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Abstract

A boundary integral procedure for the solution of an important class of problems in
anisotropic elasticity is outlined. Specific numerical examples are considered in order to
provide a comparison with the standard boundary integral method.

1. Introduction

The boundary integral equation method is now widely recognized as an ex-
tremely useful method for the solution of a wide class of elliptic boundary value
problems. Specifically, it has been used by Rizzo and Shippy [1] to solve a
number of problems in anisotropic elasticity. The procedure used by Rizzo and
Shippy was to use the point force solution for an anisotropic material in Betti's
reciprocal theorem in order to obtain an appropriate boundary integral equa-
tion. This was then used to obtain numerical solutions to certain problems. Here
it is shown that if a particular Green's function is used in place of the point force
solution then it is possible to obtain a boundary integral equation which is
superior to the one used by Rizzo and Shippy for a significant class of problems.
In particular, the equation derived in this paper may be used to advantage for
problems involving deformations of anisotropic slabs and also for the solution of
an important class of geomechanics problems.
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2. Statement of the problem

395

Take Cartesian coordinates xx, x2, x3 and assume part of the region x2 > 0
(denoted by R) is filled with an anisotropic elastic material with part of the
boundary of the material lying in the plane, x2 = 0 (Fig. 1). The part of the
boundary which lies in the x2 = 0 plane will be denoted by Cx while the
remainder of the boundary will be denoted by C2. Also the geometry of the
material will be assumed to not vary in the Ox3 direction. On C, it will be
assumed that either the displacement vector uk is zero or the traction vector P, is
zero. On C2 either the displacement vector or the traction vector is specified.
Furthermore the specified displacements or tractions will be required to be
independent of x3. The problem is to find the displacement and stress
throughout the material.

* 2

Fig. 1. General geometry of the problem.

3. Fundamental Equations

The stresses a, are related to the elastic displacements uk by the equations

9M
(3-1)

where i,j, k, I = 1, 2, 3 and the convention of summing over a repeated Latin
suffix is used. The elastic moduli have the symmetry properties

cijkl ~ Cjikl cijlk = C khj-

Substitution of (3.1) into the equilibrium equations yields

cijkl = 0. (3-3)

Because of the nature of the problem under consideration it is reasonable to
suppose that the uk occurring in (3.3) are independent of x3. The system (3.3)
then becomes a special case of a more general system considered by Clements
and Rizzo [2]. By employing the results in [2] it may be readily shown that an
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396 David L. Clements and Oscar A. C. Jones 131

integral equation which solves the problem under consideration is

AH/XO) + F - ' / j P,(x)*v(x, xo) - r,y(x, Xo)M,.(x)] ds(x) = 0, (3.4)

where F is an arbitrary constant, A = 1 if XQ G R, [X,, = (a, b)], C = C, + C2

and 0 < A < 1 if XQ e C and $/y is any solution of the inhomogeneous system

tor

where 8,m and 8 denote the Kronecker delta and Dirac delta function respec-
tively. The P, and F^ occurring in (3.4) are given by

(3.7)

where Pt is the traction vector.
The particular solution of (3.5) given in [1] will be denoted by <&ĵ  and iV

and is given by

4 l o g ( z« ~ c « ) } ^ - (3-8)

where 91 denotes the real part of a complex number, za = xx + rax2, and
ca = a + Tab, where ra, for a = I, 2,. . . , N, are the iV roots with positive
imaginary part of the polynomial in T

k l * l + Cn*lT + C-1*2T + C,^2T
2| = 0. (3.10)

The Aka occurring in (3.8) are the solutions of the system

(c,i*i + cnk2Ta + caklra + cak2T^)Aka = 0. (3.11)

Also the Nv; Lija and drj are defined by

a

I-ija ~ \cijk\ "*• TaCijkl)^ka'

and

« ^ = - l i l [Lna*~ - L^N^drj. (3.12)

Now it is clear that a solution to (3.5) may consist of the particular solution
(3.8) plus any solution of the associated homogeneous system (3.3). Here some
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[4] Boundary integrals and anisotropy 397

solutions of (3.5) are investigated with the aim being to obtain some simplifi-
cation of (3.4) for the particular class of problems under consideration. In
particular, the solution to (3.5) will be written in the form

