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A Companion to Quantum Groups
Bart Vlaar

7.1 Introduction

Note that the category of modules of a bialgebra has a tensor product structure.
Given two modules V,W , in general it is not clear that V ⊗W is isomorphic
to W ⊗V as modules. If the bialgebra possesses a quasitriangular structure,
i.e. a universal R-matrix, then there exists a natural isomorphism which is
compatible with the tensor structure. Quantum groups form a rich family of
(non-commutative and non-cocommutative) quasitriangular bialgebras which
in some sense deform associative algebras naturally associated with certain
groups and Lie algebras.

Quantum groups were discovered in the 1980s in the context of quantum
integrability (simultaneous diagonalizability of commuting Hamiltonians via
solutions of the Yang–Baxter equation), initially in [27]. Their theory is a vast
topic that has developed immensely in the last four decades. There are various
reasons why quantum groups are interesting: there are connections with low-
dimensional topology (e.g. representations of braid groups and construction of
quasi-invariants for knots, links, etc.), q-deformed harmonic analysis (closely
connected to the older theory of special functions depending on a deformation
parameter) and non-commutative geometry (the study of deformed algebras of
functions on algebraic groups).

It is difficult to give a precise definition of a quantum group that encom-
passes the various classes of examples which are known as such. Focusing
on deformations of cocommutative bialgebras, one may propose the following
“soft” definition, which will be our guide in these notes:

A quantum group is a non-commutative bialgebra depending on a
parameter that is
(1) quasitriangular for all values of the parameter and
(2) cocommutative only for special values of the parameter.
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We will showcase a special class of quantum groups: quantized enveloping
algebras Uqg, also known as Drinfeld–Jimbo quantum groups, and explain the
construction of the universal R-matrix. The representation theory of Uqg, if q
is not a root of unity, stays close to that of Ug, i.e. that of g, which is well
known. Unfortunately it is beyond the scope of this account to discuss in detail
other types of quantum groups (e.g. Yangians and RTT algebras, compact quan-
tum groups, bicrossproduct quantum groups) or delve very deep into particular
advanced branches and applications of this theory such as: Lie bialgebra quan-
tization; diagonalization of commuting transfer matrices; the definition of knot
(quasi-)invariants; root-of-unity phenomena; canonical bases (crystal bases)
and the q→ 0 limit; Knizhnik–Zamolodchikov equations. Standard textbook
resources focusing on quantum groups are for instance [7, 17, 23, 24, 30, 32].
For an account tailored to the application of quantum groups to quantum in-
tegrability. We recommend the lecture notes [36] and the book [19]. Note that
quantum groups have applications in mathematical physics beyond integrabil-
ity; one can in particular point out their role in quantum gravity (see [31]).

We hope that these notes provide the reader with a basic working knowledge
of quantum groups and spur them on to a deeper investigation in this rich vari-
ety of topics. For most of these lecture notes, we assume fairly little background
knowledge beyond abstract linear algebra and basic notions of group theory and
representation theory, although some familiarity with Lie theory and category
theory is helpful.

7.1.1 Outline

First of all we will review bialgebras, Hopf algebras and their representations
(and introduce notation that we will use throughout this chapter) in Section
7.2. We discuss quasitriangular bialgebras and the induced braiding on their
categories of representations in Section 7.3. In Section 7.4 we discuss their
quantizations, Drinfeld–Jimbo quantum groups Uqg, and in Section 7.5 the qu-
asitriangular structure of Uqg; in these sections we pay particular attention to
the special case Uqsl2. We end the notes with a brief investigation in Section 7.6
into more recent developments involving quasitriangularity for special types of
subalgebras of bialgebras, and the associated cylindrically braided structure on
the category of modules.

7.1.2 Acknowledgements

The author was supported by EPSRC grant EP/R009465/1. The lecture series
associated with these notes, part of the LMS Autumn Algebra School 2020,
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7.2 Bialgebras

In this section we recall some basic theory surrounding bialgebras and monoidal
categories, setting the stage for the next section which deals with quasitriangu-
lar bialgebras and braided monoidal categories. For more background on some
of this material the reader can consult for instance [7, Sec. 4.1] or the lecture
notes [39].

7.2.1 Notation

We fix an arbitrary1 field k; linear structures will always be with respect to k,
which we may suppress from the notation. In this way ⊗ = ⊗k is the tensor
product over k, Hom(V,W ) = Homk(V,W ) is the vector space of k-linear maps
from V to W and End(V ) = Endk(V ) is the algebra of k-linear maps on V .

Let V,W be vector spaces. We denote the identity map on V by idV . We
denote by σV,W the unique linear map from V ⊗W to W ⊗V which sends v⊗w
to w⊗ v for all v ∈V,w ∈W . If there is no cause for confusion, we will simply
write id instead of idV and σ instead of σV,V .

7.2.2 Algebras

We consider an algebra A over k, i.e. a vector space that possesses a bilinear
multiplication map: A×A→ A which is compatible with scalar multiplication:
λ (ab) = (λa)b = a(λb) for all λ ∈ k and a,b ∈ A. Note that since the multi-
plication map is bilinear we can view it as a linear map m : A⊗A→ A. We will
always2 assume that A is associative, i.e.

m◦ (m⊗ idA) = m◦ (idA⊗m) ∈ Hom(A,A⊗A⊗A), (7.2.1)

and unital, i.e. there is a linear map η : k→ A such that

m◦ (η⊗ idA) = idA = m◦ (idA⊗η) ∈ End(A,A), (7.2.2)

where we have used that k⊗A∼= A∼= A⊗k. Note that such η must be injective
and hence we can, and shall, identify k with η(k)⊆ A. In particular, there is an

1 Later we will assume that k is of characteristic zero and algebraically closed.
2 Note that Lie algebras are not algebras using this restricted definition.
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element η(1) ∈ A, which we simply denoted by 1, with the property 1a = a1 =

a for all a ∈ A (conversely, given such an element, there is a unique linear map
η : k→ A sending 1 ∈ k to 1 ∈ A).

Let A and B be algebras with multiplications mA, mB and unit maps ηA,
ηB, respectively. An algebra morphism from A to B is a linear map f : A→ B
such that

mB ◦ ( f ⊗ f ) = f ◦mA ∈ Hom(A⊗A,B), ηB = f ◦ηA ∈ Hom(k,B).

Also, A⊗B is an algebra in a natural way, with multiplication

mA⊗B := (mA⊗mB)◦ (idA⊗σA,B⊗ idB)

∈ Hom(A⊗B⊗A⊗B,A⊗B)
(7.2.3)

(note that the swap σ is really necessary here) and unit map

ηA⊗B := ηA⊗ηB ∈ Hom(k,A⊗B). (7.2.4)

Naturally associated to an algebra A are two groups: the subset A× of in-
vertible elements and the set of algebra automorphisms Autalg(A) (invertible
algebra morphisms from A to itself). For any x ∈ A× we denote by Ad(x) the
automorphism of A given by conjugation by x: Ad(x)(a) = xax−1 for all a ∈ A;
thus we obtain a group morphism Ad from A× to Autalg(A).

7.2.3 Algebra Representations

In general, a good way to study (or “test”) A is by looking at representations
of A. A representation of A on V is an algebra morphism πV : A→ End(V )

(more loosely, we also say that V carries a representation of A if such a πV

exists). For all a ∈ A and v ∈V the element πV (a)(v) depends linearly on both
a and v and is thus a linear map on the tensor product A⊗V . Accordingly,
we say that V has a (left) A-module structure consisting of the left action map
λV : A⊗V →V defined by λV (a⊗v) = πV (a)(v), which is sometimes denoted
a · v if the representation or the module structure is clear from the context.

If V,W are left A-modules, then we call a linear map ϕ : V → W an A-
intertwiner (or A-module morphism) if ϕ commutes with the action of A, i.e. if
the following diagram commutes for all a ∈ A:

V
ϕ //

πV (a) ��

W

πW (a)
��

V
ϕ

// W.

(7.2.5)
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7.2.4 Tensor Products of Modules

If V and W are left A-modules, then V ⊗W is not automatically an A-module,
but merely an A⊗ A-module, with representation map πV ⊗ πW : A⊗ A →
End(V )⊗End(W )⊆ End(V ⊗W ).

Example 7.1 Let G be a group and consider the group algebra kG (the k-linear
space with basis given by the group elements, which we turn into an algebra by
extending the group multiplication linearly). Note that group representations of
G are in a natural 1-to-1 correspondence with algebra representations of kG; if
π : G→GL(V ) is a group representation then the corresponding algebra repre-
sentation from kG on V is denoted by the same symbol. If we have two group
representations πV : G→ GL(V ) and πW : G→ GL(W ) then V ⊗W automati-
cally carries a representation πV⊗W : G→ GL(V ⊗W ) defined by

πV⊗W (g)(v⊗w) := πV (g)(v)⊗πW (g)(w) (7.2.6)

for all g ∈ G, v ∈ V and w ∈W . Viewing πV , πW and πV⊗W as algebra repre-
sentations, note that we have defined πV⊗W = (πV ⊗ πW ) ◦∆, where ∆ is the
algebra morphism form kG to kG⊗ kG uniquely determined by ∆(g) = g⊗ g
for all g ∈ G.

In general, a natural framework for constructing representations of A from
tensor products of representations of A arises whenever there is a distinguished
algebra morphism ∆ : A→ A⊗A: in this case we immediately see that πV⊗W :=
(πV ⊗πW ) ◦∆ is an algebra morphism from A to End(V ⊗W ). In this way we
have related an additional structure on the representations of A to an additional
structure on A itself.

The simplest meaningful representations of A are 1-dimensional representa-
tions or characters, i.e. algebra morphisms from A to End(k)∼= k. To guarantee
the existence of such a representation, it is convenient to further extend the
structure on A given by ∆ by stipulating that we also have a distinguished alge-
bra morphism ε : A→ k.

Note that the new structure maps ∆ and ε are similar to m and η , respec-
tively, but go in the reverse direction. Therefore we call them coproduct (or
comultiplication) and counit (map).

7.2.5 Monoidal Categories

The notion of A-module is naturally bolted onto a more basic notion of vector
space, to which is associated a notion of taking tensor products and a special
vector space k, which acts as a neutral element when taking tensor products.
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We want to constrain the structure maps ∆, ε so that tensor products of A-
modules and the special module k behave as tensor products of vector spaces
and the special vector space k. So we need to capture which properties of vector
spaces we wish to preserve.

Note that for all vector spaces U,V,W we have3

(U⊗V )⊗W ∼=U⊗ (V ⊗W ), k⊗V ∼=V ⊗ k ∼=V. (7.2.7)

These properties are reminiscent of the definition of a monoid, and we call a
category C a monoidal category (or tensor category) if there exists a bifunctor
⊗ : C×C→ C and a special object 1C that are abstractions of the tensor product
operation on vector spaces and the special vector space k. To flesh this out
precisely requires a bit more work; the precise definition of monoidal category4

is given for instance in [7, Sec. 5.1B]. In particular, the collection of k-linear
spaces together with the k-linear maps between them constitutes a monoidal
category, called Vect, with the monoidal structure given by the usual tensor
product of vector spaces and the vector space k.

The representations of our algebra A together with their intertwiners also
form a category, which we denote by Rep(A). Note that we have a forgetful
function For from Rep(A) to Vect, mapping each module to the underlying
vector space and each intertwiner to the underlying linear map. It is natural to
require of A that the isomorphisms in (7.2.7) are preserved when we interpret
them as statements about Rep(A). More precisely, we want For to become a
monoidal functor (i.e. it maps the tensor product of A-modules to the tensor
product of vector spaces). It gives rise to the following definition.

7.2.6 Bialgebras

Definition 7.2 An algebra A is called a bialgebra if there exist algebra mor-
phisms ∆ : A → A⊗ A and ε : A → k satisfying coassociativity and counit
axioms:

(∆⊗ idA)◦∆ = (idA⊗∆)◦∆ ∈ Hom(A,A⊗A⊗A), (7.2.8)

(ε⊗ idA)◦∆ = idA = (idA⊗ ε)◦∆ ∈ End(A). (7.2.9)

Remark A vector space A which possesses linear maps ∆ : A→ A⊗A and
ε : A→ k satisfying (7.2.8–7.2.9) is called a coalgebra. Bialgebras are at the

3 Here we are careful in writing isomorphisms instead of identities, since tensor products of
vector spaces are only defined up to isomorphism.

4 Often the terms monoidal category and tensor category are used interchangeably but in [7] the
terminology tensor category and quasitensor category correspond to what is commonly known
as a symmetric monoidal category and braided monoidal category, respectively.
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same time algebras and coalgebras in such a way that the two types of addi-
tional structures are compatible: the coalgebra structure maps ∆, ε are algebra
morphisms (equivalently, the algebra structure maps m, η are coalgebra mor-
phisms).

