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Abstract

We study linear mappings which preserve vectors at a specific angle. We introduce the concept of (ε, c)-
angle preserving mappings and define ε̂ (T, c) as the ‘smallest’ number ε for which T is an (ε, c)-angle
preserving mapping. We derive an exact formula for ε̂ (T, c) in terms of the norm ‖T‖ and the minimum
modulus [T ] of T . Finally, we characterise approximately angle preserving mappings.
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1. Introduction

Throughout this paper, H ,K denote real Hilbert spaces with dimensions greater
than or equal to two and B(H ,K ) denotes the Banach space of all bounded linear
mappings between the Hilbert spaces H and K . We write B(H ) for B(H ,H ).

As usual, vectors x, y ∈H are said to be orthogonal, x ⊥ y, if 〈x, y〉 = 0, where 〈., .〉
denotes the inner product of H . A mapping T : H −→K is called orthogonality
preserving if it preserves orthogonality, that is,

x ⊥ y =⇒ T x ⊥ Ty (x, y ∈H ).

Orthogonality preserving mappings may be nonlinear and discontinuous (see [2]).
Under the additional assumption of linearity, a mapping T is orthogonality preserving
if and only if it is a scalar multiple of an isometry, that is, T = γU, where U is an
isometry and γ ≥ 0 (see [5]).

It is natural to consider approximate orthogonality (ε-orthogonality), x ⊥ε y, defined
by |〈x, y〉| ≤ ε‖x‖ ‖y‖. For ε ≥ 1, it is clear that every pair of vectors are ε-orthogonal,
so the interesting case is when ε ∈ [0, 1).

A mapping T : H −→K is an approximately orthogonality preserving mapping,
or an ε-orthogonality preserving mapping, if

x ⊥ y =⇒ T x ⊥ε Ty (x, y ∈H ).
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Obviously, if ε = 0, then T is orthogonality preserving. A natural question is whether
a linear ε-orthogonality preserving mapping T must be close to a linear orthogonality
preserving mapping (see [1, 4, 7]).

In a Hilbert space H we can define a relation connected to the notion of angle.
Fix c ∈ (−1, 1). For x, y ∈H , we say that x ∠c y if 〈x, y〉 = c ‖x‖ ‖y‖. Thus, c = cos(α),
where α is the angle between x and y if x, y ∈H \ {0}.

A mapping T : H −→K is c-angle preserving if it preserves the angle c, that is,

x ∠c y =⇒ T x ∠c Ty (x, y ∈H ).

Angle preserving mappings may be far from linear and continuous. There is an
(infinite-dimensional) Euclidean space H and an injective map T : H −→H such
that the condition x ∠1/2 y implies that T x ∠1/2 Ty, while the map T is discontinuous
at all points (see [6, Remark 3]). A characterisation of angle preserving mappings on
finite-dimensional Euclidean spaces was obtained in [6] and Chmieliński [3] studied
stability of angle preserving mappings on the plane.

In the next section, we present some characterisations of linear mappings preserving
certain angles. We show (Theorem 2.4) that a nonzero linear map T is c-angle
preserving if and only if T is a scalar multiple of an isometry, generalising [2,
Theorem 1] and [12, Theorem 3.8].

Fix ε ∈ [0, 1) and define x ∠εc y by

|〈x, y〉 − c ‖x‖ ‖y‖| ≤ ε‖x‖ ‖y‖,

which is equivalent to c − ε 6 cosα 6 c + ε, where α is the angle between x and y. If
c = 0, then ∠0 =⊥ and ∠ε0 =⊥ε. It is easy to see that ∠c and ∠εc are weakly homogeneous
in the sense that x ∠c y ⇔ αx ∠c βy and x ∠εc y ⇔ αx ∠εc βy for all α, β ∈ R+. For
ε ≥ 1 + |c|, it is obvious that x ∠εc y for all x, y ∈H . Hence, we shall only consider
the case ε ∈ [0, 1 + |c|).

A mapping T : H −→K satisfying the condition

x ∠c y =⇒ T x ∠εc Ty (x, y ∈H )

is called an ε-approximate c-angle preserving mapping or (ε, c)-angle preserving
mapping.