**, = *KJ + * & r ^ - m> + rg;, (3.13)
where *£> and rj£> are given by (3.8) and (3.9). The extra terms &&, and r£>
will be solutions of (3.3) chosen such that either ^^(.x,, 0) or Tkm(xly 0) is zero.
Image considerations indicate that appropriate choices are

(i) for **„(*„ 0) = 0,

{ ? 2 * » P}Jm, (3.14)
(ii) for I-,/*,, 0) = 0,

If in the required solution to (3.3) the displacement vector ut is zero on Cx and
if <&km is given by (3.13), (3.8) and (3.14) then the integrand along C, in (3.4) is
zero and the integration need only be taken along C2. That is, C may be
replaced by C2 in (3.4). Alternatively, if the traction vector Pt is zero on C, and
Tkm is defined by (3.13), (3.9) and (3.12) then the integrand along C, is again
zero and hence the C in (3.4) may be replaced by C2.

This simplification in the integral equation is not restricted to the case when
either the displacement or traction vector is zero on the whole of C\. In other
relevant cases the method of superposition may be employed. The procedure for
doing this will be detailed in the following section.

4. Particular problems and numerical procedure

In this section some particular two-dimensional elastic problems will be
considered in order to demonstrate the usefulness of the formulas derived
previously. For the present purposes it will be sufficient to consider some
boundary value problems for the system of two equations governing plane
deformations of a transversely isotropic material. The elastic behaviour of
transversely isotropic materials is characterized by five elastic constants which
will be denoted by A, N, F, C and L. If it is assumed that the jc,-axis is normal
to the transverse planes then the only non-zero c-tjU which are of interest are
given by

C2233

= C> C1122 = F* C2222 = ^ ' c l 133 = F>

= N> <M331 = U C m 2 = L, C2323 = {(A - N).
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398 David L. Clements and Oscar A. C. Jones [ s)

Thus the system of two governing equations for the displacements M, and u2 are

dx2

3 ^

3f '
and

(F
3«, 3^2
—-*• + A—\ = 0,

while (3.10) yields

[\(A - N)T2 + L][ALT4 - (F2 + 2FL - AC)r2 + CL] = 0,

so that if T, is taken to be given by

T2 = -2L/ (A - N),

(4.1)

(4.2)

(4.3)

(4.4)

then T | and r2 are the roots of the quartic factor in (4.3). Substituting into (3.11)
it follows that a suitable choice of the Aka is

L)T

C + LT\

I

0

L)T3

0

(4.5)

and hence, from the second equation in (3.12) it follows that

iL

A -

C- Fr\

C + hr\

F(F + L)

iL
C- FT2

C+ LT\

- N)

C + Li\

0

f F(F + L)
IT, \ A —

3 C + LT\

0

(4.6)
Formulas for the other matrices such as N^, and M^ may be readily derived but
they are rather lengthy and nothing is to be gained by presenting them explicitly
here since they are readily calculated on the computer for particular values of
the constants A, N, F, C and L.

The problems will be solved by employing two methods.

Method 1
In this case the solution will be obtained by employing the integral equation

(3.4) with ®km and T,^ given by (3.13) and 4> ,̂ and 1^, both zero. Hence, for
this method the integral in (3.4) will be taken round the whole boundary
C = Ct + C2.
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Method 2
Here the integral equation (3.4) will again be used with $ t m and F ^ given by

(3.13). However, in this case 4>^ and F^, will be obtained through (3.15) and
the integral will only be taken along C2.

Three particular problems will be considered.

Problem 1: Test Problem
Consider the region shown in Fig. 2 with the following boundary conditions

on the four sides.

AB: P, = 0.

-— given by (4.8) below.
iP

(4.7)

0

A
0 .1

C

B
0.5

Fig. 2. Geometry for the test problem.

The problem is to use Methods 1 and 2 to find a numerical solution to (4.1) and
(4.2) which satisfies the above boundary conditions. These results may then be
compared with those obtained from the analytical solution which is

_( i_ i W i_i ) ) l (4.8)

and

Po "j- (4.9)

Problem 2: Deformations of a slab on a rigid foundation
Consider the elastic slab on a rigid foundation with a load on the opposite

face as shown in Fig. 3. The boundary conditions are
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400 David L. Clements and Oscar A. C. Jones [71

AB : — =

BC
CD
and
DA

Po
Ps

1 for 0.35 < \xx/l\ < 0.85,
0 for 0.85 < \xjl\ < 1.1 and 0.1 < |JC,//| < 0.35,

°> (4.10)
0,

= 0.