Before we study examples of bialgebras, we will develop the basic theory
further. If A is a bialgebra, the properties (7.2.8) and (7.2.9) guarantee that the
identities in (7.2.7) are identities of A-modules, so Rep(A) forms a monoidal
category. In fact, we have a somewhat stronger statement:

Theorem 7.3 ([e.g. 39, Prop. 1.1]) Let A be an algebra with multiplication
map m. Let ∆ : A→ A⊗A and ε : A→ k be algebra maps. Let ⊗ : Rep(A)×
Rep(A) → Rep(A) be the functor which associates to a pair of A-modules
(V,W ) a module, uniquely defined by stipulating that the underlying vector
space is the usual tensor product V ⊗W and the representation is

πV⊗W = (πV ⊗πW )◦∆ : A→ End(V )⊗End(W )⊆ End(V ⊗W ). (7.2.10)

Also let k be an A-module with representation πk = ε : A→ End(k) ∼= k. Then
(Rep(A),⊗,k) is a monoidal category with the same isomorphisms as Vect in
(7.2.7) if and only if (∆,ε) satisfies (7.2.8–7.2.9).

If B⊆ A is a subalgebra and ∆(B)⊆ B⊗B then we call B a subbialgebra of
A (as a consequence, B is a bialgebra in its own right). If A and B are bialge-
bras with coproducts ∆A, ∆B and counits εA, εB, respectively, then a bialgebra
morphism is an algebra morphism f : A→ B with the additional property

( f ⊗ f )◦∆A = ∆B ◦ f , εA = εB ◦ f . (7.2.11)

Let A be a bialgebra. In order to describe explicitly the A-module structure
of a tensor product of any (finite) number of A-modules, we can recursively
define iterated coproducts ∆(n) ∈ Hom(A,A⊗n) for n ∈ Z≥0 as follows:

∆
(0) = ε, ∆

(n+1) = (∆(n)⊗ id)◦∆ (7.2.12)

so that ∆(1) = id by (7.2.9) and hence ∆(2) = ∆. By virtue of (7.2.8), replacing
the recursion in (7.2.12) by ∆(n+1) = (id⊗∆(n)) ◦∆ for any or all n produces
the same linear maps ∆(n).

Remark Since ∆(n) maps into A⊗n, for a ∈ A and n ∈ Z>0 there exist (non-

unique) a(1)i ,a(2)i , . . . ,a(n)i ∈ A such that

∆
(n)(a) = ∑

i
a(1)i ⊗a(2)i ⊗·· ·⊗a(n)i . (7.2.13)
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This may be abbreviated to Sweedler notation:

∆
(n)(a) = ∑a(1)⊗a(2)⊗·· ·⊗a(n). (7.2.14)

For example, we may write (7.2.9) as ∑ε(a(1))a(2) = a = ∑a(1)ε(a(2)).

7.2.7 Commutativity and Cocommutativity

Let A be a bialgebra. The opposite bialgebra Aop is the bialgebra obtained from
A by replacing the multiplication map, say m : A⊗A→ A by mop := m◦σ . We
call A commutative if Aop = A, i.e. if mop = m (in other words the underlying
algebra is commutative).

We will be more interested in the co-opposite bialgebra Acop. It is the bialge-
bra obtained from A by replacing ∆ by ∆op := σ ◦∆. We call A cocommutative
if Acop = A, i.e. if ∆op = ∆. Note that if A is cocommutative then the monoidal
category Rep(A) is symmetric: for all V,W ∈ Rep(A) there is an A-intertwiner
cV,W from the object V ⊗W to the object W ⊗V such that cW,V cV,W = idV⊗W .
It is given by cV,W = σV,W . The fact that σV,W is an intertwiner is equivalent to
∆ = ∆op.

7.2.8 Antipodes and Hopf Algebras

Many bialgebras appearing “in nature” have an additional structure map called
antipode, which enriches the category of representations of such a bialgebra. To
define it, first let A and B be bialgebras with multiplications mA, mB, unit maps
ηA, ηB, coproducts ∆A, ∆B and counit maps εA, εB. The set of linear maps from
A to B, Hom(A,B), possesses a natural product structure called convolution
product, sending f ,g : A→ B to

f ∗g := mB ◦ ( f ⊗g)◦∆A : A→ B. (7.2.15)

It follows from the definition of bialgebra that (Hom(A,B),∗) is a monoid with
neutral element ηB ◦ εA : A→ B called the convolution monoid. Setting B = A
and suppressing subscripts, an antipode is a map S ∈ Hom(A,A) which is a
∗-inverse of id ∈ Hom(A,A). In other words, an antipode S satisfies

m◦ (S⊗ id)◦∆ = η ◦ ε = m◦ (id⊗S)◦∆. (7.2.16)

One can now combine the convolution monoid construction with uniqueness
of inverses to prove a slew of basic properties of antipodes. For proofs of the
following we refer for instance to [10, Sec. 4.2].

Lemma 7.4 Let A be a bialgebra with antipode S. Then
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1 S is unique;

2 S is a bialgebra morphism from A to (Aop)cop (and hence S2 is a bialgebra
endomorphism of A);

3 if S is invertible (with respect to composition) then S−1 is an antipode for
the bialgebras Aop and Acop;

4 if A is commutative or cocommutative then S is involutive;

5 if B is another bialgebra with antipode S′ and f : A→ B is a bialgebra
morphism, then S′ ◦ f = f ◦S.

Since we are interested in “deformations” of (co)commutative bialgebras,
considering Lemma 7.4 (4), it is natural to require that S is invertible (although
we have to relinquish involutiveness).

Definition 7.5 We call a bialgebra A a Hopf algebra if it has an antipode which
is invertible (with respect to composition).

7.2.9 Representations of Bialgebras and Hopf Algebras

We review some more standard terminology of the representation theory of
bialgebras. Let A be a bialgebra. Any vector space V automatically becomes
a left A-module if we set a · v = ε(a)v for all a ∈ A, v ∈ V . This is called the
trivial A-module structure on V .

The (left) regular representation of A is the A-module structure on A itself
given by left multiplication. If A is additionally a Hopf algebra, the antipode
also allows us to define the (left) adjoint representation of A on itself. Namely,
for all a,b ∈ A set, in terms of Sweedler notation,

ad(a)(b) := ∑a(1)bS(a(2)). (7.2.17)

It is a nice exercise to show that the map ad : A→ Endk(A) defined by this
assignment is indeed an algebra morphism.

If A is a Hopf algebra then the dual V ∗ = Hom(V,k) of V ∈Rep(A) becomes
an A-module by setting

(a · f )(v) = f (S(a) · v) for all a ∈ A, f ∈V ∗, v ∈V. (7.2.18)

As a consequence of the first equation of (7.2.16), this action of A on V ∗ implies
that the canonical linear map: V ∗⊗V → k is an A-intertwiner.

Note that S can be replaced by S−1 in (7.2.18), requiring us to distinguish
between the right-dual V ∗ and the left-dual ∗V of A-modules. A natural condi-
tion on a Hopf algebra A which implies that V ∗ ∼= ∗V as A-modules is that the
square of the antipode is inner, i.e. if S2 = Ad(u) for some u ∈ A×. This claim
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follows from the observation that ϕu : V ∗ → ∗V defined by f 7→ u−1 · f is an
A-intertwiner.

7.2.10 Key Example 1: Group Algebras

We discuss some important families of examples of bialgebras which can be
defined in terms of a group G or a Lie algebra g, both algebraic structures with
a well-defined notion of representations.

Let G be a group. Restating the key observation of Example 7.1, the group
algebra kG becomes a Hopf algebra if we set

∆(g) = g⊗g, ε(g) = 1, S(g) = g−1 (7.2.19)

for all g ∈ G and extend linearly. The adjoint representation of kG on itself
extends the conjugation action of G on itself given by g · h = ghg−1 for all
g,h ∈ G. More generally, we can let G be a monoid and the same assignments
for ∆ and ε define a bialgebra structure on kG, which extends to a Hopf algebra
structure if and only if G is a group.

We can “dualize” this example. Consider the commutative algebra kG of
functions f : G→ k (with pointwise addition and multiplication). Note that
kG⊗ kG naturally embeds into kG×G. If G is finite then this is an algebra iso-
morphism, so we may identify these algebras, and in that case the following
definitions make sense:

∆( f )(g,h) = f (gh), ε( f ) = f (1G), S( f )(g) = f (g−1) (7.2.20)

for all f ∈ kG and g,h ∈ G. This endows kG with a Hopf algebra structure.
There are also infinite groups and associated function algebras F(G) where
we can make the identification F(G)⊗ F(G) ∼= F(G×G) so that the same
construction endows F(G) with a bialgebra structure, for instance:

• let G be an algebraic group over k and replace F(G) by the algebra of
regular functions;

• let G be a compact topological group, set k = R or k = C and replace F(G)

by the algebra generated by the matrix entries of all finite-dimensional
representations of G.

7.2.11 Key Example 2: Universal Enveloping Algebras

Let g be a Lie algebra. Consider its tensor algebra

Tg := k⊕g⊕g⊗2⊕·· · , (7.2.21)
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a free algebra with multiplication given by the tensor product. The universal
enveloping algebra is the algebra Ug := Tg/I, where I is the two-sided ideal of
Tg generated by all elements of the form x⊗y−y⊗x− [x,y] for x,y∈ g. Before
we give the bialgebra structure, we highlight two key properties of universal
enveloping algebras (see e.g. [5]).

1 The universal property of Ug and the canonical embedding ι : g→Ug is
the following statement. For any Lie algebra morphism ϕ : g→ A (where A
is any algebra) there exists a unique algebra morphism ϕ̂ : Ug→ A such
that ϕ = ϕ̂ ◦ ι . In particular we may take A = End(V ) with V a vector space
and obtain that Lie algebra representations of g correspond 1-to-1 to algebra
representations of Ug.

2 The Poincaré–Birkhoff–Witt theorem states that given a totally ordered
k-basis X of g, a k-basis of Ug is given by the set⋃

n≥0

{ι(x1) · · · ι(xn) |x1, . . . ,xn ∈ X , x1 6 · · ·6 xn}. (7.2.22)

The natural Hopf algebra structure on Ug is uniquely determined by

∆(x) = x⊗1+1⊗ x, ε(x) = 0, S(x) =−x (7.2.23)

for all x ∈ g. This map ∆ corresponds precisely to the standard action of Lie al-
gebras on tensor products of their representations: if πV : g→ End(V ) and πW :
g→End(W ) are Lie algebra representations then πV⊗W defined by πV⊗W (x) :=
πV (x)⊗ idW + idV ⊗πW (x) for all x ∈ g is a representation of g on V ⊗W . Also,
in this case the adjoint representation of Ug on itself corresponds to the usual
adjoint representation of g given by x · y = [x,y] for all x,y ∈ g.

7.2.12 Grouplike and Skew-primitive Elements

Let A be a bialgebra. Inspired by the examples above we highlight two impor-
tant types of elements of A. We call an element a ∈ A grouplike if

∆(a) = a⊗a, a 6= 0. (7.2.24)

The set of grouplike elements is denoted by Gr(A). From (7.2.9) it follows that
ε(a) = 1 for all a ∈ A and hence Gr(A)∩A× is a group. If A has an antipode S
then Gr(A) is a subgroup of A× and S acts on Gr(A) by inversion.

We call a ∈ A skew-primitive if there exist g,h ∈ Gr(A) such that

∆(a) = a⊗g+h⊗a. (7.2.25)

The set of such elements, denoted Prig,h(A), is a subspace of Ker(ε). If A has
an antipode S then for all g,h ∈ Gr(A), S acts on Prig,h(A) as a 7→ −h−1ag−1.
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Elements of Pri1,1(A) are called primitive. We have an inclusion of Lie algebras
(with Lie bracket given by the commutator) Pri1,1(A)⊆ Ker(ε)⊂ A.

Note that Ug is generated by primitive elements. More precisely, the embed-
ding ι maps g into Pri1,1(Ug) ⊂Ug and the Poincaré–Birkhoff–Witt theorem
can be used to deduce that, if k is of characteristic 0, Pri1,1(Ug) = g. A result
due to Kostant [26] gives a wide-ranging converse to this observation: if k is
algebraically closed of characteristic zero then any cocommutative Hopf alge-
bra A such that G(A) = {1} is isomorphic to the universal enveloping algebra
of Pri1,1(A). One can in fact remove the constraint on G(A) and show that A
is isomorphic to a particular type of semidirect product U(Pri1,1(A))o kG(A)
known as Hopf smash product. The Hopf algebras we will highlight in these
notes will be generated by grouplike and skew-primitive elements.

