APPROXIMATELY ANGLE PRESERVING MAPPINGS

MOHAMMAD SAL MOSLEHIAN ${ }^{\boxtimes}$, ALI ZAMANI and PAWEŁ WÓJCIK

(Received 20 June 2018; accepted 10 November 2018; first published online 14 February 2019)

Abstract

We study linear mappings which preserve vectors at a specific angle. We introduce the concept of (ε, c) angle preserving mappings and define $\widehat{\varepsilon}(T, c)$ as the 'smallest' number ε for which T is an (ε, c)-angle preserving mapping. We derive an exact formula for $\widehat{\varepsilon}(T, c)$ in terms of the norm $\|T\|$ and the minimum modulus $[T]$ of T. Finally, we characterise approximately angle preserving mappings.

2010 Mathematics subject classification: primary 47B49; secondary 46C05, 47L05, 39B82.
Keywords and phrases: orthogonality preserving mapping, approximately angle preserving mapping, isometry, approximate similarity.

1. Introduction

Throughout this paper, \mathscr{H}, \mathscr{K} denote real Hilbert spaces with dimensions greater than or equal to two and $\mathbb{B}(\mathscr{H}, \mathscr{K})$ denotes the Banach space of all bounded linear mappings between the Hilbert spaces \mathscr{H} and \mathscr{K}. We write $\mathbb{B}(\mathscr{H})$ for $\mathbb{B}(\mathscr{H}, \mathscr{H})$.

As usual, vectors $x, y \in \mathscr{H}$ are said to be orthogonal, $x \perp y$, if $\langle x, y\rangle=0$, where $\langle.,$. denotes the inner product of \mathscr{H}. A mapping $T: \mathscr{H} \longrightarrow \mathscr{K}$ is called orthogonality preserving if it preserves orthogonality, that is,

$$
x \perp y \Longrightarrow T x \perp T y \quad(x, y \in \mathscr{H})
$$

Orthogonality preserving mappings may be nonlinear and discontinuous (see [2]). Under the additional assumption of linearity, a mapping T is orthogonality preserving if and only if it is a scalar multiple of an isometry, that is, $T=\gamma U$, where U is an isometry and $\gamma \geq 0$ (see [5]).

It is natural to consider approximate orthogonality (ε-orthogonality), $x \perp^{\varepsilon} y$, defined by $|\langle x, y\rangle| \leq \varepsilon\|x\|\|y\|$. For $\varepsilon \geq 1$, it is clear that every pair of vectors are ε-orthogonal, so the interesting case is when $\varepsilon \in[0,1)$.

A mapping $T: \mathscr{H} \longrightarrow \mathscr{K}$ is an approximately orthogonality preserving mapping, or an ε-orthogonality preserving mapping, if

$$
x \perp y \Longrightarrow T x \perp^{\varepsilon} T y \quad(x, y \in \mathscr{H}) .
$$

The first author is partially supported by a grant from Ferdowsi University of Mashhad (No. 2/47884). (C) 2019 Australian Mathematical Publishing Association Inc.

Obviously, if $\varepsilon=0$, then T is orthogonality preserving. A natural question is whether a linear ε-orthogonality preserving mapping T must be close to a linear orthogonality preserving mapping (see $[1,4,7]$).

In a Hilbert space \mathscr{H} we can define a relation connected to the notion of angle. Fix $c \in(-1,1)$. For $x, y \in \mathscr{H}$, we say that $x \iota_{c} y$ if $\langle x, y\rangle=c\|x\|\|y\|$. Thus, $c=\cos (\alpha)$, where α is the angle between x and y if $x, y \in \mathscr{H} \backslash\{0\}$.

A mapping $T: \mathscr{H} \longrightarrow \mathscr{K}$ is c-angle preserving if it preserves the angle c, that is,

$$
x \angle_{c} y \Longrightarrow T x \angle_{c} T y \quad(x, y \in \mathscr{H})
$$

Angle preserving mappings may be far from linear and continuous. There is an (infinite-dimensional) Euclidean space \mathscr{H} and an injective map $T: \mathscr{H} \longrightarrow \mathscr{H}$ such that the condition $x \angle_{1 / 2} y$ implies that $T x \angle_{1 / 2} T y$, while the map T is discontinuous at all points (see [6, Remark 3]). A characterisation of angle preserving mappings on finite-dimensional Euclidean spaces was obtained in [6] and Chmieliński [3] studied stability of angle preserving mappings on the plane.

In the next section, we present some characterisations of linear mappings preserving certain angles. We show (Theorem 2.4) that a nonzero linear map T is c-angle preserving if and only if T is a scalar multiple of an isometry, generalising [2, Theorem 1] and [12, Theorem 3.8].

Fix $\varepsilon \in[0,1)$ and define $x L_{c}^{\varepsilon} y$ by

$$
\mid\langle x, y\rangle-c\|x\|\|y\|\|\leq \varepsilon\| x\| \| y \|
$$

which is equivalent to $c-\varepsilon \leqslant \cos \alpha \leqslant c+\varepsilon$, where α is the angle between x and y. If $c=0$, then $\angle_{0}=\perp$ and $\angle_{0}^{\varepsilon}=\perp^{\varepsilon}$. It is easy to see that \angle_{c} and \angle_{c}^{ε} are weakly homogeneous in the sense that $x L_{c} y \Leftrightarrow \alpha x L_{c} \beta y$ and $x L_{c}^{\varepsilon} y \Leftrightarrow \alpha x L_{c}^{\varepsilon} \beta y$ for all $\alpha, \beta \in \mathbb{R}^{+}$. For $\varepsilon \geq 1+|c|$, it is obvious that $x L_{c}^{\varepsilon} y$ for all $x, y \in \mathscr{H}$. Hence, we shall only consider the case $\varepsilon \in[0,1+|c|)$.

