THE BOUNDARY INTEGRAL EQUATION METHOD FOR THE SOLUTION OF A CLASS OF PROBLEMS IN ANISOTROPIC ELASTICITY

DAVID L. CLEMENTS and OSCAR A. C. JONES

(Received 30 September 1980)
(Revised 25 November 1980)

Abstract

A boundary integral procedure for the solution of an important class of problems in anisotropic elasticity is outlined. Specific numerical examples are considered in order to provide a comparison with the standard boundary integral method.

1. Introduction

The boundary integral equation method is now widely recognized as an extremely useful method for the solution of a wide class of elliptic boundary value problems. Specifically, it has been used by Rizzo and Shippy [1] to solve a number of problems in anisotropic elasticity. The procedure used by Rizzo and Shippy was to use the point force solution for an anisotropic material in Betti's reciprocal theorem in order to obtain an appropriate boundary integral equation. This was then used to obtain numerical solutions to certain problems. Here it is shown that if a particular Green's function is used in place of the point force solution then it is possible to obtain a boundary integral equation which is superior to the one used by Rizzo and Shippy for a significant class of problems. In particular, the equation derived in this paper may be used to advantage for problems involving deformations of anisotropic slabs and also for the solution of an important class of geomechanics problems.

[^0]
2. Statement of the problem

Take Cartesian coordinates x_{1}, x_{2}, x_{3} and assume part of the region $x_{2}>0$ (denoted by R) is filled with an anisotropic elastic material with part of the boundary of the material lying in the plane, $x_{2}=0$ (Fig. 1). The part of the boundary which lies in the $x_{2}=0$ plane will be denoted by C_{1} while the remainder of the boundary will be denoted by C_{2}. Also the geometry of the material will be assumed to not vary in the $O x_{3}$ direction. On C_{1} it will be assumed that either the displacement vector u_{k} is zero or the traction vector P_{i} is zero. On C_{2} either the displacement vector or the traction vector is specified. Furthermore the specified displacements or tractions will be required to be independent of x_{3}. The problem is to find the displacement and stress throughout the material.

Fig. 1. General geometry of the problem.

3. Fundamental Equations

The stresses $\sigma_{i j}$ are related to the elastic displacements u_{k} by the equations

$$
\begin{equation*}
\sigma_{i j}=c_{i j k l} \frac{\partial u_{k}}{\partial x_{l}} \tag{3.1}
\end{equation*}
$$

where $i, j, k, l=1,2,3$ and the convention of summing over a repeated Latin suffix is used. The elastic moduli have the symmetry properties

$$
\begin{equation*}
c_{i j k l}=c_{j i k l}=c_{i j l k}=c_{k l i j} \tag{3.2}
\end{equation*}
$$

Substitution of (3.1) into the equilibrium equations yields

$$
\begin{equation*}
c_{i j k l} \frac{\partial^{2} u_{k}}{\partial x_{j} \partial x_{l}}=0 \tag{3.3}
\end{equation*}
$$

Because of the nature of the problem under consideration it is reasonable to suppose that the u_{k} occurring in (3.3) are independent of x_{3}. The system (3.3) then becomes a special case of a more general system considered by Clements and Rizzo [2]. By employing the results in [2] it may be readily shown that an
integral equation which solves the problem under consideration is

$$
\begin{equation*}
\lambda u_{j}\left(\mathbf{x}_{0}\right)+F^{-1} \int_{C}\left[P_{i}(\mathbf{x}) \Phi_{i j}\left(\mathbf{x}, \mathbf{x}_{0}\right)-\Gamma_{i j}\left(\mathbf{x}, \mathbf{x}_{0}\right) u_{i}(\mathbf{x})\right] d s(\mathbf{x})=0 \tag{3.4}
\end{equation*}
$$

where F is an arbitrary constant, $\lambda=1$ if $\mathbf{x}_{0} \in R,\left[\mathbf{x}_{0}=(a, b)\right], C=C_{1}+C_{2}$ and $0<\lambda<1$ if $x_{0} \in C$ and $\Phi_{i j}$ is any solution of the inhomogeneous system

$$
\begin{equation*}
c_{i j n i} \frac{\partial^{2} \Phi_{k m}}{\partial x_{j} \partial x_{l}}=F \delta_{u m} \delta\left(\mathbf{x}-\mathbf{x}_{\hat{0}}\right) \quad \text { for } m=1,2,3 \tag{3.5}
\end{equation*}
$$

where $\delta_{t m}$ and δ denote the Kronecker delta and Dirac delta function respectively. The P_{i} and $\Gamma_{i j}$ occurring in (3.4) are given by

$$
\begin{align*}
P_{i} & =c_{i j k l} \frac{\partial \phi_{k}}{\partial x_{l}} n_{j} \tag{3.6}\\
\Gamma_{i m} & =c_{i j k l} \frac{\partial^{2} \Phi_{k m}}{\partial x_{l}} n_{j} \tag{3.7}
\end{align*}
$$

where P_{i} is the traction vector.
The particular solution of (3.5) given in [1] will be denoted by $\Phi_{k m}^{(1)}$ and $\Gamma_{i m}^{(1)}$ and is given by