7.3 Quasitriangular Bialgebras and Braided
Monoidal Categories

Note that the bialgebras discussed so far are all either cocommutative or com-
mutative. We will see that quantum groups arise in a certain way as non-
(co)commutative variations of them. Note especially that in algebraic geometry
one studies algebraic groups via their (commutative) algebras of regular func-
tions; it is natural to consider a “modified” or “deformed” algebraic group by
making the algebra of regular functions non-commutative. This is the origin of
the name “quantum group”.

7.3.1 Generalizing Cocommutativity

To provide a context for this, we discuss a generalization of cocommutativity. It
starts with the following idea. Let A be a bialgebra with coproduct ∆. Suppose
there exists R ∈ (A⊗A)× such that

∆
op = Ad(R)◦∆, (7.3.1)

i.e. R∆(a) = ∆op(a)R for all a ∈ A. Note that (7.2.9) implies that

u(1) := (ε⊗ id)(R) ∈ A×, u(2) := (id⊗ ε)(R) ∈ A× (7.3.2)

are central elements of A and hence the element

R̃ := (ε⊗ ε)(R) · (u(2)⊗u(1))−1 ·R ∈ (A⊗A)× (7.3.3)
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satisfies both (7.3.1) and (ε⊗ id)(R̃) = (id⊗ ε)(R̃) = 1. Hence without loss of
generality we may assume that R satisfies

(ε⊗ id)(R) = (id⊗ ε)(R) = 1. (7.3.4)

Let us explore how (7.3.1) constrains the element R. Both A and Acop are
bialgebras and hence (7.2.8) is satisfied both as-is and with ∆ replaced by ∆op.
Note that the coassociativity axiom (7.2.8) is a statement about linear maps
from A to A⊗A⊗A. It is therefore convenient to identify the three canonical
linear embeddings of A⊗A into A⊗A⊗A and introduce notation for them. For
all a,b ∈ A we will write

(a⊗b)12 = a⊗b⊗1, (a⊗b)13 = a⊗1⊗b, (a⊗b)23 = 1⊗a⊗b (7.3.5)

and extend this notation linearly, so that e.g. R12 = R⊗ 1. Now note that
(∆op⊗ id)◦∆op = (id⊗∆op)◦∆op together with (7.3.1) implies

Ad
(
R12(∆⊗ id)(R)

)
◦ (∆⊗ id)◦∆ = Ad

(
R23(id⊗∆)(R)

)
◦ (id⊗∆)◦∆.

Now using (7.2.8) for ∆ itself we obtain that the element

X :=
(
R23 · (id⊗∆)(R)

)−1 ·R12 · (∆⊗ id)(R) ∈ (A⊗A⊗A)× (7.3.6)

centralizes the image of ∆(3) in A⊗A⊗A. Owing to (7.3.4) we have

(ε⊗ id⊗ id)(X) = (id⊗ ε⊗ id)(X) = (id⊗ id⊗ ε)(X) = 1⊗1. (7.3.7)

The simplest possible X satisfying these constraints is X = 1⊗ 1⊗ 1. If we
assume this, R satisfies the cocycle condition

R12(∆⊗ id)(R) = R23(id⊗∆)(R). (7.3.8)

Without loss of generality we may write (∆⊗ id)(R) = R13R23Y for some
Y ∈ (A⊗A⊗A)×. Taking counits again, we obtain

(ε⊗ id⊗ id)(Y ) = (id⊗ ε⊗ id)(Y ) = (id⊗ id⊗ ε)(Y ) = 1, (7.3.9)

and hence again we assume the simplest possible solution: Y = 1⊗ 1⊗ 1, so
that

(∆⊗ id)(R) = R13R23. (7.3.10)

Combining (7.3.8) and (7.3.10) and applying (7.3.1), we obtain

R12R13R23 = R12(∆⊗ id)(R) = R23(id⊗∆)(R) = (id⊗∆
op)(R)R23,

so that (id⊗∆op)(R) = R12R13. Left-multiplying by id⊗σ , we obtain

(id⊗∆)(R) = R13R12. (7.3.11)
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7.3.2 Quasitriangularity: Definition and Basic Properties

The above analysis motivates the following generalization of cocommutativity
based on (7.3.1), originally due to Drinfeld [12].

Definition 7.6 Let A be a bialgebra and R∈ (A⊗A)×. The pair (A,R) is called
quasitriangular andR a (universal) R-matrix for A if (7.3.1) and (7.3.10–7.3.11)
hold.

If (A,R) and (B,S) are quasitriangular bialgebras then a bialgebra morphism
ψ : A→ B is called a quasitriangular morphism if (ψ⊗ψ)(R) = S.

Lemma 7.7 Let (A,R) be a quasitriangular bialgebra.

1 The (universal) Yang–Baxter equation is satisfied:

R12R13R23 = R23R13R12 ∈ A⊗A⊗A. (7.3.12)

2 The bialgebras (A,σ(R)−1), (Aop,σ(R)) and (Acop,σ(R)) are
quasitriangular.

3 The counit condition (7.3.4) is satisfied.
4 If A is a Hopf algebra then

S2 = Ad(u), where u =
(
m◦ (S⊗ id)◦σ

)
(R) ∈ A× (7.3.13)

(S⊗ id)(R) = R−1 = (id⊗S−1)(R), (S⊗S)(R) = R. (7.3.14)

For the proofs see e.g. [7, Props. 4.2.3 and 4.2.7]. Here we reproduce the
proof of (7.3.12), which relies on (7.3.1) and (7.3.10):

R12R13R23 = R12(∆⊗ id)(R) = (∆op⊗ id)(R)R12

= (σ ⊗ id)(R13R23)R12 = R23R13R12.
(7.3.15)

Note that (7.3.12) can also be deduced, in a very similar way, from (7.3.1) and
the other coproduct formula (7.3.11). Indeed, it is natural for a given quasi-
triangular bialgebra to possess a symmetry interchanging the two coproduct
formulas. In the following lemma we identify such a symmetry.

Lemma 7.8 Let A be a bialgebra with a bialgebra morphism ω : A→ Acop.
If R ∈ (A⊗A)× is fixed by σ ◦ (ω ⊗ω) then conditions (7.3.10) and (7.3.11)
are equivalent.

Proof This follows from id ⊗ ∆ = (σ ⊗ id) ◦ (id ⊗ σ) ◦ (∆ ⊗ id) ◦ σ and
(ω⊗ω)◦σ = σ ◦ (ω⊗ω).

Remark Another condition on quasitriangular bialgebras guaranteeing the
equivalence of (7.3.10) and (7.3.11) is σ(R) = R−1; such quasitriangular bial-
gebras are called triangular.

https://doi.org/10.1017/9781009093750.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009093750.009


7 A Companion to Quantum Groups 241

7.3.3 Braided Monoidal Categories

The main point of having a quasitriangular structure on a bialgebra is that the
category of (left) A-modules is not just a monoidal category, but that the two
possible tensor products of A-modules V and W , namely V ⊗W and W ⊗V ,
are naturally isomorphic as A-modules, thereby preserving a key property of
symmetric monoidal categories. Moreover the category of A-modules carries a
natural braided structure.

More precisely, let V and W be A-modules with corresponding representa-
tions πV : A→ End(V ), πW : A→ End(W ). Denote RV,W = (πV ⊗πW )(R) (the
linear map on V ⊗W corresponding to the action of R). Recall the linear map
σV,W : V ⊗W →W ⊗V and define

ŘV,W := σV,W ◦RV,W ∈ Hom(V ⊗W,W ⊗V ). (7.3.16)

Note that, since R is invertible, ŘV,W is invertible.

Lemma 7.9 The map ŘV,W intertwines the modules V ⊗W and W ⊗V :

ŘV,W πV⊗W (a) = πW⊗V (a)ŘV,W for all a ∈ A. (7.3.17)

In particular, V ⊗W and W ⊗V are isomorphic as A-modules.

Proof The axiom (7.3.1) implies

RV,W (πV ⊗πW )(∆(a)) = (πV ⊗πW )(∆op(a))RV,W (7.3.18)

for all a ∈ A. Left-multiplying by σV,W we obtain (7.3.17).

It is possible to represent the category Rep(A) using a diagrammatical cal-
culus developed in [37]. Here A-intertwiners from U1⊗·· ·⊗Um to V1⊗·· ·⊗Vn

correspond to diagrams with m incoming arrows and n outgoing arrows, labelled
by the corresponding modules. Furthermore taking tensor products corresponds
to horizontal juxtaposition, and composition of intertwiners corresponds to ver-
tical juxtaposition; we use the convention that composition is downward, which
is also indicated by arrows. In particular, the intertwiners idU and ŘV,W are rep-
resented by a single strand and a braiding:

U

U

V

V

W

W

(7.3.19)

We also represent the action of a ∈ A on V ∈ Rep(A) by a decoration, marked
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by a, of the strand labelled by V :

V

V

a
(7.3.20)

In particular, (7.3.17) corresponds to

V

V

W

W

a
=

V

V

W

W

a
(7.3.21)

Also the coproduct axioms (7.3.10–7.3.11) correspond to natural conditions.
Namely, let U,V,W ∈ Rep(A). Applying πU ⊗πV ⊗πW to (7.3.10) yields

RU⊗V,W = (RU,W )13(RV,W )23. (7.3.22)

Left-multiplying by (σU,W )12(σV,W )23 = σU⊗V,W , we obtain

ŘU⊗V,W = (ŘU,W ⊗ idV )(idU ⊗ ŘV,W ), (7.3.23)

an equation in Hom(U ⊗V ⊗W,W ⊗U ⊗V ). In the same way, from (7.3.11)
we obtain

ŘU,V⊗W = (idV ⊗ ŘU,W )(ŘU,V ⊗ idW ), (7.3.24)

an equation in Hom(U ⊗V ⊗W,V ⊗W ⊗U). In terms of the diagrammatical
calculus, (7.3.23–7.3.24) correspond to the topological identities

U⊗V

U⊗V

W

W

=

U

U

V

V

W

W

U

U

V⊗W

V⊗W

=

U

U

V

V

W

W

(7.3.25)

This means that the monoidal category Rep(A) is braided, see [20].

Remark If (A,R) is triangular then, for all V,W ∈ Rep(A), we have ŘW,V =

Ř−1
V,W so that Rep(A) is a symmetric monoidal category.

To complete the description of the braided structure on Rep(A), suppose
U,V,W ∈ Rep(A) and apply πU ⊗πV ⊗πW to (7.3.12). We obtain the (matrix)
Yang–Baxter equation

(RU,V )12(RU,W )13(RV,W )23

= (RV,W )23(RU,W )13(RU,V )12 ∈ End(U⊗V ⊗W ),
(7.3.26)
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or, equivalently,

(idW ⊗ ŘU,V )(ŘU,W ⊗ idV )(idU ⊗ ŘV,W )

= (ŘV,W ⊗ idU )(idV ⊗ ŘU,W )(ŘU,V ⊗ idW ),
(7.3.27)

an equation in Hom(U ⊗V ⊗W,W ⊗V ⊗U). This corresponds diagrammati-
cally to

U V W

W UV

=

U V W

VW U

(7.3.28)

Finally, for arbitrary L ∈ Z>0 consider the braid group

BrL :=
〈
b1, . . . ,bL−1

∣∣bibi+1bi = bi+1bibi+1,bib j = b jbi if |i− j|> 1
〉

(the fundamental group of the L-th unordered configuration space of the disk).
For all V ∈ Rep(A), we obtain a representation of BrL on V⊗L, given by

bi 7→ id
⊗(i−1)
V ⊗ ŘV,V ⊗ id

⊗(L−i−1)
V . (7.3.29)

7.3.4 Sweedler’s Hopf Algebra – A Warm-up Exercise

We discuss a finite-dimensional quasitriangular Hopf algebra with a nontrivial
R-matrix found in [41]. It does not depend on a parameter (and so is not a
quantum group following our soft definition from the introduction). Consider
the algebra A generated by symbols f and g subject to the relations

f 2 = 0, g2 = 1, f g =−g f . (7.3.30)

Note that {1, f ,g, f g} is a k-basis for A. Straightforward checks on generators
show that the assignments

∆( f ) = f ⊗g+1⊗ f , ε( f ) = 0, S( f ) = g f ,

∆(g) = g⊗g, ε(g) = 1, S(g) = g
(7.3.31)

define a Hopf algebra structure on A with g ∈ Gr(A) and f ∈ Prig,1(A). The
algebra A is the smallest noncommutative non-cocommutative Hopf algebra.
Some of its properties foreshadow similar properties of Drinfeld–Jimbo quan-
tum groups.
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Now assume that char(k) 6= 2. We will show that, for all β ∈ k, the following
expression determines a quasitriangular structure on A

Rβ = 1
2 (1⊗1+1⊗g+g⊗1−g⊗g)(1⊗1+β f ⊗g f ) ∈ A⊗A. (7.3.32)

See [7, Sec. 4.2F] for a somewhat different approach. Consider

R̃β := R−1
0 Rβ = 1⊗1+β f ⊗g f (7.3.33)

and note that R̃β R̃−β = 1⊗1. By writing R0 = 1⊗1−2 1−g
2 ⊗

1−g
2 and noting

that 1−g
2 is an idempotent, we deduce that R0 is an involution. From the in-

vertibility of R0 and R̃β we deduce that Rβ is invertible. Moreover, by a direct
computation we obtain

R0( f ⊗g) = ( f ⊗1)R0, R0(1⊗ f ) = (g⊗ f )R0. (7.3.34)

Lemma 7.10 The involutive linear map ω : A→ A is uniquely determined by
ω(1) = 1, ω(g) = g and ω( f ) = f g is a bialgebra morphism from A to Acop.
Furthermore Rβ is fixed by σ ◦ (ω⊗ω).