A mapping $T: \mathscr{H} \longrightarrow \mathscr{K}$ satisfying the condition

$$
x L_{c} y \Longrightarrow T x L_{c}^{\varepsilon} T y \quad(x, y \in \mathscr{H})
$$

is called an ε-approximate c-angle preserving mapping or (ε, c)-angle preserving mapping.

Recently, angle preserving mappings have been studied in [8, 9] via an approach different from ours. When \mathscr{H}, \mathscr{K} are finite dimensional, the third author [9] proved that for an arbitrary $\delta>0$ there exists $\varepsilon>0$ such that for any linear ($\varepsilon, c)$-angle preserving mapping T there exists a linear c-angle preserving mapping such that

$$
\|T-S\| \leq \delta \min \{\|T\|,\|S\|\}
$$

Our intention is to obtain a characterisation of approximate angle preserving mappings. If $0 \leq \varepsilon_{1} \leq \varepsilon_{2}<1+|c|$ and T is an (ε_{1}, c)-angle preserving mapping, then T is also an ($\left.\varepsilon_{2}, c\right)$-angle preserving mapping. This fact motivates us to give the following definition (see also [13]).

Defintion 1.1. Let $c \in(-1,1)$. For each map $T: \mathscr{H} \longrightarrow \mathscr{K}$, let $\widehat{\varepsilon}(T, c)$ be the 'smallest' number ε such that T is (ε, c)-angle preserving, that is,

$$
\widehat{\varepsilon}(T, c):=\inf \{\varepsilon \in[0,1+|c|]: T \text { is an }(\varepsilon, c) \text {-angle preserving mapping }\} .
$$

Thus, $\widehat{\varepsilon}(T, c)=1+|c|$ whenever T is not an approximately c-angle preserving mapping. Also, it is easy to see that $\widehat{\varepsilon}(T,-c)=\widehat{\varepsilon}(T, c)=\widehat{\varepsilon}(\alpha T, c)$ for all $\alpha \in \mathbb{R} \backslash\{0\}$.

In the last section, we state some basic properties of the function $\widehat{\varepsilon}(., c)$. If $T \in \mathbb{B}(\mathscr{H}, \mathscr{K})$, then we derive an exact formula for $\widehat{\varepsilon}(T, c)$ in terms of the norm $\|T\|$ and the minimum modulus $[T]$ of T. Here $[T]$ is the largest number $m \geq 0$ such that $\|T x\| \geq m\|x\|(x \in \mathscr{H})$. We use this formula to characterise the approximately c-angle preserving mappings (Corollary 3.4) and show that every nonzero linear mapping T is approximately c-angle preserving if and only if T is bounded below.

2. Linear mappings preserving angles

We start our work with the following lemmas. The first follows immediately from the definition of the angle between vectors.

Lemma 2.1. Let $c \in[0,1)$. If $x, y \in \mathscr{H}$ are such that $\|x\|=\|y\|=1$ and $x \perp y$, then:
(i) $(x+\sqrt{1+c / 1-c} y) \angle_{c}(-x+\sqrt{1+c / 1-c} y)$;
(ii) $(x+\sqrt{1-c / 1+c} y) \angle_{c}(x-\sqrt{1-c / 1+c} y)$.

Lemma 2.2 [10, Theorem 2.3]. Let $T \in \mathbb{B}(\mathscr{H}, \mathscr{K})$ be an injective linear map. Suppose that $\operatorname{dim} \mathscr{H}=n$. Then there exists an orthonormal basis $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ for \mathscr{H} such that

$$
[T]=\left\|T x_{1}\right\|, \quad\left\|T x_{2}\right\|=\|T\| \quad \text { and } \quad T x_{i} \perp T x_{j} \quad(1 \leq i \neq j \leq n)
$$

Corollary 2.3. Let $T: \mathscr{H} \longrightarrow \mathscr{K}$ be a nonzero injective linear map. Suppose that unit vectors $x, y \in \mathscr{H}$ are linearly independent. Then there exist unit vectors x_{1}, x_{2} such that

$$
x_{1} \perp x_{2}, \quad T x_{1} \perp T x_{2}, \quad\left\|T x_{1}\right\| \leq\|T x\| \leq\left\|T x_{2}\right\| \quad \text { and } \quad\left\|T x_{1}\right\| \leq\|T y\| \leq\left\|T x_{2}\right\| .
$$

We are now ready to characterise the c-angle preserving mappings. The following result is a generalisation of [2, Theorem 1].

Theorem 2.4. Let $T: \mathscr{H} \longrightarrow \mathscr{K}$ be a nonzero linear map and let $c \in(-1,1)$. Then the following statements are equivalent:
(i) $x \angle_{c} y \Longrightarrow T x \angle_{c} T y \quad(x, y \in \mathscr{H})$;
(ii) there exists $\gamma>0$ such that $\|T x\|=\gamma\|x\| \quad(x \in \mathscr{H})$.

Proof. The implication (ii) \Rightarrow (i) follows from the polarisation formula. The implication (i) \Rightarrow (ii) follows from a more general theorem (see Corollary 3.5).

The following example shows that Theorem 2.4 fails if the assumption of linearity is dropped. Nonlinear mappings satisfying $x \iota_{c} y \Longrightarrow T x L_{c} T y(x, y \in \mathscr{H})$ may be very strange and even noncontinuous.

Example 2.5. Let $c \in(-1,1)$. Let $\varphi: \mathscr{H} \rightarrow \mathbb{R}$ be a fixed nonvanishing function. Define the mapping $T: \mathscr{H} \longrightarrow \mathscr{H}$ by $T(x):=\varphi(x) \cdot x$. Then $x L_{c} y \Longrightarrow T x \angle_{c} T y$ for all $x, y \in \mathscr{H}$. If φ is not continuous, then T clearly is not continuous. In particular, T is clearly not a similarity.