$$
\begin{align*}
& \Phi_{k m}^{(1)}=\frac{1}{2 \pi} \Re\left\{\sum_{\alpha} A_{k \alpha} N_{a j} \log \left(z_{\alpha}-c_{\alpha}\right)\right\} d_{j m} \tag{3.8}\\
& \Gamma_{k m}^{(1)}=\frac{1}{2 \pi} \Re\left\{\sum_{\alpha} L_{i j} N_{\alpha p}\left(z_{\alpha}-c_{\alpha}\right)^{-1}\right\} n_{j} d_{p m} \tag{3.9}
\end{align*}
$$

where \Re denotes the real part of a complex number, $z_{\alpha}=x_{1}+\tau_{\alpha} x_{2}$, and $c_{\alpha}=a+\tau_{\alpha} b$, where τ_{α}, for $\alpha=1,2, \ldots, N$, are the N roots with positive imaginary part of the polynomial in τ

$$
\begin{equation*}
\left|c_{i 1 k 1}+c_{i 2 k 1} \tau+c_{i 1 k 2} \tau+c_{i 2 k 2} \tau^{2}\right|=0 \tag{3.10}
\end{equation*}
$$

The $A_{k \alpha}$ occurring in (3.8) are the solutions of the system

$$
\begin{equation*}
\left(c_{i 1 k 1}+c_{i 1 k 2} \tau_{\alpha}+c_{i 2 k 1} \tau_{\alpha}+c_{i 2 k 2} \tau_{\alpha}^{2}\right) A_{k \alpha}=0 \tag{3.11}
\end{equation*}
$$

Also the $N_{\alpha j}, L_{i j \alpha}$ and $d_{r j}$ are defined by

$$
\begin{gathered}
\sum_{\alpha} A_{k \alpha} N_{\alpha j}=\delta_{k j} \\
L_{i j \alpha}=\left(c_{i j k 1}+\tau_{\alpha} c_{i j k 2}\right) A_{k \alpha}
\end{gathered}
$$

and

$$
\begin{equation*}
\delta_{i j} F=-\frac{1}{2} i \sum_{\alpha}\left\{L_{i 2 \alpha} N_{\alpha r}-\bar{L}_{i 2 \alpha} \bar{N}_{\alpha r}\right\} d_{r j} \tag{3.12}
\end{equation*}
$$

Now it is clear that a solution to (3.5) may consist of the particular solution (3.8) plus any solution of the associated homogeneous system (3.3). Here some
solutions of (3.5) are investigated with the aim being to obtain some simplification of (3.4) for the particular class of problems under consideration. In particular, the solution to (3.5) will be written in the form

$$
\begin{equation*}
\Phi_{k m}=\Phi_{k m}^{(1)}+\Phi_{k m}^{(2)}, \quad \Gamma_{k m}=\Gamma_{k m}^{(1)}+\Gamma_{k m}^{(2)} \tag{3.13}
\end{equation*}
$$

where $\Phi_{k m}^{(1)}$ and $\Gamma_{k m}^{(1)}$ are given by (3.8) and (3.9). The extra terms $\Phi_{k m}^{(2)}$ and $\Gamma_{k m}^{(2)}$ will be solutions of (3.3) chosen such that either $\Phi_{k m}\left(x_{1}, 0\right)$ or $\Gamma_{k m}\left(x_{1}, 0\right)$ is zero. Image considerations indicate that appropriate choices are
(i) for $\Phi_{k m}\left(x_{1}, 0\right)=0$,

$$
\begin{equation*}
\Phi_{k m}^{(2)}=-\frac{1}{2 \pi} \Re\left\{\sum_{\alpha} A_{k \alpha} N_{\alpha q} \sum_{\beta} \bar{A}_{q \beta} \bar{N}_{\beta j} \log \left(z_{\alpha}-\bar{c}_{\beta}\right)\right\} d_{j m} \tag{3.14}
\end{equation*}
$$

(ii) for $\Gamma_{i j}\left(x_{1}, 0\right)=0$,

$$
\begin{equation*}
\Gamma_{k m}^{(2)}=-\frac{1}{2 \pi} \Re\left\{\sum_{\alpha} L_{k j \alpha} M_{\alpha k} \sum_{\beta} \bar{L}_{k 2 \beta} \bar{N}_{\beta r}\left(z_{\alpha}-\bar{c}_{\beta}\right)^{-1}\right\} n_{j} d_{r m} \tag{3.15}
\end{equation*}
$$

If in the required solution to (3.3) the displacement vector u_{i} is zero on C_{1} and if $\Phi_{k m}$ is given by (3.13), (3.8) and (3.14) then the integrand along C_{1} in (3.4) is zero and the integration need only be taken along C_{2}. That is, C may be replaced by C_{2} in (3.4). Alternatively, if the traction vector P_{i} is zero on C_{1} and $\Gamma_{k m}$ is defined by (3.13), (3.9) and (3.12) then the integrand along C_{1} is again zero and hence the C in (3.4) may be replaced by C_{2}.