Proof The first statement follows directly from (7.3.30–7.3.31). The second
statement is a consequence of σ(R0) = R0 = (ω ⊗ ω)(R0) and σ(R̃β ) =

(ω⊗ω)(R̃β ).

Theorem 7.11 For all β ∈ k, (A,Rβ ) is quasitriangular.

Proof This is essentially a computation, but it is instructive to highlight some
salient points. For the axiom (7.3.1), it suffices5 to prove

R̃β ∆(a) = ∆(a)R̃β , R0∆(a) = ∆
op(a)R0 for all a ∈ A. (7.3.35)

In turn, it suffices to verify these statements for a ∈ { f ,g}, which is a straight-
forward consequence of (7.3.34). By Lemma 7.8 it now suffices to prove the
axiom (7.3.10). A direct computation shows that

(∆⊗ id)(R0) = (R0)13(R0)23, (7.3.36)

so that it remains to prove that

(∆⊗ id)(R̃β ) = (R0)23(R̃β )13(R0)23(R̃β )23. (7.3.37)

5 This is the main reason for introducing the factorization Rβ = R0R̃β . We will approach the
quasitriangularity of Uqg in a similar way.
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We expand with respect to powers of β . It now suffices to prove:

(∆⊗ id)(1⊗1) = (R0)23(R0)23, (7.3.38)

(∆⊗ id)( f ⊗g f ) = (R0)23( f ⊗1⊗g f )(R0)23 +1⊗ f ⊗g f , (7.3.39)

0 = (R0)23( f ⊗1⊗g f )(R0)23(1⊗ f ⊗g f ). (7.3.40)

Note that the first equation is trivial. The second equation follows by combining
(7.3.34) with the coproduct formulas for f and g. Finally, the third equation
follows by combining (7.3.34) with f 2 = 0.

Remark The quasitriangular bialgebra (A,R) is in fact triangular, since
σ(Rβ ) = R−1

β
. This follows from the identity R0σ(R̃β ) = R̃−βR0, a direct

consequence of (7.3.34).

To illustrate how nontrivial solutions of (7.3.26) arise in tensor products
of modules over a quasitriangular bialgebra, consider the following two non-
isomorphic indecomposable representations of A on a 2-dimensional vector
space V . They are defined by:

π
±( f ) =

Ç
0 0
1 0

å
, π

±(g) =

Ç
±1 0
0 ∓1

å
(7.3.41)

with respect to a fixed ordered basis (v1,v2). With respect to the ordered basis
(v1⊗ v1,v1⊗ v2,v2⊗ v1,v2⊗ v2) of V ⊗V , we have

(π±⊗π
±)(Rβ ) =

Ü±1 0 0 0
0 1 0 0
0 0 1 0
β 0 0 ∓1

ê
, (7.3.42)

a nontrivial solution of the Yang–Baxter equation (7.3.26). Unfortunately, the
representation theory of A is not very rich:

Theorem 7.12 If k is algebraically closed, A has exactly four isomorphism
classes of indecomposable modules. More precisely, up to isomorphism there
are two 1-dimensional modules, given by ±ε and the two 2-dimensional mod-
ules defined by (7.3.41).

Proof This follows from the fact that we may assume that g acts as a diago-
nalizable map on the module, which must therefore split up as a direct sum of
±1-eigenspaces. For more details, see [7, 4.2F(g)].

On the other hand, semisimple Lie algebras g have a very rich category
of modules. Their enveloping algebras Ug are naturally cocommutative (and
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hence quasitriangular) Hopf algebras; their quantizations Uqg inherit the cat-
egory of modules and are, up to a technicality, quasitriangular Hopf algebras
themselves.

7.4 Drinfeld–Jimbo Quantum Groups

In Section 7.4 we will study a deformation of the universal enveloping algebra
of a Lie algebra associated to a (connected, complex, semisimple) Lie gro-
up, called quantized universal enveloping algebras or Drinfeld–Jimbo quantum
groups. From now on we assume that k is algebraically closed and char(k)=0
(in particular Q⊂ k). First we deal with the sl2 case.

7.4.1 sl2 and Usl2

Let us first study the basic case of sl2, the Lie algebra of traceless 2×2-matrices
over k. It has a basis given by

e =

Ç
0 1
0 0

å
, f =

Ç
0 0
1 0

å
, h =

Ç
1 0
0 −1

å
. (7.4.1)

In this case it is not hard to see that we have only the following Lie bracket
relations between the basis elements:

[h,e] = 2e, [h, f ] =−2 f , [e, f ] = h. (7.4.2)

Hence, it follows immediately that Usl2 is obtained from the free algebra over
the symbols E,F,H by imposing the relations

HE−EH = 2E, HF−HF =−2F, EF−FE = H. (7.4.3)

The canonical embedding ι : sl2→Usl2 is given by e 7→ E, f 7→ F and h 7→H.
In the quantum deformed version we will “keep” E and F and “replace” H by
a well-chosen linear combination of a grouplike element and its inverse.

7.4.2 Quantum sl2

Let q be an indeterminate6 and consider the algebra Uqsl2 generated over k(q)
by symbols E, F , t and t−1 subject to the relations

6 In a related formalism, q is not an indeterminate but a scalar. Typically it is imposed that q is
nonzero and not a root of unity. The study of quantum groups for root-of-unity values of q is
very interesting but outside the scope of this introductory course.
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tE = q2Et, tF = q−2Ft,

[E,F ] =
t− t−1

q−q−1 , tt−1 = t−1t = 1.
(7.4.4)

We will use the following convention for the additional structure maps:

∆(E) = E⊗1+ t⊗E, ε(E) = 0, S(E) =−t−1E,

∆(F) = F⊗ t−1 +1⊗F, ε(F) = 0, S(F) =−Ft,

∆(t±1) = t±1⊗ t±1, ε(t±1) = 1, S(t±1) = t∓1.

(7.4.5)

It is a standard check to see that this endows Uqsl2 with a Hopf algebra struc-
ture. Note that the subalgebras 〈E, t, t−1〉 and 〈F, t, t−1〉 are Hopf subalgebras,
whereas 〈E, t〉 and 〈F, t−1〉 are subbialgebras which are not Hopf subalgebras.

7.4.3 The Topological Quantum Group U[[h]]sl2

Morally, sending q→ 1 should recover the defining relations and Hopf algebra
structure of Usl2. By making the formal substitution t = qH this can indeed
be done. For instance, in the right-hand side of the relation [E,F ] = t−t−1

q−q−1 one

may take the formal limit q→ 1 and immediately obtain H, as required. Writing
t = qH and q2t = qH+2 as formal power series in log(q), the relation tE = q2Et
is equivalent to

∑
r≥0

1
r!

log(q)rHrE = ∑
r≥0

1
r!

log(q)rE(H +2)r. (7.4.6)

Since q is an indeterminate, this should be true on the level of the coefficients,
yielding the Usl2-relations HrE = E(H + 2)r. This suggests a connection be-
tween Uqsl2 and Usl2[[log(q)]].

To make this rigorous, choose a new indeterminate h. The h-adic topology
on a vector space V over k[[h]] is defined by stipulating that

1 {hnV |n ∈ Z≥0} is a base of the neighbourhoods of 0 in V ,

2 translations in V are continuous.

It follows then that k[[h]]-linear maps are continuous. A topological Hopf alge-
bra over k[[h]] is an h-adic complete k[[h]]-module A equipped with k[[h]]-linear
structure maps η , m, ε , ∆ and S satisfying the Hopf algebra axioms discussed in
Section 2, but with algebraic tensor products replaced by h-adic completions.
We then may study the topological Hopf algebra U[[h]]sl2, defined as follows.
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Namely, consider the free algebra P := k〈E,F,H〉 and the algebra of power
series P[[h]]. Consider the two-sided ideal I of P[[h]] generated by

[H,E]−2E, [H,F ]+2F, [E,F ]− ehH − e−hH

eh− e−h (7.4.7)

and let Icl be its closure in the h-adic topology. Then we can define U[[h]]sl2 :=
P[[h]]/Icl. One then can deduce that U[[h]]sl2 ∼= (Usl2)[[h]] as algebras over
k[[h]] (see [7, Cor. 6.5.4]).

7.4.4 Some Representations of Uqsl2

It is easy to explicitly construct finite-dimensional representations of Uqsl2,
which simplify to sl2-representations if we let q go to 1. We denote, for m ∈ Z,

[m]q =
qm−q−m

q−q−1 ∈ k(q). (7.4.8)

Since q1−m[m]q is a power series in q− 1 with constant term m, in the formal
limit q→ 1, we recover the integer m. Consider, for n∈Z>0, the n-dimensional
vector space

V (n) = k(q)v(n)1 ⊕·· ·⊕ k(q)v(n)n ∼= k(q)n. (7.4.9)

Consider the assignments

π
(n)(E)(v(n)i ) = [i−1]qv(n)i−1,

π
(n)(F)(v(n)i ) = [n− i]qv(n)i+1,

π
(n)(t±1)(v(n)i ) = q±(n−2i+1)v(n)i

(7.4.10)

for i∈ {1,2, . . . ,n}, where we have set v(n)i := 0 if i < 1 or i > n. By straightfor-
ward checks it follows that π(n) extends to a representation of Uq(sl2) on V (n).
Note that π(1) = ε . Also note that

π
(n)
Å

t− t−1

q−q−1

ã
(v(n)i ) = [n−2i+1]qv(n)i .

Hence, formally letting q→ 1, we obtain the representation of sl2 on kv(n)1 ⊕
·· ·⊕ kv(n)n given by

e · v(n)i = (i−1)v(n)i−1,

f · v(n)i = (n− i)v(n)i+1,

h · v(n)i = (n−2i+1)v(n)i .

(7.4.11)
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7.4.5 Chevalley–Serre Presentation of Finite-dimensional
Semisimple Lie Algebras

Likewise we are interested in constructing quantum groups Uqg for arbitrary
finite-dimensional semisimple Lie algebras g. This is most conveniently done
using the Chevalley–Serre presentation of g in terms of its Cartan matrix. More
precisely, let C = (ci j)i, j∈I be an arbitrary Cartan matrix, i.e. cii = 2, ci j ∈ Z≥0,
ci j = 0 if and only if c ji = 0 and finally all submatrices (ci j)i, j∈J with J ⊆ I
have positive determinant (we briefly discuss the Kac–Moody generalization in
Section 7.4.7). There exist positive setwise-coprime integers di such that dici j =

d jc ji for all i, j ∈ I. Then each semisimple finite-dimensional Lie algebra arises
as follows. Consider the Lie algebra g= g(C) generated by the subalgebras

sl2,i := 〈ei, fi,hi〉 (7.4.12)

for all i ∈ I, subject to the sl2-relations (7.4.2) with e, f ,h replaced by ei, fi,hi,
respectively, and, for i 6= j, the cross relations

[hi,h j] = 0, [hi,e j] = ci je j, [hi, f j] =−ci j f j, [ei, f j] = 0,

[ei, [ei, . . . , [ei,e j] · · · ]] = [ fi, [ fi, . . . , [ fi, f j] · · · ]] = 0,
(7.4.13)

where there are 1− ci j nested Lie brackets in the last two relations (Serre rela-
tions). Consider the subalgebras

n+ = 〈ei | i ∈ I〉, h= 〈hi | i ∈ I〉 n− = 〈 fi | i ∈ I〉. (7.4.14)

Like any other Lie algebra, g acts on itself by the adjoint action. It is particularly
useful to study the adjoint action of h on g, with respect to which we have the
triangular decomposition

g= n+⊕h⊕n− as h-modules. (7.4.15)

More generally, we are interested in representations V ∈ Rep(g) with a weight
decomposition with respect to h:

V =
⊕

λ∈h∗
Vλ , Vλ = {v ∈V |h · v = λ (h)v for all h ∈ h}. (7.4.16)

Any λ ∈ h∗ for which Vλ is nontrivial is called a (h-)weight for V . Consider the
weight lattice

P = {λ ∈ h∗ |λ (hi) ∈ Z for all i ∈ I}. (7.4.17)

A weight for the adjoint action is called a root and the root system Φ is
the set of nonzero roots. Then n+ =

⊕
α∈Φ+ gα for some Φ+ ⊂ Φ. For j ∈ I,

define the simple root α j ∈ h∗ by α j(hi) = ci j so that gα j = Ce j and hence
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α j ∈ Φ+. Now define a symmetric bilinear form ( , ) on h∗ by (αi,α j) = dici j

for all i, j ∈ I; it satisfies (λ ,αi) = λ (dihi) for all i ∈ I.