Taking $\mathscr{K}=\mathscr{H}$ and $T=\mathrm{Id}:\left(\mathscr{H},\langle., .\rangle_{1}\right) \longrightarrow\left(\mathscr{H},\langle., .\rangle_{2}\right)$, the identity map, we obtain the following result from Theorem 2.4.

Corollary 2.6. Let $c \in(-1,1)$. Suppose that \mathscr{H} is a vector space equipped with two (complete) inner products $\langle., .\rangle_{1},\langle., .\rangle_{2}$ generating the norms $\|.\|_{1},\|.\|_{2}$ and c-angle relations $\angle_{c, 1}, L_{c, 2}$, respectively. Then the following conditions are equivalent:
(i) there exists $\gamma>0$ such that $\|x\|_{2}=\gamma\|x\|_{1} \quad(x \in \mathscr{H})$;
(ii) $x \iota_{c, 1} y \Longrightarrow x \angle_{c, 2} y \quad(x, y \in \mathscr{H})$;
(iii) $\sup \left\{\left|\langle x, y\rangle_{2} /\|x\|_{2}\|y\|_{2}-c\right|: x L_{c, 1} y, x, y \in \mathscr{H} \backslash\{0\}\right\}=0$.

Corollary 2.7. Let $T \in \mathbb{B}(\mathscr{H}, \mathscr{K})$ be a bijective linear map and let $c \in(-1,1)$. Then the following statements are equivalent:
(i) $\quad x \angle_{c} y \Longrightarrow T x \angle_{c} T y \quad(x, y \in \mathscr{H})$;
(ii) $\left\|T S T^{-1}\right\| \leq\|S\|$ for all invertible linear mappings $S \in \mathbb{B}(\mathscr{H})$.

Proof. The implication (i) \Rightarrow (ii) follows immediately from Theorem 2.4.
(ii) \Rightarrow (i). Suppose that (ii) holds. For every $\varepsilon>0$,

$$
\left\|\varepsilon I+T(x \otimes y) T^{-1}\right\|=\left\|T(\varepsilon I+x \otimes y) T^{-1}\right\| \leq\|\varepsilon I+x \otimes y\| \quad(x, y \in \mathscr{H}) .
$$

Here, $x \otimes y$ denotes the rank-one operator in $\mathbb{B}(\mathscr{H})$ defined by $(x \otimes y)(z):=\langle z, y\rangle x$ for $z \in \mathscr{H}$. Letting $\varepsilon \rightarrow 0^{+}$yields

$$
\left\|T(x \otimes y) T^{-1}\right\| \leq\|x \otimes y\| \quad(x, y \in \mathscr{H})
$$

This implies that $\|T\|\left\|T^{-1}\right\| \leq 1$. Hence,

$$
\|T\|\|x\| \leq \frac{\|x\|}{\left\|T^{-1}\right\|} \leq\|T x\| \leq\|T\|\|x\| \quad(x \in \mathscr{H})
$$

which gives

$$
\|T x\|=\|T\|\|x\| \quad(x \in \mathscr{H})
$$

Now, the equivalence (i) \Leftrightarrow (ii) of Theorem 2.4 gives (i).

3. Approximately angle preserving mappings

Our aim in this section is to characterise approximately angle preserving mappings. The following lemma follows immediately from Definition 1.1.

Lemma 3.1. Let $T: \mathscr{H} \longrightarrow \mathscr{K}$ be a linear map and let $c \in(-1,1)$. Then the following statements hold:
(i) $\widehat{\varepsilon}(T, c)=\sup \left\{|\langle T x, T y\rangle /\|T x\|\|T y\|-c|: x L_{c} y, x, y \in \mathscr{H} \backslash\{0\}\right\}$;
(ii) $\widehat{\varepsilon}(T, c)=\sup \left\{|\langle T x, T y\rangle /\|T x\|\|T y\|-c|: x \angle_{c} y,\|x\|=\|y\|=1, x, y \in \mathscr{H}\right\}$.

Our next theorem is a generalisation of [13, Lemma 2.2].
Theorem 3.2. Let $T: \mathscr{H} \longrightarrow \mathscr{K}$ be a nonzero linear map and let $c \in(-1,1)$. If $[T]=0$, then $\widehat{\varepsilon}(T, c)=1+|c|$.

Proof. Since $\widehat{\varepsilon}(T,-c)=\widehat{\varepsilon}(T, c)$, we may assume that $c \in[0,1)$. We consider two cases.
Case 1. \quad is not injective.
There exists a subspace \mathscr{H}_{1} such that $2 \leq \operatorname{dim} \mathscr{H}_{1}<\infty$ and $\left.T\right|_{\mathscr{H}_{1}}$ is not injective, that is, $\{0\} \neq \operatorname{ker}\left(\left.T\right|_{\mathscr{H}_{1}}\right) \neq \mathscr{H}_{1}$. (Indeed, if T is injective on every finite-dimensional subspace, then T has to be injective.) Since the set $\operatorname{ker}\left(\left.T\right|_{\mathscr{H}_{1}}\right)$ is not dense, we can find two vectors $x \in\left(\operatorname{ker}\left(\left.T\right|_{\mathscr{H}_{1}}\right)\right)^{\perp}, y \in \operatorname{ker}\left(\left.T\right|_{\mathscr{H}_{1}}\right)$ such that $\|x\|=\|y\|=1$ and $x \perp y$. By Lemma 2.1(i),

$$
\left|\frac{\left\langle T\left(x+\sqrt{\frac{1+c}{1-c}} y\right), T\left(-x+\sqrt{\frac{1+c}{1-c}} y\right)\right\rangle}{\left\|T\left(x+\sqrt{\frac{1+c}{1-c}} y\right)\right\|\left\|T\left(-x+\sqrt{\frac{1+c}{1-c}} y\right)\right\|}-c\right|=\left|\frac{-\|T x\|^{2}}{\|T x\|^{2}}-c\right|=1+c .
$$