This simplification in the integral equation is not restricted to the case when either the displacement or traction vector is zero on the whole of C_{1}. In other relevant cases the method of superposition may be employed. The procedure for doing this will be detailed in the following section.

4. Particular problems and numerical procedure

In this section some particular two-dimensional elastic problems will be considered in order to demonstrate the usefulness of the formulas derived previously. For the present purposes it will be sufficient to consider some boundary value problems for the system of two equations governing plane deformations of a transversely isotropic material. The elastic behaviour of transversely isotropic materials is characterized by five elastic constants which will be denoted by A, N, F, C and L. If it is assumed that the x_{1}-axis is normal to the transverse planes then the only non-zero $c_{i j k l}$ which are of interest are given by

$$
\begin{aligned}
& c_{1111}=C, \quad c_{1122}=F, \quad c_{2222}=A, \quad c_{1133}=F, \\
& c_{2233}=N, \quad c_{1331}=L, \quad c_{1212}=L, \quad c_{2323}=\frac{1}{2}(A-N) .
\end{aligned}
$$

Thus the system of two governing equations for the displacements u_{1} and u_{2} are

$$
\begin{equation*}
C \frac{\partial^{2} u_{1}}{\partial x_{1}^{2}}+L \frac{\partial^{2} u_{1}}{\partial x_{2}^{2}}+(F+L) \frac{\partial^{2} u_{2}}{\partial x_{1} \partial x_{2}}=0, \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
(F+L) \frac{\partial^{2} u_{1}}{\partial x_{1} \partial x_{2}}+L \frac{\partial^{2} u_{2}}{\partial x_{1}^{2}}+A \frac{\partial^{2} u_{2}}{\partial x_{2}^{2}}=0, \tag{4.2}
\end{equation*}
$$

while (3.10) yields

$$
\begin{equation*}
\left[\frac{1}{2}(A-N) \tau^{2}+L\right]\left[A L \tau^{4}-\left(F^{2}+2 F L-A C\right) \tau^{2}+C L\right]=0, \tag{4.3}
\end{equation*}
$$

so that if τ_{1} is taken to be given by

$$
\begin{equation*}
\tau_{1}^{2}=-2 L /(A-N) \tag{4.4}
\end{equation*}
$$

then τ_{2}^{2} and τ_{3}^{2} are the roots of the quartic factor in (4.3). Substituting into (3.11) it follows that a suitable choice of the $A_{k \alpha}$ is

$$
\left[A_{k \alpha}\right]=\left[\begin{array}{ccc}
0 & \frac{-i(F+L) \tau_{2}}{C+L \tau_{2}^{2}} & \frac{-i(F+L) \tau_{3}}{C+L \tau_{2}^{2}} \tag{4.5}\\
0 & i & i \\
1 & 0 & 0
\end{array}\right]
$$

and hence, from the second equation in (3.12) it follows that

$$
\left[L_{i 2 \alpha}\right]=\left[\begin{array}{ccc}
0 & i L\left[\frac{C-F \tau_{2}^{2}}{C+L \tau_{2}^{2}}\right] & i L\left[\frac{C-F \tau_{3}^{2}}{C+L \tau_{3}^{2}}\right] \tag{4.6}\\
0 & i \tau_{2}\left[A-\frac{F(F+L)}{C+L \tau_{2}^{2}}\right] & i \tau_{3}\left[A-\frac{F(F+L)}{C+L \tau_{3}^{2}}\right] \\
\frac{1}{2} \tau_{1}(A-N) & 0
\end{array}\right]
$$

Formulas for the other matrices such as $N_{\alpha j}$, and $M_{\alpha j}$ may be readily derived but they are rather lengthy and nothing is to be gained by presenting them explicitly here since they are readily calculated on the computer for particular values of the constants A, N, F, C and L.

The problems will be solved by employing two methods.

Method 1

In this case the solution will be obtained by employing the integral equation (3.4) with $\Phi_{k m}$ and $\Gamma_{k m}$ given by (3.13) and $\Phi_{k m}^{(2)}$ and $\Gamma_{k m}^{(2)}$ both zero. Hence, for this method the integral in (3.4) will be taken round the whole boundary $C=C_{1}+C_{2}$.

Method 2

Here the integral equation (3.4) will again be used with $\Phi_{k m}$ and $\Gamma_{k m}$ given by (3.13). However, in this case $\Phi_{k m}^{(2)}$ and $\Gamma_{k m}^{(2)}$ will be obtained through (3.15) and the integral will only be taken along C_{2}.

Three particular problems will be considered.

Problem 1: Test Problem

Consider the region shown in Fig. 2 with the following boundary conditions on the four sides.
$A B: \quad P_{i}=0$.
$\left.\begin{array}{l}B C: \\ C D: \\ D A:\end{array}\right\} \quad \frac{u_{k}}{l p_{0}}$ given by (4.8) below.

Fig. 2. Geometry for the test problem.