The category O is the full subcategory of Rep(g)∼= Rep(Ug) whose objects
are g-modules V with the decomposition (7.4.16) with all Vλ finite-dimensional,
such that Un+ acts locally finitely, i.e. for all v ∈V the Un+-module generated
by v is finite-dimensional. The category O is monoidal7.

A subcategory called Oint is obtained by additionally assuming that for each
i ∈ I the subalgebra Usl2,i acts locally finitely; by the triangular decomposition
for this subalgebra, this is equivalent to Ei = ι(ei) and Fi = ι( fi) acting locally
nilpotently: for all v ∈ V there exists m ∈ Z≥0 such that Em

i · v = Fm
i · v = 0.

Then Oint is a monoidal category and a semisimple category, with the simple
objects given by irreducible highest-weight representations (more precisely, the
associated highest weight λ is dominant and integral: λ (hi) ≥ 0 for all i ∈ I
and λ ∈ P). In fact, Oint corresponds to the category of finite-dimensional g-
representations, with, after a suitable choice of basis, each ei acting as a strict
upper triangular matrix and fi as its transpose.

7.4.6 Drinfeld–Jimbo Quantum Groups

The definition of the quantum deformation of Ug, independently due to Drin-
feld [12] and Jimbo [18], is as follows. For a given Cartan matrix C, let q be
an indeterminate and set qi := qdi . The Drinfeld–Jimbo quantum group is the
algebra Uqg generated over k(q) by subalgebras

Uqsl2,i := 〈Ei,Fi, ti, t
−1
i 〉 (7.4.18)

for i ∈ I, subject to the Uqsl2 relations (7.4.4) with E,F, t±,q replaced by
Ei,Fi, t

±
i ,qi, respectively,8 and, for i 6= j, the cross relations

tiE j = q
ci j
i E jti, tiFj = q

−ci j
i Fjti, [ti, t j] = 0, [Ei,Fj] = 0,

[Ei, [Ei, . . . , [Ei,E j]q
ci j
i
· · · ]

q
−ci j−2
i

]
q
−ci j
i

= 0,

[Fi, [Fi, . . . , [Fi,Fj]
q
−ci j
i
· · · ]

q
ci j+2
i

]
q

ci j
i

= 0,

(7.4.19)

where we have used the notation [x,y]p := xy− pyx for the deformed commuta-
tor. Denote the root lattice by Q = ∑i∈I Zαi. For µ = ∑i∈I miαi ∈ Q we denote
tµ =∏i∈I tmi

i . The (quantum) Cartan subalgebra is the commutative subalgebra

U0 = 〈ti, t−1
i | i ∈ I〉= Spk{tµ |µ ∈ Q}. (7.4.20)

7 Note that we are using the version of category O favoured by Kac, see [21]. The category O as
originally defined in [4] is not a monoidal category.

8 In the spirit of Section 7.4.3, we may think of ti as qHi
i = qdiHi .
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Remark To be precise, we have given the so-called adjoint form of Uqg, where
the Cartan subalgebra is defined in terms of the root lattice ZΦ⊆ P. More gen-
erally, we may take any sublattice Λ of the weight lattice P, yielding a larger
Cartan subalgebra generated by tλ for λ ∈ Λ satisfying e.g. tλ E j = q(λ ,α j)E jtλ .
The simply connected form of Uqg is obtained when we choose Λ = P. In the
case g= sl2, P = 1

2 Q and the simply connected and adjoint forms are the only
relevant forms of Uqg, with the simply connected form obtained from the ad-
joint form by adjoining square roots of the generators ti and t−1

i .

By a straightforward check on generators (see e.g. [17, Lem. 4.8]), one has
the following result.

Lemma 7.13 Uqg is a (non-cocommutative) Hopf algebra with the additional
structure maps given by

∆(Ei) = Ei⊗1+ ti⊗Ei, ε(Ei) = 0, S(Ei) =−t−1
i Ei,

∆(Fi) = Fi⊗ t−1
i +1⊗Fi, ε(Fi) = 0, S(Fi) =−Fiti,

∆(t±1
i ) = t±1

i ⊗ t±1
i , ε(t±1

i ) = 1, S(t±1
i ) = t∓1

i .

(7.4.21)

For later convenience we record the explicit formulas for S−1:

S−1(Ei) =−Eit
−1
i , S−1(Fi) =−tiFi, S−1(t±1

i ) = t∓1
i . (7.4.22)

The triangular decomposition induced on Ug by the multiplication map,
namely Ug∼=Un+⊗Uh⊗Un−, lifts directly to

Uqg∼=U+⊗U0⊗U−, (7.4.23)

where we have introduced the subalgebras

U+ = 〈Ei | i ∈ I〉, U− = 〈Fi | i ∈ I〉. (7.4.24)

For V ∈ Rep(Uqg) and λ ∈ P, denote the (quantum) weight space

Vλ = {v ∈V | ti · v = qλ (hi)
i v = q(αi,λ )v for all i ∈ I}. (7.4.25)

In particular, as part of the adjoint action of Uqg on itself, the ti act by conjuga-
tion, and we have the root space decompositions

U± =
⊕

λ∈Q+

U±±λ
, where Q+ := ∑

i∈I
Z≥0αi. (7.4.26)

The category Oq is defined as the full subcategory of Rep(Uqg) whose ob-
jects are modules V such that

V =
⊕
λ∈P

Vλ (7.4.27)
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with all Vλ finite-dimensional and such that U+ acts locally finitely. As before,
Oq is a monoidal category. Note that the Ei-action and Fi-action on V ∈ Oq

satisfy

Ei(Vλ )⊆Vλ+αi
, Fi(Vλ )⊆Vλ−αi

. (7.4.28)

The subcategory Oq,int is obtained by additionally assuming that each
subalgebra Uqsl2,i acts locally finitely. Then Oq,int is the category of finite-
dimensional representations such that each ti acts diagonalizably with inte-
ger powers of qi as eigenvalues (so-called type-1 representations). As in the
(q→ 1)-limit, Oq,int is a monoidal category and a semisimple category, whose
simple objects are irreducible highest-weight representations with dominant in-
tegral highest weight, see e.g. [30, Cor. 6.2.3] or [7, Sec. 10.1].

In the case g = sl2, the weight lattice is P = Z
2 α , where α is the unique

simple root and the representation π(n) defined in (7.4.10) defines a simple
object in Oq,int. It is an irreducible highest-weight representation with highest

weight vector v(n)1 and highest weight n−1
2 α .

7.4.7 Kac–Moody Generalization

The definition of the Drinfeld–Jimbo quantum group can straightforwardly
be extended to the case where C = (ci j)i, j∈I is a symmetrizable generalized
Cartan matrix, thereby quantum-deforming universal enveloping algebras of
Kac–Moody Lie algebras [21]. This means we require cii = 2, ci j ∈Z≥0, ci j = 0
if and only if c ji = 0 and the existence of a set of positive setwise-coprime in-
tegers di such that dici j = d jc ji for all i, j ∈ I. As in the classical (q→ 1) case,
the Cartan subalgebra is larger: U0 is defined in terms of a lattice which as a
free abelian group has rank |I|+cork(C). The category Oq and the subcategory
Oq,int can be defined as above and are still monoidal categories. Moreover Oq,int

is still semisimple with simple objects given by irreducible highest-weight rep-
resentations with dominant integral highest weight. However, neither category
contains nontrivial finite-dimensional representations.

We say that C is of affine type if det(C) = 0 and all proper submatrices
(ci j)i, j∈J with J ⊂ I have positive determinant, see e.g. [6, 15]. If C is of affine
type, then g′ := 〈ei, fi,hi | i ∈ I〉 and similarly Uqg

′ := 〈Ei,Fi, t
±1
i | i ∈ I〉 (but not

g and Uqg themselves) have finite-dimensional representations that arise from
the identification of g′ as a central extension of a loop algebra g0⊗ k[z,z−1]

of a finite-dimensional simple Lie algebra g0 (or a twisted loop algebra), see
e.g. [6, 15] for details. These affine quantum groups are the most relevant in
quantum integrability.
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7.5 Quasitriangularity for Uqg

Let g be a finite-dimensional semisimple Lie algebra over k. We will construct
the universal R-matrix for Uqg, roughly following the approach from [17, Ch.
6 and 7] which is based on the approaches by [30, Ch. 4] and [42]. A closely
related construction is that via the quantum double construction due to Drinfeld,
see [13] and cf. [7, Sec. 4.2D]. We complement the fairly technical arguments
by explicit formulas for the special case g= sl2.

From now on we work over the larger field k(q1/d) for a suitable positive
integer d, since we want to allow linear maps acting on objects in Oq,int by
multiplication by such scalars in certain weight spaces. Let us set the stage.

7.5.1 The Bar Involution

The bar involution is an involutive algebra automorphism of Uqg denoted by ·
which acts nontrivially on the base field k(q1/d): it sends q1/d to q−1/d . On the
generators it is defined as follows:

Ei = Ei, Fi = Fi, t±1
i = t∓1

i . (7.5.1)

It is straightforward to check that these assignments preserve the defining rela-
tions of Uqg, as required.

We will give a construction of the universal R-matrix by considering, in
addition to ∆ and ∆op, a third coproduct ∆ := ( · ⊗ ·)◦∆◦ · . Explicitly, we have

∆(Ei) = Ei⊗1+ t−1
i ⊗Ei, ∆(Fi) = Fi⊗ ti +1⊗Fi,

∆(t±1
i ) = t±1

i ⊗ t±1
i .

(7.5.2)

Our plan is to construct an invertible element R that intertwines ∆ with ∆op as
follows:

R∆(u) = ∆
op(u)R for all u ∈Uqg. (7.5.3)

It turns out that ∆ is convenient in an intermediate stage of the proof of this.
Namely, we will establish (7.5.3) by constructing two elements R̃ and κ that
intertwine ∆ with ∆, and ∆ with ∆op, respectively:

R̃∆(x) = ∆(x)R̃, κ∆(x) = ∆
op(x)κ for all x ∈Uqg. (7.5.4)

From these two equations (7.5.3) readily follows if we set R = κR̃. Compare
this with the proof of Theorem 7.11 for Sweedler’s Hopf algebra.
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7.5.2 The Chevalley Involution

Define the Chevalley involution of Uqg on its generators as follows:

ω(Ei) =−Fi, ω(Fi) =−Ei, ω(t±1
i ) = t∓1

i . (7.5.5)

It corresponds to the matrix Lie algebra automorphism x 7→ −xt in finite-
dimensional representations of g. By straightforward checks we obtain the fol-
lowing result:

Lemma 7.14 The map ω is a bialgebra morphism from Uqg to Uqg
cop.

7.5.3 The Completions Û and Û (2)

In order to construct the universal R-matrix R for Uqg, we will consider an
algebra properly containing Uqg⊗Uqg. The fact that R does not lie in Uqg⊗
Uqg is the only obstacle for Uqg being quasitriangular, so we say that Uqg is
quasitriangular “up to completion”. It means that R has a well-defined action
on a proper subcategory of Rep(Uqg), namely Oq,int.

We discuss now one possible definition of the completion, closely following
[2, Sec. 3.1], but also see [e.g. 38, Sec. 1.3]. Since Oq,int is a subcategory of
Rep(Uqg), we have a forgetful functor For : Oq,int→ Vect, which is a monoidal
functor (it preserves tensor products). Consider now the algebra Û of all natural
transformations from For to itself. A natural transformation of For is a tuple
(ϕV ), where V runs through Oq,int, consisting of linear maps ϕV : For(V )→
For(V ) such that the following diagram in Vect commutes:

For(V )
ϕV //

For( f )
��

For(V )

For( f )
��

For(W )
ϕW

// For(W )

(7.5.6)

for all V,W ∈ Oq,int and for all Uqg-intertwiners f : V →W . Note that Û nat-
urally has the structure of an algebra over k(q1/d) since we can add, scalar-
multiply and compose such tuples entrywise. Furthermore, the Uqg-action on
objects of Oq,int produces an algebra morphism Uqg→ Û . Indeed, compare the
definition of natural transformation with the definition of intertwiner (defined
by means of another commuting diagram of linear maps (7.2.5)). This mor-
phism is injective, see [Lu94, Prop. 3.5.4], and henceforth we will view Uqg as
a subalgebra of Û .