Recently, angle preserving mappings have been studied in [8, 9] via an approach
different from ours. When H ,K are finite dimensional, the third author [9] proved
that for an arbitrary δ > 0 there exists ε > 0 such that for any linear (ε, c)-angle
preserving mapping T there exists a linear c-angle preserving mapping such that

‖T − S ‖ ≤ δmin{‖T‖, ‖S ‖}.

Our intention is to obtain a characterisation of approximate angle preserving
mappings. If 0 ≤ ε1 ≤ ε2 < 1 + |c| and T is an (ε1, c)-angle preserving mapping, then T
is also an (ε2, c)-angle preserving mapping. This fact motivates us to give the following
definition (see also [13]).
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Definition 1.1. Let c ∈ (−1, 1). For each map T : H −→K , let ε̂ (T, c) be the
‘smallest’ number ε such that T is (ε, c)-angle preserving, that is,

ε̂ (T, c) := inf{ε ∈ [0, 1 + |c|] : T is an (ε, c)-angle preserving mapping}.

Thus, ε̂ (T, c) = 1 + |c| whenever T is not an approximately c-angle preserving
mapping. Also, it is easy to see that ε̂ (T,−c) = ε̂ (T, c) = ε̂ (αT, c) for all α ∈ R \ {0}.

In the last section, we state some basic properties of the function ε̂ (., c). If
T ∈ B(H ,K ), then we derive an exact formula for ε̂ (T, c) in terms of the norm ‖T‖
and the minimum modulus [T ] of T . Here [T ] is the largest number m ≥ 0 such that
‖T x‖ ≥ m‖x‖ (x ∈H ). We use this formula to characterise the approximately c-angle
preserving mappings (Corollary 3.4) and show that every nonzero linear mapping T is
approximately c-angle preserving if and only if T is bounded below.

2. Linear mappings preserving angles

We start our work with the following lemmas. The first follows immediately from
the definition of the angle between vectors.

Lemma 2.1. Let c ∈ [0, 1). If x, y ∈H are such that ‖x‖ = ‖y‖ = 1 and x ⊥ y, then:

(i)
(
x +
√

1 + c/1 − cy
)
∠c

(
−x +

√
1 + c/1 − cy

)
;

(ii)
(
x +
√

1 − c/1 + cy
)
∠c

(
x −
√

1 − c/1 + cy
)
.

Lemma 2.2 [10, Theorem 2.3]. Let T ∈ B(H ,K ) be an injective linear map. Suppose
that dim H = n. Then there exists an orthonormal basis {x1, x2, . . . , xn} for H such
that

[T ] = ‖T x1‖, ‖T x2‖ = ‖T‖ and T xi ⊥ T x j (1 ≤ i , j ≤ n).

Corollary 2.3. Let T : H −→K be a nonzero injective linear map. Suppose that
unit vectors x, y ∈H are linearly independent. Then there exist unit vectors x1, x2

such that

x1 ⊥ x2, T x1 ⊥ T x2, ‖T x1‖ ≤ ‖T x‖ ≤ ‖T x2‖ and ‖T x1‖ ≤ ‖Ty‖ ≤ ‖T x2‖.

We are now ready to characterise the c-angle preserving mappings. The following
result is a generalisation of [2, Theorem 1].

Theorem 2.4. Let T : H −→K be a nonzero linear map and let c ∈ (−1, 1). Then
the following statements are equivalent:

(i) x ∠c y =⇒ T x ∠c Ty (x, y ∈H );
(ii) there exists γ > 0 such that ‖T x‖ = γ‖x‖ (x ∈H ).

Proof. The implication (ii)⇒(i) follows from the polarisation formula. The
implication (i)⇒(ii) follows from a more general theorem (see Corollary 3.5). �

https://doi.org/10.1017/S0004972718001430 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718001430


488 M. S. Moslehian, A. Zamani and P. Wójcik [4]

The following example shows that Theorem 2.4 fails if the assumption of linearity
is dropped. Nonlinear mappings satisfying x ∠c y =⇒ T x ∠c Ty (x, y ∈H ) may be
very strange and even noncontinuous.