Thus, by Lemma 3.1(i), $\widehat{\varepsilon}(T, c)=1+c$.
Case 2. T is injective.
Assume that $\widehat{\varepsilon}(T, c)<1+c$. Then there exists $\varepsilon_{0}<1+c$ such that T is an $\left(\varepsilon_{0}, c\right)$ angle preserving mapping. Consider arbitrary unit vectors $x, y \in \mathscr{H}$. If x and y are linearly dependent, then $\sqrt{(1-c)\left(1+c-\varepsilon_{0}\right) /(1+c)\left(1-c+\varepsilon_{0}\right)}\|T y\| \leq\|T x\|$. If x and y are linearly independent, then, by Corollary 2.3 , there exist unit vectors x_{1}, x_{2} such that

$$
\begin{equation*}
x_{1} \perp x_{2}, \quad T x_{1} \perp T x_{2}, \quad\left\|T x_{1}\right\| \leq\|T x\| \leq\left\|T x_{2}\right\| \quad \text { and } \quad\left\|T x_{1}\right\| \leq\|T y\| \leq\left\|T x_{2}\right\| . \tag{3.1}
\end{equation*}
$$

So, by Lemma 2.1(ii),

$$
T\left(x_{1}+\sqrt{\frac{1-c}{1+c}} x_{2}\right) L_{c}^{\varepsilon_{0}} T\left(x_{1}-\sqrt{\frac{1-c}{1+c}} x_{2}\right)
$$

Put $u=x_{1}+\sqrt{1-c / 1+c} x_{2}$ and $v=x_{1}-\sqrt{1-c / 1+c} x_{2}$. Then

$$
\begin{aligned}
-\left\|T x_{1}\right\|^{2}+\frac{1-c}{1+c}\left\|T x_{2}\right\|^{2} & +c\left(\left\|T x_{1}\right\|^{2}+\frac{1-c}{1+c}\left\|T x_{2}\right\|^{2}\right) \\
& \leq\left|\left\|T x_{1}\right\|^{2}-\frac{1-c}{1+c}\left\|T x_{2}\right\|^{2}-c\left(\left\|T x_{1}\right\|^{2}+\frac{1-c}{1+c}\left\|T x_{2}\right\|^{2}\right)\right| \\
& =\mid\langle T u, T v\rangle-c\|T u\|\|T v\| \| \\
& \leq \varepsilon_{0}\|T u\|\|T v\| \\
& =\varepsilon_{0}\left\|T\left(x_{1}+\sqrt{\frac{1-c}{1+c}} x_{2}\right)\right\|\left\|T\left(x_{1}-\sqrt{\frac{1-c}{1+c}} x_{2}\right)\right\| \\
& \leq \varepsilon_{0}\left(\left\|T x_{1}\right\|^{2}+\frac{1-c}{1+c}\left\|T x_{2}\right\|^{2}\right) .
\end{aligned}
$$

Hence,

$$
-\left\|T x_{1}\right\|^{2}+\frac{1-c}{1+c}\left\|T x_{2}\right\|^{2}+c\left(\left\|T x_{1}\right\|^{2}+\frac{1-c}{1+c}\left\|T x_{2}\right\|^{2}\right) \leq \varepsilon_{0}\left(\left\|T x_{1}\right\|^{2}+\frac{1-c}{1+c}\left\|T x_{2}\right\|^{2}\right)
$$

or, equivalently,

$$
\begin{equation*}
\sqrt{\frac{(1-c)\left(1+c-\varepsilon_{0}\right)}{(1+c)\left(1-c+\varepsilon_{0}\right)}}\left\|T x_{2}\right\| \leq\left\|T x_{1}\right\| . \tag{3.2}
\end{equation*}
$$

By combining (3.1) and (3.2),

$$
\sqrt{\frac{(1-c)\left(1+c-\varepsilon_{0}\right)}{(1+c)\left(1-c+\varepsilon_{0}\right)}}\|T y\| \leq \sqrt{\frac{(1-c)\left(1+c-\varepsilon_{0}\right)}{(1+c)\left(1-c+\varepsilon_{0}\right)}}\left\|T x_{2}\right\| \leq\left\|T x_{1}\right\| \leq\|T x\| .
$$

By passing to the supremum over y and to the infimum over x in the above inequality, we obtain $\sqrt{(1-c)\left(1+c-\varepsilon_{0}\right) /(1+c)\left(1-c+\varepsilon_{0}\right)}\|T\| \leq[T]$. Since $\|T\|>0$ and $[T]=0$, this yields $\varepsilon_{0}=1+c$. This contradiction shows that $\widehat{\varepsilon}(T, c)=1+c$.

Next, we formulate one of our main results.
Theorem 3.3. Let $c \in(-1,1)$. Suppose that $T \in \mathbb{B}(\mathscr{H}, \mathscr{K})$ and $[T] \neq 0$. Then

$$
\widehat{\varepsilon}(T, c)=\frac{\left(1-|c|^{2}\right)\left(\|T\|^{2}-[T]^{2}\right)}{(1+|c|)\|T\|^{2}+(1-|c|)[T]^{2}}
$$

Proof. We may assume that $c \in[0,1)$. Since $[T]>0$, there exist unit vectors x_{1}, x_{2} such that

$$
\begin{equation*}
x_{1} \perp x_{2}, \quad T x_{1} \perp T x_{2}, \quad[T]=\left\|T x_{1}\right\| \quad \text { and } \quad\left\|T x_{2}\right\|=\|T\| . \tag{3.3}
\end{equation*}
$$

It follows from Lemma 2.1(ii) that $\left(x_{2}+\sqrt{(1-c) /(1+c)} x_{1}\right) \angle_{c}\left(x_{2}-\sqrt{(1-c) /(1+c)} x_{1}\right)$.