The problem is to use Methods 1 and 2 to find a numerical solution to (4.1) and (4.2) which satisfies the above boundary conditions. These results may then be compared with those obtained from the analytical solution which is

$$
\begin{align*}
\frac{u_{k}}{l p_{0}}=-\mathscr{R}\left[\frac { 1 } { \pi i } \sum _ { \alpha = 1 } ^ { 2 } A _ { k \alpha } M _ { \alpha 2 } \left\{\left(\frac{z_{\alpha}}{l}-\frac{a_{2}}{l}\right)\right.\right. & \log \left(\frac{z_{\alpha}}{l}-\frac{a_{2}}{l}\right) \\
& \left.\left.-\left(\frac{z_{\alpha}}{l}-\frac{a_{1}}{l}\right) \log \left(\frac{z_{\alpha}}{l}-\frac{a_{1}}{l}\right)\right\}\right] \tag{4.8}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{P_{i}}{p_{0}}=-\Re\left[\frac{1}{\pi i} \sum_{\alpha=1}^{2} L_{i j \alpha} M_{\alpha 2} \log \left\{\frac{z_{\alpha}-a_{2}}{z_{\alpha}-a_{1}}\right\}\right] n_{j} \tag{4.9}
\end{equation*}
$$

Problem 2: Deformations of a slab on a rigid foundation

Consider the elastic slab on a rigid foundation with a load on the opposite face as shown in Fig. 3. The boundary conditions are
$A B \quad: \quad \frac{P_{i}}{p_{0}}= \begin{cases}1 & \text { for } 0.35<\left|x_{1} / l\right|<0.85, \\ 0 & \text { for } 0.85<\left|x_{1} / l\right|<1.1 \text { and } 0.1<\left|x_{1} / l\right|<0.35,\end{cases}$
$B C: P_{i}=0$,
$C D: u_{k}=0$,
and
$D A: P_{i}=0$.

Fig. 3. Geometry for a slab on a rigid foundation.
The problem is to use Methods 1 and 2 to find a numerical solution to (4.1) and (4.2) which satisfies the above boundary conditions. No simple analytical solution to this problem exists.

It is necessary at this point to further detail the implementation of Method 2 for this problem. Here the superposition procedure is employed. That is, the desired solution is written as the sum of two solutions in the form

$$
\begin{equation*}
u_{k}=u_{k}^{(1)}+u_{k}^{(2)}, \quad P_{i}=P_{i}^{(1)}+P_{i}^{(2)}, \tag{4.11}
\end{equation*}
$$

where

$$
\begin{align*}
& \frac{u_{k}^{(1)}}{l p_{0}}=-\Re\left[\frac { 1 } { \pi i } \sum _ { \alpha = 1 } ^ { 2 } A _ { k \alpha } M _ { \alpha 2 } \left\{\left(\frac{z_{\alpha}}{l}-\frac{0.85}{l}\right) \log \left(\frac{z_{\alpha}}{l}-\frac{0.85}{l}\right)\right.\right. \\
&\left.\left.-\left(\frac{z_{\alpha}}{l}-\frac{0.35}{l}\right) \log \left(\frac{z_{\alpha}}{l}-\frac{0.35}{l}\right)\right\}\right] \tag{4.12}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{P_{i}^{(1)}}{p_{0}}=-\Re\left[\frac{1}{\pi i} \sum_{\alpha=1}^{2} L_{i j \alpha} M_{\alpha 2} \log \left\{\frac{z_{\alpha}-0.85}{z_{\alpha}-0.35}\right\}\right] n_{j} . \tag{4.13}
\end{equation*}
$$

This solution satisfies the conditions on $A B$. In order to satisfy the remaining boundary conditions in the other three sides Method 2 is employed to obtain $\phi^{(2)}$ and $P_{i}^{(2)}$ in such a way as to compensate for the effect of $\phi^{(1)}$ and $P_{1}^{(1)}$. That is,
the boundary conditions for $\phi^{(2)}$ on the three sides are

$$
\begin{array}{ll}
B C: & P_{i}^{(2)}=-P_{i}^{(1)} \\
C D: & u_{k}^{(2)}=-u_{k}^{(1)} \tag{4.14}\\
D A: & P_{i}^{(2)}=-P_{i}^{(1)}
\end{array}
$$

The sum of the two solutions then gives the solution which satisfies the given boundary conditions.

Problem 3: Deformations of a supported slab

Consider the elastic slab resting on two supports with a load on the opposite face as shown in Fig. 4. The boundary conditions are
and

$$
D A \quad: \quad P_{i} \quad=0
$$

Fig. 4. Geometry for a supported slab.
Again the problem is to use Methods 1 and 2 to find a numerical solution to (4.1) and (4.2) which satisfies the above boundary conditions. No simple analytical solution to this problem exists.

As in Problem 2 the superposition principle may be used to solve the problem. The procedure is a simple modification of the one outlined for Problem 2.

Now consider the numerical procedure.