Example 2.5. Let c ∈ (−1,1). Let ϕ : H → R be a fixed nonvanishing function. Define
the mapping T : H −→H by T (x) := ϕ(x)·x. Then x ∠c y =⇒ T x ∠c Ty for all
x, y ∈H . If ϕ is not continuous, then T clearly is not continuous. In particular, T
is clearly not a similarity.

Taking K = H and T = Id : (H , 〈., .〉1) −→ (H , 〈., .〉2), the identity map, we
obtain the following result from Theorem 2.4.

Corollary 2.6. Let c ∈ (−1, 1). Suppose that H is a vector space equipped with
two (complete) inner products 〈., .〉1, 〈., .〉2 generating the norms ‖.‖1, ‖.‖2 and c-angle
relations ∠c,1 , ∠c,2 , respectively. Then the following conditions are equivalent:

(i) there exists γ > 0 such that ‖x‖2 = γ‖x‖1 (x ∈H );
(ii) x ∠c,1 y =⇒ x ∠c,2 y (x, y ∈H );
(iii) sup{|〈x, y〉2/‖x‖2 ‖y‖2 − c| : x ∠c,1 y, x, y ∈H \ {0}} = 0.

Corollary 2.7. Let T ∈ B(H ,K ) be a bijective linear map and let c ∈ (−1, 1). Then
the following statements are equivalent:

(i) x ∠c y =⇒ T x ∠c Ty (x, y ∈H );
(ii) ‖TS T−1‖ ≤ ‖S ‖ for all invertible linear mappings S ∈ B(H ).

Proof. The implication (i)⇒(ii) follows immediately from Theorem 2.4.
(ii)⇒(i). Suppose that (ii) holds. For every ε > 0,

‖εI + T (x ⊗ y)T−1‖ = ‖T (εI + x ⊗ y)T−1‖ ≤ ‖εI + x ⊗ y‖ (x, y ∈H ).

Here, x ⊗ y denotes the rank-one operator in B(H ) defined by (x ⊗ y)(z) := 〈z, y〉x for
z ∈H . Letting ε→ 0+ yields

‖T (x ⊗ y)T−1‖ ≤ ‖x ⊗ y‖ (x, y ∈H ).

This implies that ‖T‖ ‖T−1‖ ≤ 1. Hence,

‖T‖ ‖x‖ ≤
‖x‖
‖T−1‖

≤ ‖T x‖ ≤ ‖T‖ ‖x‖ (x ∈H ),

which gives
‖T x‖ = ‖T‖ ‖x‖ (x ∈H ).

Now, the equivalence (i)⇔(ii) of Theorem 2.4 gives (i). �
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3. Approximately angle preserving mappings

Our aim in this section is to characterise approximately angle preserving mappings.
The following lemma follows immediately from Definition 1.1.

Lemma 3.1. Let T : H −→K be a linear map and let c ∈ (−1, 1). Then the following
statements hold:

(i) ε̂ (T, c) = sup{|〈T x,Ty〉/‖T x‖ ‖Ty‖ − c| : x ∠c y, x, y ∈H \ {0}};
(ii) ε̂ (T, c) = sup{|〈T x,Ty〉/‖T x‖ ‖Ty‖ − c| : x ∠c y, ‖x‖ = ‖y‖ = 1, x, y ∈H }.

Our next theorem is a generalisation of [13, Lemma 2.2].

Theorem 3.2. Let T : H −→K be a nonzero linear map and let c ∈ (−1, 1). If
[T ] = 0, then ε̂ (T, c) = 1 + |c|.

Proof. Since ε̂ (T,−c) = ε̂ (T, c), we may assume that c ∈ [0,1). We consider two cases.

Case 1. T is not injective.
There exists a subspace H1 such that 2 ≤ dim H1 < ∞ and T |H1 is not injective,

that is, {0} , ker(T |H1 ) ,H1. (Indeed, if T is injective on every finite-dimensional
subspace, then T has to be injective.) Since the set ker(T |H1 ) is not dense, we can
find two vectors x ∈ (ker(T |H1 ))⊥, y ∈ ker(T |H1 ) such that ‖x‖ = ‖y‖ = 1 and x ⊥ y. By
Lemma 2.1(i),

∣∣∣∣∣∣
〈
T
(
x +

√
1+c
1−c y

)
,T

(
−x +

√
1+c
1−c y

)〉
∥∥∥T

(
x +

√
1+c
1−c y

)∥∥∥ ∥∥∥T
(
−x +

√
1+c
1−c y

)∥∥∥ − c

∣∣∣∣∣∣ =

∣∣∣∣∣−‖T x‖2

‖T x‖2
− c

∣∣∣∣∣ = 1 + c.