Now, let us put $u=x_{2}+\sqrt{(1-c) /(1+c)} x_{1}$ and $v=x_{2}-\sqrt{(1-c) /(1+c)} x_{1}$. By (3.3),

$$
\begin{aligned}
\left|\frac{\langle T u, T v\rangle}{\|T u\|\|T v\|}-c\right| & =\left|\frac{\left\|T x_{2}\right\|^{2}-\frac{1-c}{1+c}\left\|T x_{1}\right\|^{2}}{\left\|T x_{2}\right\|^{2}+\frac{1-c}{1+c}\left\|T x_{1}\right\|^{2}}-c\right| \\
& =\left|\frac{\|T\|^{2}-\frac{1-c}{1+c}[T]^{2}}{\|T\|^{2}+\frac{1-c}{1+c}[T]^{2}}-c\right| \\
& =\left|\frac{(1+c)\|T\|^{2}-(1-c)[T]^{2}}{(1+c)\|T\|^{2}+(1-c)[T]^{2}}-c\right| \\
& =\frac{\left(1-c^{2}\right)\left(\|T\|^{2}-[T]^{2}\right)}{(1+c)\|T\|^{2}+(1-c)[T]^{2}} .
\end{aligned}
$$

By Lemma 3.1(i),

$$
\begin{equation*}
\widehat{\varepsilon}(T, c) \geq \frac{\left(1-c^{2}\right)\left(\|T\|^{2}-[T]^{2}\right)}{(1+c)\|T\|^{2}+(1-c)[T]^{2}} \tag{3.4}
\end{equation*}
$$

On the other hand, let $x, y \in \mathscr{H}$ be such that $x \angle_{c} y$ and $\|x\|=\|y\|=1$. Then

$$
\begin{aligned}
\left\|\frac{T x}{\|T x\|}+\frac{T y}{\|T y\|}\right\|^{2} & =\left\|T\left(\frac{x}{\|T x\|}+\frac{y}{\|T y\|}\right)\right\|^{2} \\
& \leq\|T\|^{2}\left\|\frac{x}{\|T x\|}+\frac{y}{\|T y\|}\right\|^{2} \\
& =\|T\|^{2}\left(\frac{1}{\|T x\|^{2}}+\frac{1}{\|T y\|^{2}}+\frac{2 c}{\|T x\|\|T y\|}\right)
\end{aligned}
$$

whence

$$
\begin{equation*}
\left\|\frac{T x}{\|T x\|}+\frac{T y}{\|T y\|}\right\|^{2} \leq\|T\|^{2}\left(\frac{1}{\|T x\|^{2}}+\frac{1}{\|T y\|^{2}}+\frac{2 c}{\|T x\|\|T y\|}\right) \tag{3.5}
\end{equation*}
$$

Similarly,

$$
\left\|\frac{T x}{\|T x\|}-\frac{T y}{\|T y\|}\right\|^{2} \geq[T]^{2}\left(\frac{1}{\|T x\|^{2}}+\frac{1}{\|T y\|^{2}}-\frac{2 c}{\|T x\|\|T y\|}\right)
$$

and

$$
\left\|\frac{T x}{\|T x\|}-\frac{T y}{\|T y\|}\right\|^{2} \leq\|T\|^{2}\left(\frac{1}{\|T x\|^{2}}+\frac{1}{\|T y\|^{2}}-\frac{2 c}{\|T x\|\|T y\|}\right)
$$

Now, let

$$
\begin{equation*}
\left\|\frac{T x}{\|T x\|}-\frac{T y}{\|T y\|}\right\|^{2}=\mu[T]^{2}\left(\frac{1}{\|T x\|^{2}}+\frac{1}{\|T y\|^{2}}-\frac{2 c}{\|T x\|\|T y\|}\right) \tag{3.6}
\end{equation*}
$$

with $1 \leq \mu \leq\|T\| /[T]$. It follows from (3.5) and (3.6) that

$$
\begin{aligned}
4 & =\left\|\frac{T x}{\|T x\|}+\frac{T y}{\|T y\|}\right\|^{2}+\left\|\frac{T x}{\|T x\|}-\frac{T y}{\|T y\|}\right\|^{2} \\
& \leq\left(\|T\|^{2}+\mu[T]^{2}\right)\left(\frac{1}{\|T x\|^{2}}+\frac{1}{\|T y\|^{2}}\right)+\left(\|T\|^{2}-\mu[T]^{2}\right) \frac{2 c}{\|T x\|\|T y\|} \\
& \leq\left(\|T\|^{2}+\mu[T]^{2}\right)\left(\frac{1}{\|T x\|^{2}}+\frac{1}{\|T y\|^{2}}\right)+c\left(\|T\|^{2}-\mu[T]^{2}\right)\left(\frac{1}{\|T x\|^{2}}+\frac{1}{\|T y\|^{2}}\right) \\
& =\left((1+c)\|T\|^{2}+(1-c) \mu[T]^{2}\right)\left(\frac{1}{\|T x\|^{2}}+\frac{1}{\|T y\|^{2}}\right) .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\frac{1}{\|T x\|^{2}}+\frac{1}{\|T y\|^{2}} \geq \frac{4}{(1+c)\|T\|^{2}+(1-c) \mu[T]^{2}} \tag{3.7}
\end{equation*}
$$