We also have a functor For(2) : Oq,int×Oq,int→ Vect, sending pairs of mod-
ules (V,W ) to For(V ⊗W ) and pairs of intertwiners ( f ,g) to For( f ⊗ g). We
define Û (2) = End(For(2)), which is an algebra for the same reasons as Û , and
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we may view Û ⊗ Û ⊂ Û (2) via (ϕV )V ⊗ (ψW )W 7→ (ϕV ⊗ψW )(V,W ). Analo-

gously we can define a completion Û (n) for any n ∈ Z≥0 with natural algebra
embeddings Û (m)⊗Û (n)→ Û (m+n).

Any ϕ ∈ Û can be restricted to For(V⊗W ) for all V,W ∈Oq,int; since restric-
tion is compatible with composition and linearity of natural transformations, we
obtain an algebra morphism

∆ : Û → Û (2), (ϕV ) 7→ (ϕV⊗W ). (7.5.7)

It restricts to the usual coproduct of the embedded subalgebra Uqg ⊂ Û , moti-
vating the notation. The algebra maps ∆⊗ id, id⊗∆ from Û⊗Û to Û (3) extend
to algebra maps from Û (2) to Û (3).

7.5.4 The Element κ

For V,W ∈ Oq,int a linear map κV,W ∈ End(V ⊗W ) is uniquely determined by
the condition

κV,W (v⊗w) = q(µ,ν)v⊗w for all µ,ν ∈ P, v ∈Vµ , w ∈Wν . (7.5.8)

The tuple κ := (κV,W ) lies in Û (2) (but not in Û⊗Û).

Lemma 7.15 The map Ad(κ) preserves Uqg⊗Uqg; more precisely

Ad(κ)(Ei⊗1) = Ei⊗ ti, Ad(κ)(1⊗Ei) = ti⊗Ei,

Ad(κ)(Fi⊗1) = Fi⊗ t−1
i , Ad(κ)(1⊗Fi) = t−1

i ⊗Fi,

Ad(κ)(t±1
i ⊗1) = t±1

i ⊗1, Ad(κ)(1⊗ t±1
i ) = 1⊗ t±1

i .

(7.5.9)

Proof Note that Uqg⊗Uqg is generated by Ei⊗1, Fi⊗1, t±1
i ⊗1, 1⊗Ei, 1⊗Fi

and 1⊗ t±1
i . Let V,W ∈ Oq,int be arbitrary and let µ,ν ∈ P. Owing to (7.4.28),

we have

Ad(κ)(Ei⊗1)|Vµ⊗Wν
= κ(Ei⊗1)κ−1|Vµ⊗Wν

= q−(µ,ν)κ(Ei⊗1)|Vµ⊗Wν

= q(µ+αi,ν)−(µ,ν)(Ei⊗1)|Vµ⊗Wν

= q(αi,ν)(Ei⊗1)|Vµ⊗Wν

= (Ei⊗ ti)|Vµ⊗Wν
,

as required. The computations for Fi⊗1, 1⊗Ei and 1⊗Fi are entirely similar.
Finally, since t±1

i ⊗1 and 1⊗ t±1
i preserve the weight summands of objects in

Oq,int, they are fixed by conjugation by κ .

From (7.5.9) we obtain the desired intertwining property of κ:
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Lemma 7.16 We have Ad(κ)◦∆ = ∆op.

We continue our study of the element κ with the following result:

Lemma 7.17 We have (∆⊗ id)(κ) = κ13κ23.

Proof Let U,V,W ∈Oq,int and λ ,µ,ν ∈P. From the definition of the coproduct
map Û → Û (2) and the embedding Û (2)→ Û (3), we obtain

(∆⊗ id)(κ)U,V,W |Uλ⊗Vµ⊗Wν
= κU⊗V,W |Uλ⊗Vµ⊗Wν

= multiplication by q(λ+µ,ν)|Uλ⊗Vµ⊗Wν

= multiplication by q(λ ,ν)q(µ,ν)|Uλ⊗Vµ⊗Wν

= (κU,W )13(κV,W )23|Uλ⊗Vµ⊗Wν
,

as required. Here we have used that Uλ ⊗Vµ ⊆ (U ⊗V )λ+µ , which follows
directly from the definition of weight space.

7.5.5 The Algebra Û−+

We also consider the algebra Û+ := ∏µ∈Q+ U+
µ . Let (xµ)µ∈Q+ ∈ Û+ be arbi-

trary. Note that for all V ∈ Oq,int and all v ∈ V , there are only finitely many
µ ∈Q+ such that xµ ·v is nonzero. Hence the expression ∑µ∈Q+ xµ ·v is a well-

defined element of V . It can be checked that (xµ)µ∈Q+ defines an element of Û ,

so that we may consider Û+ as a subalgebra of Û . Considering the inclusion
U+ ⊆ Û+, it is safe to write elements of Û+ additively as x = ∑µ∈Q+ xµ .

Owing again to the finiteness of the U+-action, elements of the form
∑µ,ν∈Q+ yν ⊗xµ with xµ ∈U+

µ , yν ∈U−−ν have a well-defined action on V ⊗W

for all V,W ∈ O+
q , and lie in Û (2). The subalgebra of Û⊗2 generated by such

elements is denoted U−⊗̂U+.

Remark We can define subalgebras U+⊗̂U+,U+⊗̂U− ⊂ Û (2) in a similar
way, but not U−⊗̂U−: its putative elements do not have a well-defined action
on objects in Oq,int.

We now claim that the desired element R can be chosen in the subalgebra

Û−+ := 〈Uqg⊗Uqg,U
−⊗̂U+,κ〉 ⊂ Û (2). (7.5.10)

We can extend the composition ω(2) := σ ◦ (ω⊗ω) from an involutive algebra
automorphism of Uqg⊗Uqg to an involutive algebra automorphism of Û−+;
we simply stipulate that the extension fix κ and act on U−⊗̂U+ as follows:

∑
µ,ν∈Q+

cµ,ν yν ⊗ xµ ↔ ∑
µ,ν∈Q+

cµ,ν ω(xµ)⊗ω(yν). (7.5.11)
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This is consistent with the relations (7.5.9) and the natural relations involving
series, and hence defines an algebra automorphism of Û−+.

7.5.6 Bialgebra Pairings

We now start the construction of the desired element R̃ ∈U−⊗̂U+. Suppose A,
B are two bialgebras (with coproducts ∆A, ∆B and counits εA, εB, respectively).
A bialgebra pairing between A and B (see [7, 4.1D]), is a k-linear map 〈·, ·〉 :
A⊗B→ k with the properties

〈∆A(a),b⊗b′〉= 〈a,bb′〉, 〈a⊗a′,∆B(b)〉= 〈aa′,b〉,
εA(a) = 〈a,1〉, εB(b) = 〈1,b〉

(7.5.12)

for all a,a′ ∈ A and b,b′ ∈ B. Here we denote by the same symbol the canonical
extension of the pairing of A and B to a k-linear map: (A⊗A)⊗ (B⊗B)→ k
defined by 〈a⊗a′,b⊗b′〉= 〈a,b〉〈a′,b′〉 for all a,a′ ∈ A and b,b′ ∈ B. In partic-
ular, 〈a⊗ a′,b⊗ b′〉 = 〈a′⊗ a,b′⊗ b〉 and we automatically obtain a bialgebra
pairing between Acop and Bop and between Aop and Bcop.

The quantum analogues of the standard Borel subalgebras, viz.

Uqb
+ = 〈Ei, ti, t

−1
i | i ∈ I〉, Uqb

− = 〈Fi, ti, t
−1
i | i ∈ I〉 (7.5.13)

are subbialgebras of Uqg over k(q1/d). Then the following assignments define
a unique bialgebra pairing between Uqb

−,cop and Uqb
+:

〈tλ , tµ〉= q−(λ ,µ), 〈Fi,E j〉=
δi j

q−1
i −qi

,

〈tλ ,E j〉= 0, 〈Fi, tµ〉= 0

(7.5.14)

for all i, j∈ I and λ ,µ ∈Q (see e.g. [17, 6.12]), where it is presented as a pairing
between Uqb

− and Uqb
+,op. This is a nondegenerate pairing (see [17, 6.21]);

moreover its restriction to U−−ν ×U+
µ vanishes if µ 6= ν and is nondegenerate if

µ = ν : if for some x ∈U+
µ we have 〈y,x〉 = 0 for all y ∈U−−µ then x = 0 (and

vice versa).

7.5.7 Skew Derivations

In order to construct the desired element R̃ and establish its key properties
we introduce linear maps on U+ called right and left skew derivations due to
Lusztig (see [30, Sec. 1.2 and 3.1]). More precisely, for each i ∈ I there exist

D(r,`)
i ∈ Endk(q1/d)(U

+) uniquely determined by stipulating that D(r,`)
i (E j) = δi j

for all j ∈ I and
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D(r)
i (xx′) = D(r)

i (x)Ad(ti)(x
′)+ xD(r)

i (x′),

D(`)
i (xx′) = D(`)

i (x)x′+Ad(ti)(x)D
(`)
i (x′)

(7.5.15)

and x,x′ ∈U+. Clearly, the two maps D(r,`)
i send U+

µ to U+
µ−αi

for all µ ∈ Q+.
By [17, 6.14], for all µ ∈ Q+, x ∈U+

µ , we have

∆(x)− x⊗1−∑
i∈I

D(r)
i (x)ti⊗Ei ∈ ∑

ν∈Q+

ν 6=α j ,ν 6=0

U+
µ−ν tν ⊗U+

ν ,

∆(x)− tµ ⊗ x−∑
i∈I

Eitµ−νi ⊗D(`)
i (x) ∈ ∑

ν∈Q+

ν 6=α j ,ν 6=0

U+
ν tµ−ν ⊗U+

µ−ν .
(7.5.16)

By [17, 6.15 (5)], for all x ∈U+, y ∈U− and i ∈ I, we have

〈Fiy,x〉= 〈Fi,Ei〉〈y,D(`)
i (x)〉, 〈yFi,x〉= 〈Fi,Ei〉〈y,D(r)

i (x)〉. (7.5.17)

By [17, 6.17], for all x ∈U+ and i ∈ I, we have

[x,Fi] = (qi−q−1
i )−1(D(r)

i (x)ti− t−1
i D(`)

i (x)
)
. (7.5.18)

In fact, each of (7.5.16–7.5.18) can be used to define the linear maps D(r,`)
i

uniquely. By [30, Lem. 1.2.15 (a)] we have

∀i ∈ I D(r)
i (x) = 0 ⇔ ∀i ∈ I D(`)

i (x) = 0 ⇔ x = 0 (7.5.19)

for all x ∈U+.
Note that ω restricts to a bialgebra morphism from Uqb

+ to Uqb
−,cop inter-

changing U+
µ and U−−µ for all µ ∈ Q+. One can similarly define skew deriva-

tions for U− in the natural way, namely via the compositions ω ◦D(r,`)
i ◦ω . As

a consequence we have 〈ω(x),ω(y)〉 = 〈y,x〉 for all x ∈Uqb
+, y ∈Uqb

−, see
[17, 6.16].

7.5.8 The Element Θ

For arbitrary µ ∈Q+, choose a basis (xµ,r)r for the finite-dimensional k(q1/d)-
vector space U+

µ and let (yµ,r)r be the dual basis of U−−µ with respect to the
bilinear pairing 〈 , 〉. Consider the element defined by

Θ = ∑
µ∈Q+

Θµ ∈ Û (2), Θµ = ∑
r

yµ,r⊗ xµ,r ∈U−−µ ⊗U+
µ . (7.5.20)

In other words, Θ is the “canonical element” of the restriction of 〈 , 〉 to U−×
U+. Note that U−0 =U+

0 = k so that Θ0 = 1⊗1.
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Since Θµ is independent of the choice of basis for U+
µ and ω is invertible,

each Θµ is fixed by ω(2). Straightaway we obtain

Lemma 7.18 The element Θ satisfies ω(2)(Θ) = Θ.

We stay close to the approach in [17, Ch. 7] in establishing key properties
of Θ.

Theorem 7.19 The linear space

{X ∈U−⊗̂U+ |Ad(X)◦∆ = ∆} (7.5.21)

is 1-dimensional and spanned by Θ.