Thus, by Lemma 3.1(i), ε̂ (T, c) = 1 + c.

Case 2. T is injective.
Assume that ε̂ (T, c) < 1 + c. Then there exists ε0 < 1 + c such that T is an (ε0, c)-

angle preserving mapping. Consider arbitrary unit vectors x, y ∈H . If x and y are
linearly dependent, then

√
(1 − c)(1 + c − ε0)/(1 + c)(1 − c + ε0)‖Ty‖ ≤ ‖T x‖. If x and

y are linearly independent, then, by Corollary 2.3, there exist unit vectors x1, x2 such
that

x1 ⊥ x2, T x1 ⊥ T x2, ‖T x1‖ ≤ ‖T x‖ ≤ ‖T x2‖ and ‖T x1‖ ≤ ‖Ty‖ ≤ ‖T x2‖.
(3.1)

So, by Lemma 2.1(ii),

T
(
x1 +

√
1 − c
1 + c

x2

)
∠ε0

c T
(
x1 −

√
1 − c
1 + c

x2

)
.
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Put u = x1 +
√

1 − c/1 + cx2 and v = x1 −
√

1 − c/1 + cx2. Then

−‖T x1‖
2 +

1 − c
1 + c

‖T x2‖
2 + c

(
‖T x1‖

2 +
1 − c
1 + c

‖T x2‖
2
)

≤

∣∣∣∣∣‖T x1‖
2 −

1 − c
1 + c

‖T x2‖
2 − c

(
‖T x1‖

2 +
1 − c
1 + c

‖T x2‖
2
)∣∣∣∣∣

= |〈Tu,Tv〉 − c‖Tu‖ ‖Tv‖|

≤ ε0‖Tu‖ ‖Tv‖

= ε0

∥∥∥∥∥T
(
x1 +

√
1 − c
1 + c

x2

)∥∥∥∥∥ ∥∥∥∥∥T
(
x1 −

√
1 − c
1 + c

x2

)∥∥∥∥∥
≤ ε0

(
‖T x1‖

2 +
1 − c
1 + c

‖T x2‖
2
)
.

Hence,

−‖T x1‖
2 +

1 − c
1 + c

‖T x2‖
2 + c

(
‖T x1‖

2 +
1 − c
1 + c

‖T x2‖
2
)
≤ ε0

(
‖T x1‖

2 +
1 − c
1 + c

‖T x2‖
2
)

or, equivalently, √
(1 − c)(1 + c − ε0)
(1 + c)(1 − c + ε0)

‖T x2‖ ≤ ‖T x1‖. (3.2)

By combining (3.1) and (3.2),√
(1 − c)(1 + c − ε0)
(1 + c)(1 − c + ε0)

‖Ty‖ ≤

√
(1 − c)(1 + c − ε0)
(1 + c)(1 − c + ε0)

‖T x2‖ ≤ ‖T x1‖ ≤ ‖T x‖.

By passing to the supremum over y and to the infimum over x in the above inequality,
we obtain

√
(1 − c)(1 + c − ε0)/(1 + c)(1 − c + ε0)‖T‖ ≤ [T ]. Since ‖T‖ > 0 and

[T ] = 0, this yields ε0 = 1 + c. This contradiction shows that ε̂ (T, c) = 1 + c. �

Next, we formulate one of our main results.

Theorem 3.3. Let c ∈ (−1, 1). Suppose that T ∈ B(H ,K ) and [T ] , 0. Then

ε̂ (T, c) =
(1 − |c|2)(‖T‖2 − [T ]2)

(1 + |c|)‖T‖2 + (1 − |c|)[T ]2 .

