c0n�̄2(H).
Second, we show that Pn(c0

¯̄�1, c0n�̄2) ⊂ Pn(�̄1, �2). Using the fact that �̄2(q) =
K−1�2(q), we obtain

|P′(x)| < c0n�̄2(H) = c0nK−1�2(H) < �2(H) for K > c0n.

Similarly, we obtain that

|P(x)| < �̄1(H) for K > c1/2
0 .

Third, by definition we have Pn(�̄1, �2) ⊆ Pn(�1, �2). Thus (28) is established and
the proof of Theorem 1 in the divergence case is completed.

3. Proof of Theorem 1: the convergence case. First of all, note that since the sum∑∞
H=1 Hn−2�1(H)�2(H) converges and �1�2 is monotonically decreasing, we have

2−n+1hn−1�1(h)�2(h) ≤
∑

h/2≤l≤h

ln−2�1(l)�2(l) → 0 as h → ∞.

This implies the inequality

�1(h)�2(h) ≤ h−n+1, (32)

valid for sufficiently large h, which will be used later on.
Let �2(H) ≥ H1/2+ε , ε > 0. Furthermore, we will distinguish two cases for the

value of the first derivative: |P′(x)| < H1/2 and H1/2 ≤ |P′(x)| < �2(H).

3.1. Case I: |P′(x)| < H1/2. In this case, we use the result of Bernik et al. [18].
Using the notation in Theorem 1.4 [18], we take f = (x, x2, . . . , xn), d = 1, U = � and
T1 = · · · = Tn = H, to obtain the following result.

LEMMA 4. Let x0 ∈ � and δ0 = max(δ, (δK∞Hn−1)
1

n+1 ). Then there exists a finite
interval I0 ⊂ � containing x0 and a constant E > 0 such that the set

∪P∈Pn, 0<H(P)≤H{x ∈ I0 : |P(x)| < δ, |P′(x)| < K∞}

has measure at most Eδ
1

2n−1
0 .

Since �2(H) ≥ H1/2+ε and �1(H) ≤ �2(H)−1H−n+1, then we get

|P(x)| < �1(H) ≤ H−n+1/2−ε .
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For a non-negative integer r, we denote by A(r) the set of x ∈ I0 such that the system
of inequalities

|P(x)| < H(P)−n+1/2−ε, |P′(x)| < H(P)1/2, (33)

holds for some P ∈ Pn with 2r−1 ≤ H(P) < 2r. According to Lemma 4, μ(A(r)) 	
2

−εr
(n+1)(2n−1) with ε > 0. The set of x ∈ � for which there are infinitely many P ∈ Pn

satisfying (33) consists of points x ∈ � which belong to infinitely many sets A(r). The
sum

∑∞
r=1 μ(A(r)) converges and the Borel–Cantelli lemma can be used to complete

the proof in this case.

3.2. Case II: H1/2 ≤ |P′(x)| < �2(H). Let H > 0 be a sufficiently large number.
Let Pn(H) denote the set of polynomials P ∈ Pn such that H(P) = H. Obviously
Pn = ∪∞

H=1Pn(H).
Given a polynomial P ∈ Pn(H) with roots α1, α2, . . . , αn ∈ �, define the sets

S(αj) = {x ∈ � : |x − αj| = min1≤m≤n |x − αm|}, 1 ≤ j ≤ n. (34)

When investigating the measure of x ∈ Pn(�1, �2) there is no loss of generality in
restricting x to belong to S(αj) for a fixed j for P satisfying the inequalities within (1).
For simplicity, throughout the proof we will assume that j = 1.

We will use the following auxiliary statements which are established in [14, Lemma
2] and [25, p. 13].

LEMMA 5. If P ∈ Pn(H) and x ∈ S(α1) then

|x − α1| ≤ n|P(x)||P′(x)|−1 for |P′(x)| �= 0,

and

|x − α1| < 2n min
(|P(x)||P′(α1)|−1, |P(x)||P′(α1)|−1|α1 − α2|1/2) for |P′(α1)| �= 0.

Let x ∈ [− 1
2 , 1

2 ] ∩ S(α1). Then from Lemma 5 and from the estimations for �1 and
|P′(x)|, we obtain

|x − α1| ≤ n|P(x)||P′(x)|−1 < n�1(H)H−1/2 ≤ n�2(H)−1H−n+1/2. (35)

At the beginning, we obtain that the first derivative in the closest root to x has the
same order as |P′(x)|. Using the mean value theorem, we obtain

P′(x) = P′(α1) + P′′(β1)(x − α1), β1 ∈ (x, α1).

Since |P′′(β1)(x − α1)| < 24n�2(H)−1H3/2−n and �2(H) ≥ H1/2+ε then from previous
equality for sufficiently large H we get

1
2 H1/2 < |P′(α1)| < 2�2(H). (36)
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Now, for a given polynomial P ∈ Pn(H), let

L1(P) =
{

x ∈
[
−1

2
,

1
2

]
∩ S(α1) : |P(x)| < �1(H), H1/2 ≤ |P′(x)| < �2(H)

}
,

L2(P) =
{

x ∈
[
−1

2
,

1
2

]
∩ S(α1) : |P(x)| < �1(H),

1
2

H1/2 ≤ |P′(α1)| < 2�2(H)
}

.