Proof Suppose X ∈U−⊗̂U+ is such that X∆(u) =∆(u)X for all u∈Uqg. Since
∆(t±1

i ) = ∆(t±1
i ) = t±1

i ⊗ t±1
i for all i ∈ I, it follows that X = ∑µ∈Q+ Xµ with

Xµ ∈U−−µ ⊗U+
µ . Assuming X is of this form, the condition Ad(X) ◦∆ = ∆ is

equivalent to the following identities:

[Xµ ,Ei⊗1] = (ti⊗Ei)Xµ−αi −Xµ−αi(t
−1
i ⊗Ei), (7.5.22)

[Xµ ,1⊗Fi] = (Fi⊗ t−1
i )Xµ−αi −Xµ−αi(Fi⊗ ti) (7.5.23)

for all i ∈ I, where Xµ := 0 if µ /∈ Q+. By applying σ ◦ (ω⊗ω) one sees that
these identities are equivalent. By (7.5.18) and linear independence, (7.5.23) is
equivalent to the system

(Fi⊗1)Xµ−αi = (q−1
i −qi)

−1(id⊗D(`)
i )(Xµ),

Xµ−αi(Fi⊗1) = (q−1
i −qi)

−1(id⊗D(r)
i )(Xµ)

(7.5.24)

for all i ∈ I. It suffices to prove that the solution set of (7.5.24) are precisely the
scalar multiples of Θ. The computation in [17, 7.1], which relies on (7.5.17),
shows that X = Θ satisfies these conditions. To show uniqueness up to scalar
multiples, we may follow the proof of [30, Thm. 4.1.2], which relies on
(7.5.19).

Theorem 7.20 We have

(∆⊗ id)(Θ) = Θ23Ad(κ
−1
23 )(Θ13). (7.5.25)

Proof Considering (7.5.9), it suffices to prove

(∆⊗ id)(Θµ) = ∑
ν∈Q+

(Θµ−ν)23(1⊗ t−1
ν ⊗1)(Θν)13. (7.5.26)
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Fix y ∈U−−µ with µ = ∑i∈I miαi with mi ∈ Z≥0. By induction with respect to
the height of µ , viz. ∑i∈I mi, we obtain from the coproduct formula for Fi in
(7.4.21) that, for all

∆(y) ∈ ∑
ν∈Q+

U−−ν ⊗U−ν−µ t−1
ν (7.5.27)

and hence

∆(y) = ∑
ν∈Q+

∑
r,s

cν
r,syν ,r⊗ yµ−ν ,st

−1
ν (7.5.28)

for some cν
r,s ∈ k(q1/d). Since the basis {yµ,r}r is dual to {xµ,r}r with respect

to 〈,〉, we have

cν
r,s = 〈∆(y),xs,ν ⊗ xr,µ−ν〉= 〈∆op(y),xr,µ−ν ⊗ xs,ν〉= 〈y,xr,µ−ν xs,ν〉.

Now (7.5.26) follows by recalling the definition of Θµ in terms of the basis
elements yµ,r and xµ,r. We refer to the proof of [17, Lem. 7.4] for the remaining
computation.

7.5.9 The Quasi R-matrix R̃ and the Universal R-matrix R

We now simply define R̃ = Θ−1. Immediately we obtain from Lemma 7.18,
Theorem 7.19 and Theorem 7.20 the following result for R̃:

Theorem 7.21 The element R̃ is fixed by ω(2), has the intertwining property
Ad(R̃)◦∆ = ∆ and the coproduct formula (∆⊗ id)(R̃) = Ad(κ−1

23 )(R̃13)R̃23.

The desired element R is now given by

R= κR̃ ∈ Û−+. (7.5.29)

As a consequence of Theorem 7.21 and the various properties of κ from Section
7.5.4 we obtain that R satisfies the properties of a universal R-matrix:

Theorem 7.22 The element R is fixed by ω(2), has the intertwining property
Ad(R)◦∆ = ∆op and the coproduct formula (∆⊗ id)(R) = R13R23.

Recall that the other coproduct formula (id⊗∆)(R) =R13R12 follows from
Lemma 7.8.

7.5.10 The R-matrix for Uqsl2

For the quantum group Uqsl2 it is possible to make the formula for R̃ rather
explicit. It leads to the following result.
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Theorem 7.23 The subspace of elements R̃ ∈U−⊗̂U+ satisfying

Ad(R̃)◦∆ = ∆ (7.5.30)

is 1-dimensional. The unique such element with (ε⊗ ε)(R̃) = 1 is

R̃=
∞

∑
r=0

cr(F⊗E)r, (7.5.31)

where for r ∈ Z≥0 we have

cr :=
(q−q−1)r

[r]q!
qr(r−1)/2, with [r]q! := [r]q[r−1]q · · · [2]q[1]q. (7.5.32)

Additionally, it satisfies

(∆⊗ id)(R̃) = Ad(κ−1
23 )(R̃13)R̃23. (7.5.33)

It can be proven directly from the relations and the coproduct formulas for
the generators of Uqg. We refer to [17, Ch. 3] for details, but if tempted the
reader might want to take it on as a useful exercise. As a hint towards the
solution, it is helpful to prove the following relation

[E,Fr+1] = [r+1]q
qrt−q−rt−1

q−q−1 Fr, (7.5.34)

and the following formula for the coproduct

∆(Fr) =
r

∑
s=0

qs(s−r)

Ç
r
s

å
q

Fr−s⊗ ts−rFs, (7.5.35)

where for r ∈ Z≥0, s ∈ Z, we haveÇ
r
s

å
q

:=

{
[r]q!

[s]q![r−s]q! if 0≤ s≤ r,

0 otherwise.
(7.5.36)

Note, in the formal limit q→ 1, both κ and R̃, and hence also R = κR̃, go
to 1⊗1.

A large range of matrix solutions to the Yang–Baxter equation (7.3.26)
in representations of Uq(sl2) now arises naturally. Recall the n-dimensional
representation (π(n),V (n)) of Uq(sl2) defined in (7.4.10). By evaluating
(π(m)⊗π(n))(R) for various m,n, we obtain linear maps on V (m)⊗V (n) which
satisfy (7.3.26) in V (l)⊗V (m)⊗V (n) for various l,m,n.

To make this explicit as well, with respect to the basis (v(2)1 ,v(2)2 ), the 2-
dimensional representation π(2) can be written as

π
(2)(E) =

Ç
0 1
0 0

å
, π

(2)(F) =

Ç
0 0
1 0

å
, π

(2)(t) =

Ç
q 0
0 q−1

å
. (7.5.37)

https://doi.org/10.1017/9781009093750.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009093750.009


262 Bart Vlaar

With respect to the basis (v(2)1 ⊗ v(2)1 ,v(2)1 ⊗ v(2)2 ,v(2)2 ⊗ v(2)1 ,v(2)2 ⊗ v(2)2 ) of
V (2)⊗V (2), we obtain

(π(2)⊗π
(2))(κ) =

Ü
q1/2 0 0 0

0 q−1/2 0 0
0 0 q−1/2 0
0 0 0 q1/2

ê
,

(π(2)⊗π
(2))(R̃) =

Ü
1 0 0 0
0 1 0 0
0 q−q−1 1 0
0 0 0 1

ê (7.5.38)

and hence the following nontrivial solution of the Yang–Baxter equation:

R := (π(2)⊗π
(2))(R) = q−1/2

Ü
q 0 0 0
0 1 0 0
0 q−q−1 1 0
0 0 0 q

ê
. (7.5.39)

7.5.11 The Dual Quantum Group Fq(SL(2))

We mention here also the dual object Fq(SL(2)), the quantized algebra of scalar-
valued functions on SL(2). We refer to [7, Ch. 7] for a more in-depth discussion.
The algebra Fq(SL(2)) is generated over k(q) by elements a,b,c,d subject to

ab = qba, bd = qdb, ac = qca, cd = qdc, bc = cb,

ad−qbc = 1 = da−q−1cb.
(7.5.40)

The Hopf algebra structure on Fq(SL(2)) is as follows:

∆(a) = a⊗a+b⊗ c, ε(a) = 1, S(a) = d,

∆(b) = a⊗b+b⊗d, ε(b) = 0, S(b) =−q−1b,

∆(c) = c⊗a+d⊗ c, ε(c) = 0, S(c) =−qc,

∆(d) = c⊗b+d⊗d, ε(d) = 1, S(d) = a.

(7.5.41)

As q→ 1, we formally recover the commutative algebra of functions on SL(2),
where a corresponds to the function returning the (1,1)-entry, b to the function
returning the (1,2)-entry, etc., with the standard Hopf algebra structure on k-
valued functions on SL(2), given by (7.2.20).
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Since the generators correspond to matrix entries, it is natural to form the
matrix

T =

Ç
a b
c d

å
∈ End(k(q)2)⊗Fq(SL(2)). (7.5.42)

Then the Hopf algebra structure maps are given simply as

∆(T ) = T ⊗T, ε(T ) =

Ç
1 0
0 1

å
, S(T ) = T−1, (7.5.43)

where the⊗ in T⊗T means: use ordinary matrix multiplication and take tensor
products at the level of the matrix entries. Also, recall the matrix
R ∈ End(k(q)2⊗ k(q)2) from (7.5.39); then the RTT-relation

R12T13T23 = T23T13R12 ∈ End(k(q)2⊗ k(q)2)⊗Fq(SL(2)), (7.5.44)

together with the q-determinant condition ad− qbc = 1, is equivalent to the
relations (7.5.40). Here we see a nice aspect of duality at play: the object R
controls the failure of cocommutativity for the algebra Uqsl2 and the failure of
commutativity for the algebra Fq(SL(2)).

7.6 Coideal Subalgebras and Cylinder Braiding

The material in this supplementary section deals with more recent develop-
ments in the field of braided monoidal categories with cylinder twists [1, 2, 16,
43], for which the algebraic counterpart is a coideal subalgebra of the quasi-
triangular bialgebra, which is itself endowed with a quasitriangular structure.
Various aspects of quantum group theory have been extended to this setting
such as q-deformed harmonic analysis [29, 33, 34] and canonical bases and
q-analogues of Schur–Weyl duality [3, 14].

7.6.1 Coideal Subalgebras

First, we return to the setting where k is any field. Let A be a bialgebra and
B ⊆ A a subalgebra. We call B a two-sided coideal subalgebra, right coideal
subalgebra or left coideal subalgebra if

∆(B)⊆ B⊗A+A⊗B,

∆(B)⊆ B⊗A, ∆(B)⊆ A⊗B,
(7.6.1)

respectively. Given a bialgebra A, all subbialgebras of A are right and left
coideal subalgebras of A. Also, all right coideal subalgebras of A and all left
coideal subalgebras of A are two-sided coideal subalgebras. If A is cocommu-
tative then these four concepts coincide.
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Example 7.24 Consider a bialgebra A, an element g ∈ Gr(A) and an element
b ∈ Prig,1(A). Consider the subalgebra B generated by b (its elements are poly-
nomial expressions in b). Then B is a right coideal, since ∆(b) = b⊗g+1⊗b∈
B⊗A. Also, B is graded by the degree in b and B⊗B is graded by the sum of
the degrees. Using this it is straightforward to see that B∩Gr(A) = {1}, so that
B is not a subbialgebra unless g = 1. The assumptions on A are indeed met if,
for instance, A is equal to Sweedler’s Hopf algebra or Uqsl2.

7.6.2 Cylinder Braiding

We saw in Section 7.3.3 that the monoidal category Rep(A), if A is a quasitri-
angular bialgebra, possesses a braided structure. In particular, there is an action
of the braid group BrL on V⊗L, for any V ∈ Rep(A), given by (7.3.29). Let us
adjoin a generator b0 to BrL to obtain a larger group Br0L, subject to the relations

b0b1b0b1 = b1b0b1b0, b0bi = bib0 if i > 1. (7.6.2)

This is known as the Artin–Tits braid group of type BL (the subgroup BrL is the
Artin–Tits braid group of type AL−1) and is the fundamental group of the L-th
unordered configuration space of the punctured disk. Given the representation
of BrL in terms of ŘV,V , see (7.3.29), it is natural to require that b0 acts as
follows:

b0 7→ KV ⊗ id
⊗(L−1)
V (7.6.3)

for some invertible KV ∈ End(V ) since then automatically the relations b0bi =

bib0 for i > 1 are preserved. In order to preserve the quartic relation, we must
have

(KV ⊗ idV )ŘV,V (KV ⊗ idV )ŘV,V = ŘV,V (KV ⊗ idV )ŘV,V (KV ⊗ idV ),

or, equivalently,

(KV ⊗ idV )σ(RV,V )(idV ⊗KV )RV,V

= σ(RV,V )(idV ⊗KV )RV,V (KV ⊗ idV ),
(7.6.4)

which is also known as the (constant) reflection equation.

Remark The study of this tensorial version of the quartic braid relation orig-
inated in mathematical physics, more precisely quantum integrability in the
presence of a boundary, see [8, 40] and for a more general type of reflection
equation cf. [9]. Note, however, that in this application the objects RV,V and KV

depend on an additional parameter, called the spectral parameter, which varies
in the equation:
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(KV (y)⊗ idV )σ(RV,V (yz))(idV ⊗KV (z))RV,V (z/y)

= σ(RV,V (z/y))(idV ⊗KV (z))RV,V (yz)(KV (y)⊗ idV ).
(7.6.5)

This spectral parameter roughly corresponds to the loop parameter appearing
in the definition of a loop algebra.