Proof. We may assume that c ∈ [0, 1). Since [T ] > 0, there exist unit vectors x1, x2

such that

x1 ⊥ x2, T x1 ⊥ T x2, [T ] = ‖T x1‖ and ‖T x2‖ = ‖T‖. (3.3)

It follows from Lemma 2.1(ii) that
(
x2 +

√
(1 − c)/(1 + c)x1

)
∠c

(
x2 −

√
(1 − c)/(1 + c)x1

)
.
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Now, let us put u = x2 +
√

(1 − c)/(1 + c)x1 and v = x2 −
√

(1 − c)/(1 + c)x1. By (3.3),∣∣∣∣∣ 〈Tu,Tv〉
‖Tu‖ ‖Tv‖

− c
∣∣∣∣∣ =

∣∣∣∣∣‖T x2‖
2 − 1−c

1+c‖T x1‖
2

‖T x2‖
2 + 1−c

1+c‖T x1‖
2
− c

∣∣∣∣∣
=

∣∣∣∣∣‖T‖2 − 1−c
1+c [T ]2

‖T‖2 + 1−c
1+c [T ]2

− c
∣∣∣∣∣

=

∣∣∣∣∣ (1 + c)‖T‖2 − (1 − c)[T ]2

(1 + c)‖T‖2 + (1 − c)[T ]2 − c
∣∣∣∣∣

=
(1 − c2)(‖T‖2 − [T ]2)

(1 + c)‖T‖2 + (1 − c)[T ]2 .

By Lemma 3.1(i),

ε̂ (T, c) ≥
(1 − c2)(‖T‖2 − [T ]2)

(1 + c)‖T‖2 + (1 − c)[T ]2 . (3.4)

On the other hand, let x, y ∈H be such that x ∠c y and ‖x‖ = ‖y‖ = 1. Then∥∥∥∥∥ T x
‖T x‖

+
Ty
‖Ty‖

∥∥∥∥∥2
=

∥∥∥∥∥T
( x
‖T x‖

+
y
‖Ty‖

)∥∥∥∥∥2

≤ ‖T‖2
∥∥∥∥∥ x
‖T x‖

+
y
‖Ty‖

∥∥∥∥∥2

= ‖T‖2
( 1
‖T x‖2

+
1
‖Ty‖2

+
2c

‖T x‖ ‖Ty‖

)
,

whence ∥∥∥∥∥ T x
‖T x‖

+
Ty
‖Ty‖

∥∥∥∥∥2
≤ ‖T‖2

( 1
‖T x‖2

+
1
‖Ty‖2

+
2c

‖T x‖ ‖Ty‖

)
. (3.5)

Similarly, ∥∥∥∥∥ T x
‖T x‖

−
Ty
‖Ty‖

∥∥∥∥∥2
≥ [T ]2

( 1
‖T x‖2

+
1
‖Ty‖2

−
2c

‖T x‖ ‖Ty‖

)
and ∥∥∥∥∥ T x

‖T x‖
−

Ty
‖Ty‖

∥∥∥∥∥2
≤ ‖T‖2

( 1
‖T x‖2

+
1
‖Ty‖2

−
2c

‖T x‖ ‖Ty‖

)
.

Now, let ∥∥∥∥∥ T x
‖T x‖

−
Ty
‖Ty‖

∥∥∥∥∥2
= µ[T ]2

( 1
‖T x‖2

+
1
‖Ty‖2

−
2c

‖T x‖ ‖Ty‖

)
(3.6)
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with 1 ≤ µ ≤ ‖T‖/[T ]. It follows from (3.5) and (3.6) that

4 =

∥∥∥∥∥ T x
‖T x‖

+
Ty
‖Ty‖

∥∥∥∥∥2
+

∥∥∥∥∥ T x
‖T x‖

−
Ty
‖Ty‖

∥∥∥∥∥2

≤ (‖T‖2 + µ[T ]2)
( 1
‖T x‖2

+
1
‖Ty‖2

)
+ (‖T‖2 − µ[T ]2)

2c
‖T x‖ ‖Ty‖

≤ (‖T‖2 + µ[T ]2)
( 1
‖T x‖2

+
1
‖Ty‖2

)
+ c(‖T‖2 − µ[T ]2)

( 1
‖T x‖2

+
1
‖Ty‖2

)
=

(
(1 + c)‖T‖2 + (1 − c)µ[T ]2

)( 1
‖T x‖2

+
1
‖Ty‖2

)
.