Method 1. Letting $\phi_{1}=1$ and $\phi_{2}=0$ with $F=1$ in equations (3.4) a value for λ is obtained as

$$
\begin{equation*}
\lambda^{(1)}=\int_{C} \Gamma_{11}\left(\mathbf{x}, \mathbf{x}_{0}\right) d s(\mathbf{x}) ; \quad 0=\int_{C} \Gamma_{12}\left(\mathbf{x}, \mathbf{x}_{0}\right) d s(\mathbf{x}) . \tag{4.16a}
\end{equation*}
$$

$$
\begin{align*}
& A B \quad: \quad \frac{P_{i}}{p_{0}}= \begin{cases}1 & \text { for } 0.35<\left|x_{1} / l\right|<0.85, \\
0 & \text { for } 0.85<\left|x_{1} / l\right|<1.1 \text { and } 0.1<\left|x_{1} / l\right|<0.35,\end{cases} \\
& B C: P_{i}=0 \text {, } \\
& C D: u_{k}=0 \text { for } 1.0<\left|x_{1} / l\right|<1.1 \text { and } 0.1<\left|x_{1} / l\right|<0.2 \text {, } \tag{4.15}\\
& P_{1}=0 \text { for } 0.2<\left|x_{1} / l\right|<1.0 \text {, }
\end{align*}
$$

Similarly letting $\phi_{1}=0$ and $\phi_{2}=1$,

$$
\begin{equation*}
0=\int_{C} \Gamma_{21}\left(\mathbf{x}, \mathbf{x}_{0}\right) d s(\mathbf{x}) ; \quad \lambda^{(2)}=\int_{C} \Gamma_{22}\left(\mathbf{x}, \mathbf{x}_{0}\right) d s(\mathbf{x}) \tag{4.16b}
\end{equation*}
$$

Substituting these values into (3.4) yields

$$
\begin{equation*}
\int_{C} P_{i}(x) \Phi_{i j}\left(\mathbf{x}, \mathbf{x}_{0}\right) d s(\mathbf{x})=\int_{C} \Gamma_{i j}\left(\mathbf{x}, \mathbf{x}_{0}\right)\left[\phi_{i}(\mathbf{x})-\phi_{i}\left(\mathbf{x}_{0}\right)\right] d s(\mathbf{x}) \tag{4.17}
\end{equation*}
$$

The numerical technique used to solve equation (4.17) consists of replacing the integration by summation so that a system of linear equations is obtained. This is then solved by standard matrix inversion techniques.

Following Symm [3], the boundary C is divided into N segments from $\mathbf{q}_{\boldsymbol{k}-1}$ to $\mathbf{q}_{k}, k=1,2, \ldots, N$, with $\mathbf{q}_{0}=\mathbf{q}_{N}$. The midpoint of this segment is $\overline{\mathbf{q}}_{\boldsymbol{k}}$. If the integrals in (4.17) are replaced by sums then (4.18) is obtained

$$
\begin{align*}
& \sum_{m=1}^{N} \int_{\mathbf{q}_{m-1}}^{\mathbf{q}_{m}} P_{i}(\mathbf{x}) \Phi_{i j}\left(\mathbf{x}, \mathbf{x}_{0}\right) d s(\mathbf{x}) \\
&= \sum_{m=1}^{N} \int_{\mathbf{q}_{m-1}}^{\mathbf{q}_{m}} \Gamma_{i j}\left(\mathbf{x}, \mathbf{x}_{0}\right) \phi_{i}(\mathbf{x}) d s(\mathbf{x}) \\
&-\phi_{i}\left(\mathbf{x}_{0}\right) \sum_{m=1}^{N} \int_{\mathbf{q}_{m-1}}^{\mathbf{q}_{m}} \Gamma_{i j}\left(\mathbf{x}, \mathbf{x}_{0}\right) d s(\mathbf{x}) \tag{4.18}
\end{align*}
$$

The segments on which $P_{1}(\mathbf{x}), i=1,2$, are known, are renumbered $1,2, \ldots, r$ and the segments on which $\phi_{i}(x), i=1,2$, are known, renumbered $r+1, \ldots, N$. Taking x_{0} to be each of the "midpoints" $\overline{\mathbf{q}}_{k}$ in turn will yield $2 N$ linear algebraic equations for $\phi_{i}\left(\overline{\mathbf{q}}_{1}\right), \ldots, \phi_{i}\left(\overline{\mathbf{q}}_{r}\right), P_{i}\left(\overline{\mathbf{q}}_{r+1}\right), \ldots, P_{i}\left(\overline{\mathbf{q}}_{N}\right), i=1,2$. The integral equation (4.18) then becomes

$$
\begin{align*}
& \sum_{m=r+1}^{N} P_{i}\left(\overline{\mathbf{q}}_{m}\right) \int_{\mathbf{q}_{m-1}}^{\mathbf{q}_{m}} \Phi_{i j}\left(\mathbf{x}, \overline{\mathbf{q}}_{l}\right) d s(\mathbf{x})-\sum_{\substack{m=1 \\
m \neq l}}^{r} \phi_{i}\left(\overline{\mathbf{q}}_{m}\right) \int_{\mathbf{q}_{m-1}}^{\mathbf{q}_{m}} \Gamma_{i j}\left(\mathbf{x}, \overline{\mathbf{q}}_{l}\right) d s(\mathbf{x}) \\
&= \sum_{\substack{m=r+1 \\
m \neq l}}^{N} \int_{\mathbf{q}_{m-1}}^{\mathbf{q}_{m}} \Gamma_{i j}\left(\mathbf{x}, \overline{\mathbf{q}}_{l}\right) \phi_{i}(\mathbf{x}) d s(\mathbf{x}) \\
&-\phi_{i}\left(\overline{\mathbf{q}}_{l}\right) \sum_{\substack{m=1 \\
m \neq 1}}^{N} \int_{\mathbf{q}_{m-1}}^{\mathbf{q}_{m}} \Gamma_{i j}\left(\mathbf{x}, \overline{\mathbf{q}}_{l}\right) d s(\mathbf{x}) \tag{4.19}
\end{align*}
$$