From (3.6) and (3.7),

$$
\begin{aligned}
\left\langle\frac{T x}{\|T x\|}, \frac{T y}{\|T y\|}\right\rangle-c & =1-c-\frac{1}{2}\left\|\frac{T x}{\|T x\|}-\frac{T y}{\|T y\|}\right\|^{2} \\
& =1-c+\frac{\mu c[T]^{2}}{\|T x\|\|T y\|}-\frac{1}{2} \mu[T]^{2}\left(\frac{1}{\|T x\|^{2}}+\frac{1}{\|T y\|^{2}}\right) \\
& \leq 1-c+\frac{1}{2} \mu c[T]^{2}\left(\frac{1}{\|T x\|^{2}}+\frac{1}{\|T y\|^{2}}\right)-\frac{1}{2} \mu[T]^{2}\left(\frac{1}{\|T x\|^{2}}+\frac{1}{\|T y\|^{2}}\right) \\
& =1-c-\frac{1}{2}(1-c) \mu[T]^{2}\left(\frac{1}{\|T x\|^{2}}+\frac{1}{\|T y\|^{2}}\right) \\
& \leq 1-c-\frac{2(1-c) \mu[T]^{2}}{(1+c)\|T\|^{2}+(1-c) \mu[T]^{2}} \\
& =\frac{\left(1-c^{2}\right)\|T\|^{2}-\left(1-c^{2}\right) \mu[T]^{2}}{(1+c)\|T\|^{2}+(1-c) \mu[T]^{2}} \quad(\text { since } 1 \leq \mu) \\
& \leq \frac{\left(1-c^{2}\right)\left(\|T\|^{2}-[T]^{2}\right)}{(1+c)\|T\|^{2}+(1-c)[T]^{2}} .
\end{aligned}
$$

Hence,

$$
\sup \left\{\left|\frac{\langle T x, T y\rangle}{\|T x\| \mid T y \|}-c\right|: x \iota_{c} y,\|x\|=\|y\|=1, x, y \in \mathscr{H}\right\} \leq \frac{\left(1-c^{2}\right)\left(\|T\|^{2}-[T]^{2}\right)}{(1+c)\|T\|^{2}+(1-c)[T]^{2}}
$$

From Lemma 3.1(ii),

$$
\begin{equation*}
\widehat{\varepsilon}(T, c) \leq \frac{\left(1-c^{2}\right)\left(\|T\|^{2}-[T]^{2}\right)}{(1+c)\|T\|^{2}+(1-c)[T]^{2}} \tag{3.8}
\end{equation*}
$$

Combining (3.4) and (3.8) gives the formula for $\widehat{\varepsilon}(T, c)$.
As an immediate consequence of Theorem 3.3, we get a characterisation of the (ε, c)-angle preserving mappings.

Corollary 3.4. Suppose that $T \in \mathbb{B}(\mathscr{H}, \mathscr{K}) \backslash\{0\}$ and $c \in(-1,1)$. Then there exists an $\varepsilon \in[0,1+|c|)$ such that T is an (ε, c)-angle preserving mapping if and only if T is bounded below.

Corollary 3.5. Let $c \in(-1,1)$ and $\varepsilon \in[0,1+|c|)$. Suppose that $T \in \mathbb{B}(\mathscr{H}, \mathscr{K}) \backslash\{0\}$ is an (ε, c)-angle preserving mapping. Then T is injective and the following statements hold:
(i) $\sqrt{(1+|c|)(1-|c|-\varepsilon) /(1-|c|)(1+|c|+\varepsilon)}||T|| \leq[T]$;
(ii) $\quad \sqrt{(1+|c|)(1-|c|-\varepsilon) /(1-|c|)(1+|c|+\varepsilon)}\|T x\|\|y\| \leq\|T y\|\|x\| \quad(x, y \in \mathscr{H})$;
(iii) $\quad \sqrt{(1+|c|)(1-|c|-\varepsilon) /(1-|c|)(1+|c|+\varepsilon)}|T|\|\|x\| \leq\| T x\|\leq\| T\|\|x\| \quad(x \in \mathscr{H})$.

Proof. Since T is an (ε, c)-angle preserving mapping, we have $\widehat{\varepsilon}(T, c)<1+|c|$. Theorem 3.2 ensures that T is injective. From Theorem 3.3,

$$
\widehat{\varepsilon}(T, c)=\frac{\left(1-|c|^{2}\right)\left(\|T\|^{2}-[T]^{2}\right)}{(1+|c|)\|T\|^{2}+(1-|c|)[T]^{2}} \leq \varepsilon
$$

or, equivalently,

$$
\sqrt{\frac{(1+|c|)(1-|c|-\varepsilon)}{(1-|c|)(1+|c|+\varepsilon)}}\|T\| \leq[T]
$$

From the above inequality, for $x, y \in \mathscr{H}$,

$$
\begin{aligned}
\sqrt{\frac{(1+|c|)(1-|c|-\varepsilon)}{(1-|c|)(1+|c|+\varepsilon)}}\|T x\|\|y\| & \leq \sqrt{\frac{(1+|c|)(1-|c|-\varepsilon)}{(1-|c|)(1+|c|+\varepsilon)}}\|T\|\|x\|\|y\| \\
& \leq[T]\|y\|\|x\| \leq\|T y\|\|x\|
\end{aligned}
$$

and

$$
\sqrt{\frac{(1+|c|)(1-|c|-\varepsilon)}{(1-|c|)(1+|c|+\varepsilon)}}\|T\|\|x\| \leq[T]\|x\| \leq\|T x\| \leq\|T\|\|x\| .
$$

Corollary 3.6. Let $c \in(-1,1)$. For $T, S \in \mathbb{B}(\mathscr{H}) \backslash\{0\}$, the following statements hold:
(i) if T, S are left invertible, then $\widehat{\varepsilon}(S T, c)<1+|c|$;
(ii) if S is a scalar multiple of an isometry, then $\widehat{\varepsilon}(S T, c)=\widehat{\varepsilon}(T, c)$;
(iii) if $T^{-1} \in \mathbb{B}(\mathscr{H}) \backslash\{0\}$, then $\widehat{\varepsilon}\left(T^{-1}, c\right)=\widehat{\varepsilon}(T, c)$.

