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§ 1. Introductory. The formula to be proved is

(b;r)(2x)~r n + %r,l +%r, \b +\ -n+r, ai+r, ... ,av+r:x

r=o r(\b+\-n;r) \\ + \b +r, \ -n+r, 1 +r, Pl +r, ...,Pq+r
(2n)l 2~2n

The formulae required in the proof are the Barnes Integral

n
E(p;«r:q;Ps:x)=^-. I / - 1 rfdf (2)

&~y I " 7 - 1 / r\

and Whipple's Formula (1)

F( «,P , V.l

§ 2. Proof of the Formula. From (2) the i£-function on the left of (1) is equal to

J_ CT{i)r(\+\r
2ri) T{\ + \b-

Here replace t, by £ + r, note that

and it can be seen that the L.H.S. of (1) is equal to

/ - 2 n , 6 , { ;1 \

Now, by (3), the generalised hypergeometric function is equal to

and, noting that r ( | + £)r( | - £) =n/cos t,n,
r{\-n-0r($+n + Q =77/cos (n + £)»r,
r ( | - » - £ + ^ ) f ( | + n +1 - tf>) = 77/cos
r ( | - i+1&) r ( i + 1 - \b) = TT/COS (C - ̂ 6)77,

it is found that the expression reduces to
\-n)r{\)

and from this the result follows.
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Alternative proof. When p ^ q the JE -̂functions in (1) can be expressed as generalised hyper-
geometric functions. On picking out the terms in x~m on the left and summing by means of
formula (3) the term in x~m on the right is obtained. The restriction on p can then be removed
by applying the formula (2)

; <xr : q ; P,: x/\) d\ = E{p + \ ; ocr: q ; Ps: x) (4)
1 o

repeatedly, if necessary.
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