Hence,

1
‖T x‖2

+
1
‖Ty‖2

≥
4

(1 + c)‖T‖2 + (1 − c)µ[T ]2 . (3.7)

From (3.6) and (3.7),〈 T x
‖T x‖

,
Ty
‖Ty‖

〉
− c = 1 − c −

1
2

∥∥∥∥∥ T x
‖T x‖

−
Ty
‖Ty‖

∥∥∥∥∥2

= 1 − c +
µc[T ]2

‖T x‖ ‖Ty‖
−

1
2
µ[T ]2

( 1
‖T x‖2

+
1
‖Ty‖2

)
≤ 1 − c +

1
2
µc[T ]2

( 1
‖T x‖2

+
1
‖Ty‖2

)
−

1
2
µ[T ]2

( 1
‖T x‖2

+
1
‖Ty‖2

)
= 1 − c −

1
2

(1 − c)µ[T ]2
( 1
‖T x‖2

+
1
‖Ty‖2

)
≤ 1 − c −

2(1 − c)µ[T ]2

(1 + c)‖T‖2 + (1 − c)µ[T ]2

=
(1 − c2)‖T‖2 − (1 − c2)µ[T ]2

(1 + c)‖T‖2 + (1 − c)µ[T ]2 (since 1 ≤ µ)

≤
(1 − c2)(‖T‖2 − [T ]2)

(1 + c)‖T‖2 + (1 − c)[T ]2 .

Hence,

sup
{∣∣∣∣∣ 〈T x,Ty〉
‖T x‖ |Ty‖

− c
∣∣∣∣∣ : x ∠c y, ‖x‖ = ‖y‖ = 1, x, y ∈H

}
≤

(1 − c2)(‖T‖2 − [T ]2)
(1 + c)‖T‖2 + (1 − c)[T ]2 .

From Lemma 3.1(ii),

ε̂ (T, c) ≤
(1 − c2)(‖T‖2 − [T ]2)

(1 + c)‖T‖2 + (1 − c)[T ]2 . (3.8)

Combining (3.4) and (3.8) gives the formula for ε̂ (T, c). �

As an immediate consequence of Theorem 3.3, we get a characterisation of the
(ε, c)-angle preserving mappings.
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Corollary 3.4. Suppose that T ∈ B(H ,K ) \ {0} and c ∈ (−1, 1). Then there exists
an ε ∈ [0, 1 + |c|) such that T is an (ε, c)-angle preserving mapping if and only if T is
bounded below.

Corollary 3.5. Let c ∈ (−1, 1) and ε ∈ [0, 1 + |c|). Suppose that T ∈ B(H ,K ) \ {0} is
an (ε, c)-angle preserving mapping. Then T is injective and the following statements
hold:

(i)
√

(1 + |c|)(1 − |c| − ε)/(1 − |c|)(1 + |c| + ε)‖T‖ ≤ [T ];
(ii)

√
(1 + |c|)(1 − |c| − ε)/(1 − |c|)(1 + |c| + ε)‖T x‖ ‖y‖ ≤ ‖Ty‖ ‖x‖ (x, y ∈H );

(iii)
√

(1 + |c|)(1 − |c| − ε)/(1 − |c|)(1 + |c| + ε)‖T‖ ‖x‖ ≤ ‖T x‖ ≤ ‖T‖ ‖x‖ (x ∈H ).

Proof. Since T is an (ε, c)-angle preserving mapping, we have ε̂ (T, c) < 1 + |c|.
Theorem 3.2 ensures that T is injective. From Theorem 3.3,

ε̂ (T, c) =
(1 − |c|2)(‖T‖2 − [T ]2)

(1 + |c|)‖T‖2 + (1 − |c|)[T ]2 ≤ ε

or, equivalently, √
(1 + |c|)(1 − |c| − ε)
(1 − |c|)(1 + |c| + ε)

‖T‖ ≤ [T ].