Proof. (i) Since T and S are left invertible, $[T S] \geq[T][S]>0$ and, by Theorem 3.3, $\widehat{\varepsilon}(T S, c)<1+|c|$.
(ii) This follows because $\|S\|=[S],\|S T\|=\|S\|\|T\|$ and $[S T]=[S][T]$.
(iii) To see this, note that $\left\|T^{-1}\right\|=1 /[T]$ and $\left[T^{-1}\right]=1 /\|T\|$.

The next corollary gives another property of the function $\widehat{\varepsilon}(., c)$.
Corollary 3.7. Let $c \in(-1,1)$. The function $T \mapsto \widehat{\varepsilon}(T, c)$ is norm continuous at each $T \in \mathbb{B}(\mathscr{H}, \mathscr{K})$ with $[T]>0$.

Proof. Suppose that $T_{n} \in \mathbb{B}(\mathscr{H}, \mathscr{K})$ are such that $\lim _{n \rightarrow \infty}\left\|T_{n}-T\right\|=0$. Since $T \neq 0$, we may assume that $T_{n} \neq 0$ for all $n \in \mathbb{N}$. Then

$$
\lim _{n \rightarrow \infty}\left\|T_{n}\right\|=\|T\|, \quad \lim _{n \rightarrow \infty}\left[T_{n}\right]=[T] \quad \text { and } \quad(1+c)\left\|T_{n}\right\|^{2}+(1-c)\left[T_{n}\right]^{2} \neq 0
$$

Thus, by Theorem 3.3,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \widehat{\varepsilon}\left(T_{n}, c\right) & =\lim _{n \rightarrow \infty} \frac{\left(1-|c|^{2}\right)\left(\left\|T_{n}\right\|^{2}-\left[T_{n}\right]^{2}\right)}{(1+|c|)\left\|T_{n}\right\|^{2}+(1-|c|)\left[T_{n}\right]^{2}}=\frac{\left(1-|c|^{2}\right)\left(\|T\|^{2}-[T]^{2}\right)}{(1+|c|)\|T\|^{2}+(1-|c|)[T]^{2}} \\
& =\widehat{\varepsilon}(T, c)
\end{aligned}
$$

Remark 3.8. The function $\widehat{\varepsilon}(., c)$ is not continuous at 0 even in the case $c=0$. Take any mapping T which is not orthogonality preserving. Thus, $\widehat{\varepsilon}(T, c) \neq 0$. Let $T_{n}=T / n$. Then $\lim _{n \rightarrow \infty}\left\|T_{n}\right\|=0$, but, for every $n, \widehat{\varepsilon}\left(T_{n}, c\right)=\widehat{\varepsilon}(T, c) \neq 0$ (see [13, Remark 2.7]).

Next, we prove that every injective operator preserves approximate orthogonality.
Theorem 3.9. Suppose that $T \in \mathbb{B}(\mathscr{H}, \mathscr{K})$ and $0<[T] \leq\|T\|$. Then T satisfies

$$
x \perp y \Longrightarrow T x \perp^{\varepsilon_{T}} T y \quad(x, y \in \mathscr{H})
$$

with $\varepsilon_{T}=1-[T]^{2} /\|T\|^{2}$.
Proof. Fix two arbitrary nonzero vectors $x, y \in \mathscr{H}$ such that $x \perp y$. Since $0<[T]$, it follows that T is injective. From Corollary 2.3, there exist unit vectors $a, b \in \operatorname{span}\{x, y\}$ such that

$$
\begin{equation*}
a \perp b, \quad T a \perp T b, \quad\|T a\| \leq\|T x\| \leq\|T b\| \quad \text { and } \quad\|T a\| \leq\|T y\| \leq\|T b\| . \tag{3.9}
\end{equation*}
$$

Moreover, there exist $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ such that $x=\alpha a+\beta b, y=\gamma a+\delta b$. Since $x \perp y$,

$$
\begin{equation*}
\alpha \gamma=-\beta \delta \tag{3.10}
\end{equation*}
$$

Furthermore, $T x=\alpha T a+\beta T b$ and $T y=\gamma T a+\delta T b$. If $\alpha \beta \gamma \delta=0$, then it is easy to see that $\langle T x, T y\rangle=0$ and, in particular, $T x \perp^{\varepsilon_{T}} T y$. So, now suppose that $\alpha \beta \gamma \delta \neq 0$. Denote $\theta:=\alpha / \beta=-\delta / \gamma$. It follows from (3.9) and (3.10) that

$$
\begin{aligned}
\frac{|\langle T x, T y\rangle|}{\|T x\|\|T y\|} & =\frac{\left|\alpha \gamma\|T a\|^{2}+\beta \delta\|T b\|^{2}\right|}{\sqrt{|\alpha|^{2}\|T a\|^{2}+|\beta|^{2}\|T b\|^{2}} \sqrt{|\gamma|^{2}\|T a\|^{2}+|\delta|^{2}\|T b\|^{2}}} \\
& =\frac{\left(\|T b\|^{2}-\|T a\|^{2}\right)|\alpha \gamma|}{\sqrt{|\alpha|^{2}\|T a\|^{2}+|\beta|^{2}\|T b\|^{2}} \sqrt{|\gamma|^{2}\|T a\|^{2}+|\delta|^{2}\|T b\|^{2}}} \\
& =\frac{1-\frac{\|T a\|^{2}}{\|T b\|^{2}}}{\sqrt{\frac{\|T a\|^{2}}{\|T b\|^{2}}+\frac{1}{|\theta|^{2}}} \sqrt{\frac{\|T a\|^{2}}{\|T b\|^{2}}+|\theta|^{2}}} \\
& \leq \frac{1-\frac{\|T a\|^{2}}{\|T b\|^{2}}}{\sqrt{\frac{\|T a\|^{4}}{\|T b\|^{4}}+1}} \leq 1-\frac{\|T a\|^{2}}{\|T b\|^{2}} \leq 1-\frac{[T]^{2}}{\|T\|^{2}}=\varepsilon_{T},
\end{aligned}
$$

whence $|\langle T x, T y\rangle| \leq \varepsilon_{T}| | T x\| \| T y \|$. Thus, $T x^{\perp_{T}} T y$.