A

D

LOADING

. l l l l l l l

SLAB

It B

><2

C

Fig. 3. Geometry for a slab on a rigid foundation.

The problem is to use Methods 1 and 2 to find a numerical solution to (4.1) and
(4.2) which satisfies the above boundary conditions. No simple analytical
solution to this problem exists.

It is necessary at this point to further detail the implementation of Method 2
for this problem. Here the superposition procedure is employed. That is, the
desired solution is written as the sum of two solutions in the form

= 4°
where

1 4 . M if 'a 0.8

Pi = pp

0.85

(4.11)

0.85

0.35lza 0.35 V / z a 0.3
" I T - — H T — 7

and

Po
- 2 LiJaMa2 log
•ni

- 0-85

- 0.35

, (4-12)

(4.13)

This solution satisfies the conditions on AB. In order to satisfy the remaining
boundary conditions in the other three sides Method 2 is employed to obtain <J>(2)

and .P,(2) >n s u c n a waY a s t o compensate for the effect of <f>(1) and P\X). That is,
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the boundary conditions for <j>(2) on the three sides are

CD: i/Jt2) = -M^ 0 ,

and DA: Pj2) = -Pjl).

The sum of the two solutions then gives the solution which satisfies the given
boundary conditions.

Problem 3: Deformations of a supported slab
Consider the elastic slab resting on two supports with a load on the opposite

face as shown in Fig. 4. The boundary conditions are

^ _ f 1 for 0.35 < |x , / / | <0.85,

To ~ [0 for 0.85 < |x , / / | < 1.1 and 0.1 < |x , / / | < 0.35,

' ' - 0 > (4. . 5 )

AB

BC

CD

and
DA P.

= 0 for 1.0 < \xx/l\ < 1.1 and 0.1 <

= 0 for 0.2 < |x,//| < 1.0,

< 0.2,

0.

LOADING

A I l l l l l l l B

Fig. 4. Geometry for a supported slab.

Again the problem is to use Methods 1 and 2 to find a numerical solution to
(4.1) and (4.2) which satisfies the above boundary conditions. No simple
analytical solution to this problem exists.

As in Problem 2 the superposition principle may be used to solve the problem.
The procedure is a simple modification of the one outlined for Problem 2.

Now consider the numerical procedure.

Method 1. Letting <£, = 1 and <j>2 = 0 with F = 1 in equations (3.4) a value for
A is obtained as

A<'> = [ r n ( x , xo) ds(x); 0 = ( r i 2 (x , X,,) <fc(x). (4.16a)
Jc Jc
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402 David L. Clements and Oscar A. C. Jones (91

Similarly letting <f>, = 0 and <j>2 = 1,

0 = f r21(x, xo) ds(x); A<2> = f r22(x, Xo) ds(x). (4.16b)
Jc Jc

Substituting these values into (3.4) yields

f PM^x, xo) ds(x) = f riV(x, Xo)[<fc(x) - *,(*>)] <&(x). (4.17)
-'c •'c

The numerical technique used to solve equation (4.17) consists of replacing
the integration by summation so that a system of linear equations is obtained.
This is then solved by standard matrix inversion techniques.

Following Symm [3], the boundary C is divided into N segments from qA_, to
qk, k = I, 2, . . . , N, with % = q ,̂. The midpoint of this segment is qk. If the
integrals in (4.17) are replaced by sums then (4.18) is obtained

2

2 C" T(7(x, xo) *(x). (4.18)
- l •/q»,_i

The segments on which /".(x), i = 1,2, are known, are renumbered 1, 2, . . . , r
and the segments on which <f>,(x), / = 1, 2, are known, renumbered
r + 1, . . . , N. Taking x0 to be each of the "midpoints" qk in turn will yield 2N
linear algebraic equations for <£,(q"i)> . . . , <>,(qr), Pj(<ir+i), • • •» /̂(q"jv)» ' = 1. 2.
The integral equation (4.18) then becomes

N

N

m — r+l

N

-*i(qi) 2
m - l

(4.19)

Equation (4.19) may be rewritten in matrix form as
2

A,jX, = Bp j=l,2, (4.20)
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where

Boundary integrals and anisotropy

*j-[n]J-
The elements of these matrices are

J " r/y(x, q,) ds(x) if / ¥= k and k < r,

f "" Tij(\, q,) ds(x) ifl=kandk<r,

%(x, q,) ds(x) iik>r,

N

m - 1

q*

and
N

2
i = r+l

~ 2
m = l

-^,(q,) 2
m - l

where

= f 1 if / > r,
I 0 if / < r.