Equation (4.19) may be rewritten in matrix form as

$$
\begin{equation*}
\sum_{i=1}^{2} A_{i j} X_{i}=B_{j}, \quad j=1,2 \tag{4.20}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{i j}=\left[S_{k l}\right]^{i j}, \quad X_{i}=\left[x_{k}\right]^{\prime}, \quad B_{j}=\left[r_{l}\right]^{j} \tag{4.21}
\end{equation*}
$$

The elements of these matrices are

$$
\begin{align*}
& S_{k l}^{i j}= \begin{cases}\int_{\mathbf{q}_{k-1}}^{\mathbf{q}_{k}} \Gamma_{i j}\left(\mathbf{x}, \overline{\mathbf{q}}_{l}\right) d s(\mathbf{x}) & \text { if } l \neq k \text { and } k \leqslant r, \\
\sum_{\substack{m=1 \\
m \neq 1}}^{N} \int_{\mathbf{q}_{m-1}}^{\mathbf{q}_{m}} \Gamma_{i j}\left(\mathbf{x}, \overline{\mathbf{q}}_{l}\right) d s(\mathbf{x}) & \text { if } l=k \text { and } k \leqslant r, \\
\int_{\mathbf{q}_{k-1}}^{\mathbf{q}_{k}} \Phi_{i j}\left(\mathbf{x}, \overline{\mathbf{q}}_{l}\right) d s(\mathbf{x}) & \text { if } k>r,\end{cases} \tag{4.22}\\
& x_{k}^{i}= \begin{cases}\phi_{i}\left(\overline{\mathbf{q}}_{k}\right) & \text { if } k \leqslant r, \\
P_{i}\left(\overline{\mathbf{q}}_{k}\right) & \text { if } k>r,\end{cases} \tag{4.23}
\end{align*}
$$

and

$$
\begin{align*}
r_{l}^{i}= & \sum_{\substack{m=r+1 \\
m \neq l}}^{N} \int_{\mathbf{q}_{m-1}}^{\mathbf{q}_{m}} \Gamma_{i j}\left(\mathbf{x}, \overline{\mathbf{q}}_{l}\right) \phi_{i}(\mathbf{x}) d s(\mathbf{x}) \\
& -\sum_{m=1}^{r} \int_{\mathbf{q}_{m-1}}^{\mathbf{q}_{m}} P_{i}(\mathbf{x}) \Phi_{i j}\left(\mathbf{x}, \overline{\mathbf{q}}_{l}\right) d s(\mathbf{x}) \\
& -\xi \phi_{i}\left(\overline{\mathbf{q}}_{l}\right) \sum_{\substack{m=1 \\
m \neq l}}^{N} \int_{\mathbf{q}_{m-1}}^{\mathbf{q}_{m}} \Gamma_{i j}\left(\mathbf{x}, \overline{\mathbf{q}}_{l}\right) d s(\mathbf{x}) \tag{4.24}
\end{align*}
$$

where

$$
\xi= \begin{cases}1 & \text { if } l>r \\ 0 & \text { if } l \leqslant r .\end{cases}
$$

When using equation (3.8) for $\Phi_{i j}$ it is necessary to be careful when evaluating the integral of $\Phi_{i j}$ as the function $\Phi_{i j}$ has a logarithmic singularity at $x=x_{0}$.

When the integration is taking place along the segment containing the current value of x_{0} the singularity is struck. This can be overcome by considering the segment as two separate sections either side of x_{0}. The integral then becomes

$$
\begin{align*}
& 2 \pi \int_{\mathbf{q}_{k-1}}^{\mathbf{q}_{k}} \Phi_{i j}\left(\mathbf{x}, \overline{\mathbf{q}}_{k}\right) d s(\mathbf{x}) \\
& \quad=\Re\left[\sum_{\alpha=1}^{2} A_{i \alpha} N_{\alpha m}\left|\mathbf{q}_{k}-\mathbf{q}_{k-1}\right|\left(\log \frac{1}{2}\left\{\left(x_{k}-x_{k-1}\right)+\tau_{\alpha}\left(y_{k}-y_{k-1}\right)\right\}-1\right)\right], \tag{4.25}
\end{align*}
$$

where

$$
\mathbf{q}_{k}=\left(x_{k}, y_{k}\right)
$$

If the integral is taken over any other segment then it can be approximated by Simpson's Rule.