The following result can be considered an extension of Theorem 3.9. More precisely, we show that every injective operator approximately preserves the inner product.

Theorem 3.10. Assume that $\operatorname{dim} \mathscr{H}<\infty$. Suppose that $T \in \mathbb{B}(\mathscr{H}, \mathscr{K})$ and $0<[T]$. Then there exists γ such that T satisfies

$$
\begin{equation*}
|\langle T x, T y\rangle-\gamma\langle x, y\rangle| \leq\left(1-\frac{[T]^{2}}{\|T\|^{2}}\right)\|T\|^{2}\|x\|\|y\| \quad(x, y \in \mathscr{H}) . \tag{3.11}
\end{equation*}
$$

Moreover, $[T]^{2} \leq|\gamma| \leq 2\|T\|^{2}-[T]^{2}$.
Proof. Combining Theorem 3.9 and [11, Theorem 5.5], we immediately get (3.11). Fix $u \in \mathscr{H}$ such that $\|u\|=1$. Putting u in place of x and y in (3.11) gives $\left\|\|T u\|^{2}-\gamma \mid \leq\right.$ ($\left.1-[T]^{2} /\|T\|^{2}\right)\|T\|^{2}$. Choosing u as an arbitrary unit vector and passing to the supremum and infimum over $\|u\|=1$ gives $[T]^{2} \leq|\gamma| \leq 2\|T\|^{2}-[T]^{2}$.

To end this paper, we show that in the finite-dimensional case Corollary 3.5 can be strengthened. Indeed, as an immediate consequence of Corollary 3.5 and Theorem 3.10, we obtain the following result.

Corollary 3.11. Let $c \in(-1,1)$ and $\varepsilon \in[0,1+|c|)$. Suppose that $T \in \mathbb{B}(\mathscr{H}, \mathscr{K}) \backslash\{0\}$ is an (ε, c)-angle preserving mapping. Assume that $\operatorname{dim} \mathscr{H}<\infty$. Then there exists γ such that T satisfies

$$
|\langle T x, T y\rangle-\gamma\langle x, y\rangle| \leq\left(1-\frac{(1+|c|)(1-|c|-\varepsilon)}{(1-|c|)(1+|c|+\varepsilon)}\right)\|T\|^{2}\|x\|\|y\| \quad(x, y \in \mathscr{H}) .
$$

Moreover, $[T]^{2} \leq|\gamma| \leq 2\|T\|^{2}-[T]^{2}$.
Proof. By Corollary 3.5, T is injective and, since $\operatorname{dim} \mathscr{H}<\infty,[T]>0$. The desired conclusion follows from Theorem 3.10.

References

[1] C. Chen and F. Lu, 'Linear maps preserving orthogonality', Ann. Funct. Anal. 6(4) (2015), 70-76.
[2] J. Chmieliński, 'Linear mappings approximately preserving orthogonality', J. Math. Anal. Appl. 304(1) (2005), 158-169.
[3] J. Chmieliński, 'Stability of angle-preserving mappings on the plane', Math. Inequal. Appl. 8(3) (2005), 497-503.
[4] J. Chmieliński, R. Łukasik and P. Wójcik, 'On the stability of the orthogonality equation and the orthogonality-preserving property with two unknown functions', Banach J. Math. Anal. 10(4) (2016), 828-847.
[5] D. Koldobsky, 'Operators preserving orthogonality are isometries', Proc. Roy. Soc. Edinburgh Sect. A 123(5) (1993), 835-837.
[6] A. V. Kuźminykh, 'Maps which almost preserve angles', Sib. Math. J. 29(4) (1988), 593-598.
[7] A. Turnšek, 'On mappings approximately preserving orthogonality', J. Math. Anal. Appl. 336(1) (2007), 625-631.
[8] P. Wójcik, Operators Preserving and Approximately Preserving Orthogonality and Similar Relations, Doctoral Dissertation, Katowice, 2013 (in Polish).
[9] P. Wójcik, 'On mappings approximately transferring relations in finite-dimensional normed spaces', Linear Algebra Appl. 460 (2014), 125-135.
[10] P. Wójcik, 'On certain basis connected with operator and its applications', J. Math. Anal. Appl. 423(2) (2015), 1320-1329.
[11] P. Wójcik, 'Orthogonality of compact operators', Expo. Math. 35 (2017), 86-94.
[12] A. Zamani, M. S. Moslehian and M. Frank, 'Angle preserving mappings', Z. Anal. Anwend. 34 (2015), 485-500.
[13] Y. Zhang, Y. Chen, D. Hadwin and L. Kong, 'AOP mappings and the distance to the scalar multiples of isometries', J. Math. Anal. Appl. 431(2) (2015), 1275-1284.

MOHAMMAD SAL MOSLEHIAN, Department of Pure Mathematics, Ferdowsi University of Mashhad, PO Box 1159, Mashhad 91775, Iran
e-mail: moslehian@um.ac.ir
ALI ZAMANI, Department of Mathematics, Farhangian University, Tehran, Iran
e-mail: zamani.ali85@yahoo.com
PAWEŁ WÓJCIK, Institute of Mathematics, Pedagogical University of Cracow, Podchorążych 2, 30-084 Kraków, Poland
e-mail: pawel.wojcik@up.krakow.pl