403

(4.21)

(4.22)

(4.23)

(4.24)

When using equation (3.8) for <I>/7 it is necessary to be careful when evaluating
the integral of 3>/y as the function 4>0 has a logarithmic singularity at x = x0.

When the integration is taking place along the segment containing the current
value of x0 the singularity is struck. This can be overcome by considering the
segment as two separate sections either side of x0. The integral then becomes

q*-i

q* - q*-il(iog 2

(4.25)

where

= (xk,yk).
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404 David L. Clements and Oscar A. C. Jones [ 11J

If the integral is taken over any other segment then it can be approximated by
Simpson's Rule.

Method 2. Consider again equations (4.16)(a) and (b). If F/y and 3>0 are
chosen as given in equations (3.13), and (3.15), then

= f r n (x , xo) ds(x) + [ r,,(x, xo) ds(x), (4.26)

and

X<2> = [ T22(X, Xo) ds(x) + [ r22(x, Xo) ds(x),
Jc, Jc2

where Cl and C2 are different segments of the boundary C as given in Fig. 1.
However r u (x , XQ) and F22(x, x,,) are selected so that they are zero along C,.

The values of X are therefore

and

^(2) _ C Y (x Xn) ds(x) (4 27)

Since /*,(x) = 0 on C,, F,y(x, XQ) is chosen to be zero along C, and so the
integral equation of 3.4 becomes

P,.(x)$l7(x, XQ) ^J(X) = T F (x, xo)[</>,(x) - <K(xo)] o!s(x), (4.28)

and the method proceeds in exactly the same way as Method 1, except that the
boundary is now C2 instead of C.

5. Numerical results

In order to obtain some numerical results it is necessary to consider a
particular transversely isotropic material. Here, for illustrative purposes only, the
constants for a crystal of titanium will be used. These constants are A = 16.2,
N = 9.2, F = 6.9, C = 18.1 and L = 4.67. If each of these values is multiplied
by 10" then the units for the constants are dynes/cm2.

Problem 1 admits the analytic solution given by (4.8) and (4.9), which can be
compared with the numerical solutions obtained from Methods 1 and 2. These
results are presented in Tables 1 and 2 with numerical values given for every
fourth segment in Table 1 and every eighth segment in Table 2.
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TABLE 1

Numerical and analytic solutions using a 24 point boundary

405

POINT

(*.>)

NUMERICAL SOLUTION ANALYTIC SOLUTION

METHOD I METHOD II

P\ Pi Pi Pi Pi Pi

1.100

1.100

.663

.163

.100

.063

.438

.500

.500

.063

-.01695

-.13756

.02905

.01623

.01091

.02514

.04706

-.00903

-.00241

-.01345

-.02357

-.13815

.02767

.01532

.00629

-.00654

.04848

-.00797

-.00307

.00453

-.02613

-.13857

.02752

.01371

.00815

-.00002

.04730

-.00794

-.00294

.00055

POINT

TABLE 2

Numerical and analytic solutions using a 48 point boundary

NUMERICAL SOLUTION ANALYTIC SOLUTION

METHOD I METHOD II

1.100

1.100

.631

.131

.100

.031

.469

.500

.500

.031

-.00676

-.14198

.02707

.01518

.00638

.02360

.05237

-.00782

-.00255

-.01289

-.01299

-.14246

.02654

.01467

.00273

-.00725

.05283

-.00750

-.00279

.00454

-.01313

-.14307

.02623

.01318

.00408

-.00102

.05233

-.00741

-.00278

.00071

Both methods give reasonably close answers when the error introduced by the
integration method is taken into account, however Method 2 is superior to
Method 1, in the accuracy of the solutions. The boundary was discretised into 24
and 48 points for the test case and convergence to the analytic result is evident
as more boundary points are taken for both methods.

The size of the matrices AtJ given in (4.20) depends on the number of
segments used for the boundary on which the integration takes place.