Method 2. Consider again equations (4.16)(a) and (b). If $\Gamma_{i j}$ and $\Phi_{i j}$ are chosen as given in equations (3.13), and (3.15), then

$$
\begin{equation*}
\lambda^{(1)}=\int_{C_{1}} \Gamma_{11}\left(\mathbf{x}, \mathbf{x}_{0}\right) d s(\mathbf{x})+\int_{C_{2}} \Gamma_{11}\left(\mathbf{x}, \mathbf{x}_{0}\right) d s(\mathbf{x}), \tag{4.26}
\end{equation*}
$$

and

$$
\lambda^{(2)}=\int_{C_{1}} \Gamma_{22}\left(\mathbf{x}, \mathbf{x}_{0}\right) d s(\mathbf{x})+\int_{C_{2}} \Gamma_{22}\left(\mathbf{x}, \mathbf{x}_{0}\right) d s(\mathbf{x}),
$$

where C_{1} and C_{2} are different segments of the boundary C as given in Fig. 1.
However $\Gamma_{11}\left(\mathbf{x}, \mathbf{x}_{0}\right)$ and $\Gamma_{22}\left(\mathbf{x}, \mathbf{x}_{0}\right)$ are selected so that they are zero along C_{1}. The values of λ are therefore

$$
\lambda^{(1)}=\int_{C_{2}} \Gamma_{11}\left(\mathbf{x}, \mathbf{x}_{0}\right) d s(\mathbf{x}),
$$

and

$$
\begin{equation*}
\lambda^{(2)}=\int_{C_{2}} \Gamma_{22}\left(\mathbf{x}, \mathbf{x}_{0}\right) d s(\mathbf{x}) . \tag{4.27}
\end{equation*}
$$

Since $P_{i}(\mathbf{x})=0$ on $C_{1}, \Gamma_{i j}\left(\mathbf{x}, \mathbf{x}_{0}\right)$ is chosen to be zero along C_{1} and so the integral equation of 3.4 becomes

$$
\begin{equation*}
\int_{C_{2}} P_{i}(\mathbf{x}) \Phi_{i j}\left(\mathbf{x}, \mathbf{x}_{0}\right) d s(\mathbf{x})=\int_{C_{2}} \Gamma_{i j}\left(\mathbf{x}, \mathbf{x}_{0}\right)\left[\phi_{i}(\mathbf{x})-\phi_{i}\left(\mathbf{x}_{0}\right)\right] d s(\mathbf{x}), \tag{4.28}
\end{equation*}
$$

and the method proceeds in exactly the same way as Method 1, except that the boundary is now C_{2} instead of C.

5. Numerical results

In order to obtain some numerical results it is necessary to consider a particular transversely isotropic material. Here, for illustrative purposes only, the constants for a crystal of titanium will be used. These constants are $A=16.2$, $N=9.2, F=6.9, C=18.1$ and $L=4.67$. If each of these values is multiplied by 10^{11} then the units for the constants are dynes $/ \mathrm{cm}^{2}$.

Problem 1 admits the analytic solution given by (4.8) and (4.9), which can be compared with the numerical solutions obtained from Methods 1 and 2. These results are presented in Tables 1 and 2 with numerical values given for every fourth segment in Table 1 and every eighth segment in Table 2.

Table 1
Numerical and analytic solutions using a 24 point boundary

POINT		NUMERICAL SOLUTION				ANALYTIC SOLUTION	
		MET	D I	MET	D II		
(x, y)		P_{1}	P_{2}	P_{1}	P_{2}	P_{1}	P_{2}
1.100	. 063	-. 01695	. 02514	-. 02357	-. 00654	-. 02613	-. 00002
1.100	. 438	-. 13756	. 04706	-. 13815	. 04848	-. 13857	. 04730
. 663	. 500	. 02905	-. 00903	. 02767	-. 00797	. 02752	-. 00794
. 163	. 500	. 01623	-. 00241	. 01532	-. 00307	. 01371	-. 00294
. 100	. 063	. 01091	-. 01345	. 00629	. 00453	. 00815	. 00055

Table 2
Numerical and analytic solutions using a 48 point boundary
POINT
NUMERICAL SOLUTION
ANALYTIC SOLUTION
METHOD I METHOD II

(x, y)		P_{1}	$P_{\mathbf{2}}$	$\boldsymbol{P}_{\mathbf{1}}$	$\boldsymbol{P}_{\mathbf{2}}$	$\boldsymbol{P}_{\mathbf{1}}$	$\boldsymbol{P}_{\mathbf{2}}$
1.100	.031	-.00676	.02360	-.01299	-.00725	-.01313	-.00102
1.100	.469	-.14198	.05237	-.14246	.05283	-.14307	.05233
.631	.500	.02707	-.00782	.02654	-.00750	.02623	-.00741
.131	.500	.01518	-.00255	.01467	-.00279	.01318	-.00278
.100	.031	.00638	-.01289	.00273	.00454	.00408	.00071

Both methods give reasonably close answers when the error introduced by the integration method is taken into account, however Method 2 is superior to Method 1, in the accuracy of the solutions. The boundary was discretised into 24 and 48 points for the test case and convergence to the analytic result is evident as more boundary points are taken for both methods.

The size of the matrices $A_{i j}$ given in (4.20) depends on the number of segments used for the boundary on which the integration takes place.