From the above inequality, for x, y ∈H ,√
(1 + |c|)(1 − |c| − ε)
(1 − |c|)(1 + |c| + ε)

‖T x‖ ‖y‖ ≤

√
(1 + |c|)(1 − |c| − ε)
(1 − |c|)(1 + |c| + ε)

‖T‖ ‖x‖ ‖y‖

≤ [T ] ‖y‖ ‖x‖ ≤ ‖Ty‖ ‖x‖

and √
(1 + |c|)(1 − |c| − ε)
(1 − |c|)(1 + |c| + ε)

‖T‖ ‖x‖ ≤ [T ] ‖x‖ ≤ ‖T x‖ ≤ ‖T‖ ‖x‖. �

Corollary 3.6. Let c ∈ (−1, 1). For T, S ∈ B(H ) \ {0}, the following statements hold:

(i) if T, S are left invertible, then ε̂ (S T, c) < 1 + |c|;
(ii) if S is a scalar multiple of an isometry, then ε̂ (S T, c) = ε̂ (T, c);
(iii) if T−1 ∈ B(H ) \ {0}, then ε̂ (T−1, c) = ε̂ (T, c).

Proof. (i) Since T and S are left invertible, [TS ] ≥ [T ] [S ] > 0 and, by Theorem 3.3,
ε̂ (TS , c) < 1 + |c|.

(ii) This follows because ‖S ‖ = [S ], ‖S T‖ = ‖S ‖ ‖T‖ and [S T ] = [S ] [T ].
(iii) To see this, note that ‖T−1‖ = 1/[T ] and [T−1] = 1/‖T‖. �

The next corollary gives another property of the function ε̂ (., c).

Corollary 3.7. Let c ∈ (−1, 1). The function T 7→ ε̂ (T, c) is norm continuous at each
T ∈ B(H ,K ) with [T ] > 0.
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Proof. Suppose that Tn ∈ B(H ,K ) are such that limn→∞ ‖Tn − T‖ = 0. Since T , 0,
we may assume that Tn , 0 for all n ∈ N. Then

lim
n→∞
‖Tn‖ = ‖T‖, lim

n→∞
[Tn] = [T ] and (1 + c)‖Tn‖

2 + (1 − c)[Tn]2 , 0.

Thus, by Theorem 3.3,

lim
n→∞

ε̂ (Tn, c) = lim
n→∞

(1 − |c|2)(‖Tn‖
2 − [Tn]2)

(1 + |c|)‖Tn‖
2 + (1 − |c|)[Tn]2 =

(1 − |c|2)(‖T‖2 − [T ]2)
(1 + |c|)‖T‖2 + (1 − |c|)[T ]2

= ε̂ (T, c). �

Remark 3.8. The function ε̂ (., c) is not continuous at 0 even in the case c = 0. Take any
mapping T which is not orthogonality preserving. Thus, ε̂ (T, c) , 0. Let Tn = T/n.
Then limn→∞ ‖Tn‖ = 0, but, for every n, ε̂ (Tn, c) = ε̂ (T, c) , 0 (see [13, Remark 2.7]).

Next, we prove that every injective operator preserves approximate orthogonality.

Theorem 3.9. Suppose that T ∈ B(H ,K ) and 0 < [T ] ≤ ‖T‖. Then T satisfies

x ⊥ y =⇒ T x ⊥εT Ty (x, y ∈H )

with εT = 1 − [T ]2/‖T‖2.

Proof. Fix two arbitrary nonzero vectors x, y ∈H such that x ⊥ y. Since 0 < [T ], it
follows that T is injective. From Corollary 2.3, there exist unit vectors a, b ∈ span{x, y}
such that

a ⊥ b, Ta ⊥ Tb, ‖Ta‖ ≤ ‖T x‖ ≤ ‖Tb‖ and ‖Ta‖ ≤ ‖Ty‖ ≤ ‖Tb‖. (3.9)

Moreover, there exist α, β, γ, δ ∈ R such that x = αa + βb, y = γa + δb. Since x⊥y,

αγ = −βδ. (3.10)