Next, we will show that μ(∩∞
N=1 ∪H≥N ∪P∈Pn(H)L2(P)) = 0. From Lemma 5 and the

fact that |P(x)| < �1(H), we obtain

|x − α1| < 2n�1(H)|P′(α1)|−1. (37)

Let σ (P) denote the set of solutions of the inequality (37) for a fixed P ∈ Pn(H). Clearly,
L1(P) ⊆ L2(P) ⊆ σ (P).

For P ∈ Pn(H), consider the interval σ1(P) defined by the inequality

σ1(P) : |x − α1| <
1

16n
|P′(α1)|−1. (38)

There is a sufficiently large H0 depending on n such that σ (P) ⊂ σ1(P) for all H > H0.
First, we consider the polynomials P ∈ Pn(H) such that aj = H for some j ≥ 2. The

coefficient a1 of the polynomial P(x) = anxn + an−1xn−1 + · · · + a1x + a0 ∈ Pn(H) can
be written in the following form a1 = [10�2(H)]k + t, where 0 ≤ t ≤ [10�2(H)] − 1
and |k| < [H(10�2(H) − 1)−1].

Two polynomials

P1(x) = a1,nxn + a1,n−1xn−1 + · · · + Hxj + · · · + a1,2x2 + ([10�2(H)]k1 + t1)x + a1,0,

P2(x) = a2,nxn + a2,n−1xn−1 + · · · + Hxj + · · · + a2,2x2 + ([10�2(H)]k2 + t2)x + a2,0

are included in the same class Pbt (H) if they have the same vector bt =
(a1,n, a1,n−1, . . . , H, . . . , a1,2, t1), where

a1,n = a2,n, a1,n−1 = a2,n−1, . . . , a1,j = a2,j = H, . . . , a1,2 = a2,2, t1 = t2.

The number of different classes Pbt (H) is 	 Hn−2�2(H).
Fix the vector bt = (an, an−1, . . . , H, . . . , a2, t). Develop the polynomials P(x) ∈

Pbt (H) as Taylor series in σ1(P) to obtain an upper bound for |P(x)| so that

P(x) =
n∑

j=1

(j!)−1P(j)(α1)(x − α1)j.

Estimating each term of the Taylor series individually gives

|P′(α1)||x − α1| <
1

16n
,

1/j!|P(j)(α1)||x − α1|j < 1
8n2 , 2 ≤ j ≤ n.

Clearly, these further imply that

|P(x)| <
1
5n

. (39)
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Furthermore, from the mean value theorem and from the estimations (36), (38)
and �2(H) ≥ H1/2+ε , for x ∈ σ1(P), we obtain

|P′(x)| ≤ |P′(α1)| + |P′′(β2)||x − α1| < 2�2(H) + 2
n H1/2 < 3�2(H), (40)

β2 ∈ (x, α1).
It will now be shown that if P, Q ∈ Pbt (H) and P �= Q then the intervals σ1(P)

and σ1(Q) are disjoint. Assume that this is not the case so that σ1(P) ∩ σ1(Q) �= 0. Let
R(x) = P(x) − Q(x) ∈ ��=0, then R is of the form R(x) = b1x + b0 with |b1| = |a1(P) −
a1(Q)| = [10�2(H)]|k(P) − k(Q)|. It can be readily verified from (39) and (40) that

|b1x + b0| < 2
5n ,

|b1| < 6�2(H).
(41)

Since |b1| = [10�2(H)]|k1| ≥ [10�2(H)] for k1 ∈ �/{0}, therefore we have a
contradiction with (41). Hence, there is no such x and σ1(P) ∩ σ1(Q) = 0. Therefore,∑

P∈Pbt (H)

μ(σ1(P)) 	 1.

Also, from (37) and (38),

μ(σ (P)) 	 μ(σ1(P))�1(H).

Since the number of classes Pbt (H) is at most c(n)Hn−2�2(H) from the above two
displayed inequalities, we have∑

bt

∑
P∈Pbt (H)

μ(σ (P)) 	 Hn−2�1(H)�2(H).

By the condition of the theorem the series
∑∞

H=1 Hn−2�1(H)�2(H) converges and
the Borel–Cantelli lemma shows that the set of x belonging to infinitely many sets of
σ (P) has measure zero.

Second, we consider the polynomials P ∈ Pn(H) such that a0 = H or a1 = H. Fix
θ > 0. As θ is arbitrary we may assume without loss of generality that any real number
x lying in the interval

[− 1
2 , 1

2

]
satisfies |x| ≥ θ . For n = 2, the proof is similar to that

used by Sprindžuk in [25]. For n ≥ 3, we pass from the polynomial P to the reciprocal
polynomial Q(x) = xnP( 1

x ) of P. Under such a transformation and its inverse, the
measure of solutions x changes in c(n, θ ) times. Using H(P) = H(Q), �2(H) ≥ H1/2+ε ,
θ ≤ |x| ≤ 1/2 and (32), we verify that |Q(x)| 	 �1(H) and |Q′(x)| 	 �2(H). Then for
the polynomials Q we use the same argument as before for P. The proof of Theorem 1
in the convergence case is completed.
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