It is now natural to ask what the additional structure on the braided
monoidal category Rep(A) is, which allows for the action of BrL to extend to an
action of Br0L. Because of the embedding BrL < Br0L, in terms of the graphical
calculus from Section 7.3.3 topologically we are adding an obstacle, requiring
us to interpret the generator b0 as the interaction of one of the L strands with
the obstacle. This extended calculus was given in [43] and discussed further in
[16]. Let us indicate the obstacle by a vertical grey bar to the left of the strands
and parallel to their direction of travel and the linear map KV by a winding
around this obstacle:

V

V

(7.6.6)

The pictorial version of (7.6.4) (or rather its generalization to the case where
the two modules are distinct) is as follows:

U V

U V

=

U V

VU

(7.6.7)

Let us identify further natural conditions on the objects KV . Given an A-
module V , let πV : A→ End(V ) be the corresponding algebra morphism. Let
us take inspiration from the situation for ŘU,V . By construction, KV is an inter-
twiner for the subalgebra

B = {b ∈ A |KV πV (b) = πV (b)KV}, (7.6.8)

which typically will be a proper subalgebra of A. Note furthermore that, as a
consequence of the intertwining property of ŘV,V , the action of ∆(L)(A) and the
action of BrL mutually commute in End(V⊗L), for all L ∈ Z>0. It is natural to
impose that the action of ∆(L)(B) and the action of Br0L mutually commute for
all L ∈Z>0, since it is already satisfied for L = 1. The most general assumption
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on B that allows us to perform recursion and obtain the mutual commutativity
for all L ∈Z>0 is that ∆(b)∈ B⊗A for all b ∈ B, in other words that B is a right
coideal subalgebra; in particular, we can define B to be the largest right coideal
subalgebra of the algebra defined in (7.6.8).

We also need a rule for assigning a value to KU⊗V . A topologically natural
condition is for instance given by

KU⊗V = Ř−1
U,V (KV ⊗ idU )ŘU,V (KU ⊗ idV ) (7.6.9)

or, diagrammatically,

U⊗V

U⊗V

=

U V

U V

(7.6.10)

Such a collection of linear maps (KV )V∈Rep(A) is called a cylinder twist on the
category Rep(A).

7.6.3 Cylindrical Quasitriangularity

We now consider an additional structure on a quasitriangular bialgebra (A,R)
such that its category of A-modules is braided with a cylinder twist. We al-
low a generalization, which appeared in [2], namely twisting by a quasitrian-
gular automorphism. Given a quasitriangular bialgebra (A,R) with a quasitri-
angular automorphism ψ , we denote Rψ := (ψ ⊗ id)(R). Recall that Rψψ :=
(ψ⊗ψ)(R) equals R.

Definition 7.25 ([2, 43]) Let (A,R) be a quasitriangular bialgebra, ψ a quasi-
triangular automorphism of A and K ∈ A×. We call (A,R,ψ,K) cylindrically
quasitriangular and K a ψ-twisted universal K-matrix for A if

∆(K) = R−1(1⊗K)Rψ(K⊗1). (7.6.11)

Furthermore, we call a subalgebra B⊆ A ψ-cylindrically invariant if

Ad(K)|B = ψ|B. (7.6.12)

Theorem 7.26 If (A,R,ψ,K) is cylindrically quasitriangular then K satisfies
the (universal) ψ-twisted reflection equation:

(K⊗1)σ(Rψ)(1⊗K)R= σ(R)(1⊗K)Rψ(K⊗1). (7.6.13)
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Proof This follows from (7.3.1) and (7.6.11):

(K⊗1)σ(Rψ)(1⊗K)R= σ(R)∆op(K)R

= σ(R)R∆(K)

= σ(R)(1⊗K)Rψ(K⊗1)

= σ(R)(1⊗K)Rψ(K⊗1).

7.6.4 The Construction of a Universal K-matrix for Uqsl2

Given a finite-dimensional semisimple Lie algebra g over C and an involutive
Lie algebra automorphism θ : g→ g, Letzter gave a general theory of the quan-
tization of symmetric pairs (g,s), where s= gθ is the fixed-point Lie subalge-
bra, see [29] and cf. [33, 34]. In this theory Uqg is the usual Drinfeld–Jimbo
quantum group and Uqs is a coideal subalgebra of Uqg. In [2] a construction is
given of a universal K-matrix associated to such a pair (Uqg,Uqs), generalizing
a construction first given in [3]. This can be seen as a coideal version of the
construction of the universal R-matrix due to Lusztig [30].

Here we follow the approach of [1], which gives a further generalization of
the above construction. We discuss this by illustrating a special case, which
can be seen in parallel to the discussion of the universal R-matrix for Uqsl2
in Section 7.5.10. Essentially the same object appeared previously in a more
ad-hoc setting in [28, 43].

Recall the Hopf algebra Uqsl2 with generators E,F, t, t−1 subject to relations
(7.4.4) and with the additional structure maps given by (7.4.5). For
γ ∈ k(q1/d)×, let Hγ ∈ Û be the element acting on objects V of Oq,int as

Hγ(v) = q−(µ,µ)/2
χγ(µ)

−1v, v ∈Vµ , µ ∈ P, (7.6.14)

where χγ : P → k(q1/d) is any group homomorphism with the property
χγ(α) = γ . Then the algebra automorphism θγ = ω ◦Ad(Hγ) of Uqsl2 satis-
fies

θγ(E) =−qγ
−1tF, θγ(F) =−q−1

γEt−1, θγ(t
±1) = t∓1. (7.6.15)

By a direct check, we see that the subalgebra Bγ of Uqsl2 generated by
F +θγ(F) = F−q−1γEt−1 is a right coideal subalgebra. It is the Letzter quan-
tization of the fixed-point subalgebra of the Chevalley involution of sl2 with an
extra parameter dependence. We are interested in an element K ∈ Û satisfy-
ing the coproduct formula (7.6.11) and the intertwining property (7.6.12) with
ψ = id.

There exists (see [22]) an element T ∈ Û which resolves the R-matrix in the
sense that R= (T−1⊗T−1)∆(T) and satisfies Ad(T) = ω; such an element can
be constructed as a Cartan modification of an element T̃ ∈ Û which satisfies
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R̃ = (T̃−1⊗ T̃−1)∆(T̃) (see [30, 5.2.1]). Hence it suffices to construct an ele-
ment K′ = TK such that

Ad(K′)|Bγ
= ω|Bγ

,

∆(K′) = (1⊗K′)(ω⊗ id)(R)(K′⊗1)
(7.6.16)

(note that the coproduct formula is now an expression of three factors). An
algebra morphism f : Bγ → Bγ is uniquely defined by

f (F−q−1
γEt−1) = F−q−1γEt−1 = F−qγEt. (7.6.17)

It can be checked by a direct computation that

Ad(Hγ)◦ f |Bγ
= ω|Bγ

, ∆(Hγ) = Hγ ⊗Hγ κ
−1, (7.6.18)

in terms of the element κ defined by (7.5.8). Now from (7.6.16) and (7.6.18)
one deduces that it suffices to construct an element K̃ = H−1

γ K′ such that

Ad(‹K)|Bγ
= f |Bγ

,

∆(‹K) = Ad(κ)(1⊗‹K) · (Ad(H−1
γ )ω⊗ id)(R̃) · (‹K⊗ id).

(7.6.19)

In [2, Sec. 6] and, without constraints on γ , in [1, Sec. 7] it is shown that the
element ‹K exists in Û+ and is unique if we impose ε(‹K) = 1. We can give an
explicit formula.

Lemma 7.27 ([11]) The system (7.6.19) is satisfied by the following element‹K ∈ Û+: ‹K= ∑
r∈Z≥0

q2r(r−1)[2r]q!!
(
γ(q−q−1)E2)r

(7.6.20)

where [2r]q!! := [2r]q[2(r−1)]q · · · [2]q[0]q.

We obtain that the element K= T−1Hγ
‹K satisfies (7.6.12) and (7.6.11) and

hence the reflection equation (7.6.13) (all with ψ = id).
The representations π(n) are objects in category Oq,int and hence we can

evaluate K for instance by applying π(2), obtaining an element of End(V (2)).
We recall the matrices defined in (7.5.37). The action on V (2) of the three con-
stituent factors of K is as follows:

π
(2)(T−1) = q−3/4

Ç
0 −1
1 0

å
,

π
(2)(Hγ) = q3/4

Ç
1 0
0 γ

å
,

π
(2)(‹K) =

Ç
1 0
0 1

å
.

(7.6.21)

https://doi.org/10.1017/9781009093750.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009093750.009


7 A Companion to Quantum Groups 269

There is an indeterminacy in Hγ (more precisely, in χγ ) corresponding to the
choice of an overall scalar. We choose the scalar so that Hγ acts in the way
above. It follows that

K := π
(2)(K) =

Ç
0 −γ

1 0

å
(7.6.22)

is a solution to the matrix reflection equation

(K⊗ idV (2))Ř(K⊗ idV (2))Ř = Ř(K⊗ idV (2))Ř(K⊗ idV (2)), (7.6.23)

where Ř = σ ◦R with R given by (7.5.39).

7.6.5 Cylinder Quasitriangularity Twisted by an Algebra
Automorphism

The setup outlined in Section 7.6.3 can be generalized as follows, which allows
us to apply it in the context of Drinfeld–Jimbo quantum groups of non-finite
type, see [1]. It can be directly motivated from the setup in Definition 7.25 by
noting that also the coproduct formula ∆(K) = σ(R)(1⊗K)Rψ(K⊗1), which
is the one actually used in [2, 25], also leads to the reflection equation (7.6.13),
and so a more general ansatz ∆(K)=F−1(1⊗K)Rψ(K⊗1) with F ∈ (A⊗A)×

is tempting.
To make it precise, assume that ψ : A→ A is merely an algebra automor-

phism (so not necessarily a quasitriangular or even a bialgebra automorphism)
and recall the notations Rψ := (ψ⊗ id)(R), Rψψ := (ψ⊗ψ)(R). We can gen-
eralize Definition 7.25 and call (A,R,ψ,K) cylindrically quasitriangular and
K a ψ-twisted universal K-matrix for A if there exists F ∈ (A⊗A)× such that

∆(K) = F−1(1⊗K)Rψ(K⊗1), (7.6.24)

σ(Rψψ) = σ(F)RF−1. (7.6.25)

(The notion of a ψ-cylindrically invariant subalgebra remains the same as in
Definition 7.25.)

Note that the element F appearing in (7.6.11) has to satisfy certain con-
straints. By applying coassociativity (7.2.8) and the counit axiom (7.2.9), we
obtain (

F12(∆⊗ id)(F)
)−1

(1⊗1⊗K)
(
(Ad(F)◦∆◦ψ)⊗ id

)
(R)

=
(
F23(id⊗∆)(F)

)−1
(1⊗1⊗K)

(
((ψ⊗ψ)◦∆

op)⊗ id
)
(R),

ε(K) = (id⊗ ε)(F),

K
(
(ε ◦ψ)⊗ id

)
(R)ε(K) = (ε⊗ id)(F)K,
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which is most easily satisfied by making two assumptions. First of all, recalling
(7.3.8), we assume that F satisfies the cocycle condition

F12(∆⊗ id)(F) = F23(id⊗∆)(F), (7.6.26)

so that by (7.2.9) we obtain

(id⊗ ε)(F) = (ε⊗ id)(F) = ε(K) ∈ k×, (7.6.27)

which we may as well set equal to 1 (by rescaling F and K in a compatible
manner). Such F are called Drinfeld twists (for bialgebras), see [13, 35]. Sec-
ondly, we assume that ψ and F twist the bialgebra structure on A in related
ways:

(ψ⊗ψ)◦∆
op ◦ψ

−1 = Ad(F)◦∆, ε ◦ψ
−1 = ε. (7.6.28)

This extends the assumption made on F in (7.6.25), yielding related twists of
quasitriangular structures on A.

The proof of Theorem 7.26 now produces the following generalization of
the ψ-twisted reflection equation:

(K⊗1)σ(Rψ)(1⊗K)R= σ(Rψψ)(1⊗K)Rψ(K⊗1). (7.6.29)

It is argued in [1, Sec. 9] that, if A = Uq(g) with g a Kac–Moody algebra
of affine type then, for suitable choices of ψ , the image of (7.6.29) in finite-
dimensional modules recovers the matrix equation (7.6.5), or rather a general-
ized version of it, see [9, Eq. (4.15)].
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