Because for some mixed boundary value problems, the determinants of the individual matrices $A_{i j}$ can be extremely small in magnitude, a partitioned matrix Q, made up of the four $A_{i j}$ matrices is used to solve the system given in (4.20).

Discretising the boundary into 48 points gives a 96×96 coefficient matrix Q when Method 1 is employed, but this reduces to a 64×64 matrix when Method 2 is employed. This results in a 39% decrease in running time for Method 2 compared with Method 1.

Problems 2 and 3 have no analytic solution, so the only comparison possible is between the two numerical solutions. The results are given using 24 points around the boundary. Since the results are symmetric or asymmetric only results for one side and half the top are presented.

Table 3
Results from a slab on a solid foundation (Fig. 3)
POSITION SOIUTION METHOD 2 SOLUTION METHOD! DIFFERENCE

(x, y)	X_{1}	X_{2}	X_{i}^{*}	$X_{\mathbf{2}}^{*}$	$X_{1}^{*}-X_{1}$	$X_{2}^{*}-X_{\mathbf{2}}$
$\mathbf{1 . 1 , 0 . 0 6 3}$.00069	.00280	.00239	.00353	.00170	.00073
$\mathbf{1 . 1 , 0 . 1 8 8}$.00520	.00290	.00566	.00370	.00046	.00080
$\mathbf{1 . 1 , 0 . 3 1 3}$.00573	.00366	.00600	.00381	.00027	.00015
$\mathbf{1 . 1 , 0 . 4 3 8}$.00278	.00294	.00310	.00261	.00032	-.00033
$1.038,0.5$	-.20765	-.39383	-.22265	-.39453	-.01500	-.00070
$\mathbf{0 . 9 1 3 , 0 . 5}$	-.18607	-.38931	-.18843	-.39210	-.00236	-.00279
$\mathbf{0 . 7 8 8 , 0 . 5}$	-.14364	-.56311	-.14572	-.55400	-.00208	+.00911
$\mathbf{0 . 6 6 3 , 0 . 5}$	-.04683	-.67385	-.05463	-.65970	-.00780	+.01415

Table 4
Results from a simply supported slab (Fig. 4).
X is the unknown, either ϕ or P.
POSITION SOLUTION METHOD 2 SOLUTION METHOD 1 DIFFERENCE

(x, y)	X_{1}	$\boldsymbol{X}_{\mathbf{2}}$	$X_{\mathbf{i}}^{*}$	$X_{\mathbf{2}}^{*}$	$X_{i}^{*}-X_{1}$	$X_{\mathbf{Z}}^{*}-X_{\mathbf{2}}$
$0.538, .5$	-.00350	.05263	-.00344	.05686	.00006	.00423
$0.413,0.5$	-.00910	.04366	-.00895	.04779	.00015	.00413
$0.288,0.5$	-.01015	.02629	-.01000	.02962	.00015	.00333
$0.163,0.5$	1.05812	-1.98597	1.06367	-2.01966	.00555	.03369
$0.1,0.438$	-.00610	.00624	-.00625	.00611	.00015	.00013
$0.1,0.313$	-.00405	.01309	-.00404	.04468	.00004	.00159
$0.1,0.188$	+.00169	.01603	.00082	.01928	.00087	.00325
$0.1,0.063$.01337	.01865	.00879	.02107	.00458	.00242

It should be noted that the numerical procedure used here to solve the integral equation (4.17) may be improved upon in several ways. For example, piecewise quadratic polynomial representations (see for example Cruse in reference [4], Fairweather et al. [6]) for the solution of such integral equations may be employed to yield improved accuracy with cruder discretizations.

Finally, it is of interest to note that the type of approach employed in this paper is essentially in the same spirit as some work by Cruse in references [4], [5] who successfully employed a somewhat similar procedure for the solution of certain problems in isotropic elasticity.

References

[1] F. J. Rizzo and D. J. Shippy, "A method for stress determination in plane anisotropic elastic bodies", J. Composite Materials 4 (1970), 36-61.
[2] D. L. Clements and F. J. Rizzo, "A method for the numerical solution of boundary value problems governed by second-order elliptic systems", J. Inst. Maths. Applics. 22 (1978), 197-202.
[3] G. T. Symm, "Integral equation methods in potential theory", Proc. Roy. Soc. A275 (1963), 33-46.
[4] T. A. Cruse and J. C. Lachat (eds.), Proceedings of the international symposium on innovative numerical analysis in applied engineering science (Versailles, France, 1977).
[5] T. A. Cruse and F. J. Rizzo (eds.), Boundary integral equation method: computational applications in applied mechanics (A. S. M. E. Proceedings, AMD Vol. II 1975).
[6] Graeme Fairweather, Frank J. Rizzo, David J. Shippy and Yensen S. Wu, "On the numerical solution of two-dimensional potential problems by an improved boundary integral equation method", J. Comp. Phys. 31 (1979), 96-1 12.

Department of Applied Mathematics
University of Adelaide
Adelaide
South Australia 5000

[^0]: ©Copyright Australian Mathematical Society 1981