Because for some mixed boundary value problems, the determinants of the
individual matrices Atj can be extremely small in magnitude, a partitioned
matrix Q, made up of the four AtJ matrices is used to solve the system given in
(4.20).

Discretising the boundary into 48 points gives a 96 X 96 coefficient matrix Q
when Method 1 is employed, but this reduces to a 64 X 64 matrix when Method
2 is employed. This results in a 39% decrease in running time for Method 2
compared with Method 1.
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406 David L. Clements and Oscar A. C. Jones 1131

Problems 2 and 3 have no analytic solution, so the only comparison possible is
between the two numerical solutions. The results are given using 24 points
around the boundary. Since the results are symmetric or asymmetric only results
for one side and half the top are presented.

TABLE 3

Results from a slab on a solid foundation (Fig. 3)

SOLUTION METHOD 2 SOLUTION METHOD ! DIFFERENCEPOSITION

i*,y) A'f - Xx XJ - X2

1.1,0.063

1.1,0.188

1.1,0.313

1.1,0.438

1.038,0.5

0.913,0.5

' 0.788,0.5

0.663,0.5

.00069

.00520

.00573

.00278

-.20765

-.18607

-.14364

-.04683

.00280

.00290

.00366

.00294

-.39383

-.38931

-.56311

-.67385

.00239

.00566

.00600

.00310

-.22265

-.18843

-.14572

-.05463

.00353

.00370

.00381

.00261

-.39453

-.39210

-.55400

-.65970

.00170

.00046

.00027

.00032

-.01500

-.00236

-.00208

-.00780

.00073

.00080

.00015

-.00033

-.00070

-.00279

+ .00911

+ .01415

POSITION

TABLE 4

Results from a simply supported slab (Fig. 4).

X is the unknown, either <j> or P.

SOLUTION METHOD 2 SOLUTION METHOD 1 DIFFERENCE

XJ - X, XI- X2

O.538..5

0.413,0.5

0.288,0.5

0.163,0.5

0.1,0.438

0.1,0.313

0.1,0.188

0.1,0.063

-.00350

-.00910

-.01015

1.05812

-.00610

-.00405

+ .00169

.01337

.05263

.04366

.02629

-1.98597

.00624

.01309

.01603

.01865

-.00344

-.00895

-.01000

1.06367

-.00625

-.00404

.00082

.00879

.05686

.04779

.02962

-2.01966

.00611

.04468

.01928

.02107

.00006

.00015

.00015

.00555

.00015

.00004

.00087

.00458

.00423

.00413

.00333

.03369

.00013

.00159

.00325

.00242

It should be noted that the numerical procedure used here to solve the integral
equation (4.17) may be improved upon in several ways. For example, piecewise
quadratic polynomial representations (see for example Cruse in reference [4],
Fairweather et al. [6]) for the solution of such integral equations may be
employed to yield improved accuracy with cruder discretizations.
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[ 141 Boundary integrals and anisotropy 407

Finally, it is of interest to note that the type of approach employed in this
paper is essentially in the same spirit as some work by Cruse in references [4], [5]
who successfully employed a somewhat similar procedure for the solution of
certain problems in isotropic elasticity.

References

[1] F. J. Rizzo and D. J. Shippy, "A method for stress determination in plane anisotropic elastic
bodies", J. Composite Materials 4 (1970), 36-61.

[2] D. L. Clements and F. J. Rizzo, "A method for the numerical solution of boundary value
problems governed by second-order elliptic systems", / . Inst. Maths. Applies. 22 (1978),
197-202.

[3] G. T. Symm, "Integral equation methods in potential theory", Proc. Roy. Soc. A275 (1963),
33-46.

[4] T. A. Cruse and J. C. Lachat (eds.), Proceedings of the international symposium on innovative
numerical analysis in applied engineering science (Versailles, France, 1977).

[S] T. A. Cruse and F. J. Rizzo (eds.), Boundary integral equation method: computational
applications in applied mechanics (A. S. M. E. Proceedings, AMD Vol. II 1975).

[6] Graeme Fairweather, Frank J. Rizzo, David J. Shippy and Yensen S. Wu, "On the numerical
solution of two-dimensional potential problems by an improved boundary integral equation
method", J. Comp. Phys. 31 (1979), 96-112.

Department of Applied Mathematics
University of Adelaide
Adelaide
South Australia 5000

https://doi.org/10.1017/S0334270000002745 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002745