Furthermore, T x = αTa + βTb and Ty = γTa + δTb. If αβγδ = 0, then it is easy to see
that 〈T x,Ty〉 = 0 and, in particular, T x⊥εT Ty. So, now suppose that αβγδ , 0. Denote
θ := α/β = −δ/γ. It follows from (3.9) and (3.10) that

|〈T x,Ty〉|
‖T x‖ ‖Ty‖

=
|αγ‖Ta‖2 + βδ‖Tb‖2|√

|α|2‖Ta‖2 + | β|2‖Tb‖2
√
|γ|2‖Ta‖2 + |δ|2‖Tb‖2

=
(‖Tb‖2 − ‖Ta‖2)|αγ|√

|α|2‖Ta‖2 + | β|2‖Tb‖2
√
|γ|2‖Ta‖2 + |δ|2‖Tb‖2

=
1 − ‖Ta‖2

‖Tb‖2√
‖Ta‖2
‖Tb‖2 + 1

|θ|2

√
‖Ta‖2
‖Tb‖2 +|θ|2

≤
1 − ‖Ta‖2

‖Tb‖2√
‖Ta‖4
‖Tb‖4 + 1

≤ 1 −
‖Ta‖2

‖Tb‖2
≤ 1 −

[T ]2

‖T‖2
= εT ,

whence |〈T x,Ty〉| ≤ εT‖T x‖ ‖Ty‖. Thus, T x⊥εT Ty. �
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The following result can be considered an extension of Theorem 3.9. More
precisely, we show that every injective operator approximately preserves the inner
product.

Theorem 3.10. Assume that dim H <∞. Suppose that T ∈B(H ,K ) and 0<[T ].
Then there exists γ such that T satisfies

|〈T x,Ty〉 − γ〈x, y〉| ≤
(
1 −

[T ]2

‖T‖2

)
‖T‖2 ‖x‖ ‖y‖ (x, y ∈H ). (3.11)

Moreover, [T ]2 ≤ |γ| ≤ 2‖T‖2 − [T ]2.

Proof. Combining Theorem 3.9 and [11, Theorem 5.5], we immediately get (3.11).
Fix u∈H such that ‖u‖=1. Putting u in place of x and y in (3.11) gives |‖Tu‖2−γ|≤
(1 − [T ]2/‖T‖2) ‖T‖2. Choosing u as an arbitrary unit vector and passing to the
supremum and infimum over ‖u‖=1 gives [T ]2≤|γ|≤2‖T‖2−[T ]2. �

To end this paper, we show that in the finite-dimensional case Corollary 3.5
can be strengthened. Indeed, as an immediate consequence of Corollary 3.5 and
Theorem 3.10, we obtain the following result.

Corollary 3.11. Let c ∈ (−1, 1) and ε ∈ [0, 1 + |c|). Suppose that T ∈ B(H ,K ) \ {0}
is an (ε, c)-angle preserving mapping. Assume that dim H <∞. Then there exists γ
such that T satisfies

|〈T x,Ty〉 − γ〈x, y〉| ≤
(
1 −

(1 + |c|)(1 − |c| − ε)
(1 − |c|)(1 + |c| + ε)

)
‖T‖2 ‖x‖ ‖y‖ (x, y ∈H ).

Moreover, [T ]2 ≤ |γ| ≤ 2‖T‖2 − [T ]2.

Proof. By Corollary 3.5, T is injective and, since dim H <∞, [T ] > 0. The desired
conclusion follows from Theorem 3.10. �
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[11] P. Wójcik, ‘Orthogonality of compact operators’, Expo. Math. 35 (2017), 86–94.
[12] A. Zamani, M. S. Moslehian and M. Frank, ‘Angle preserving mappings’, Z. Anal. Anwend. 34

(2015), 485–500.
[13] Y. Zhang, Y. Chen, D. Hadwin and L. Kong, ‘AOP mappings and the distance to the scalar

multiples of isometries’, J. Math. Anal. Appl. 431(2) (2015), 1275–1284.

MOHAMMAD SAL MOSLEHIAN, Department of Pure Mathematics,
Ferdowsi University of Mashhad, PO Box 1159, Mashhad 91775, Iran
e-mail: moslehian@um.ac.ir

ALI ZAMANI, Department of Mathematics,
Farhangian University, Tehran, Iran
e-mail: zamani.ali85@yahoo.com
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