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Abstract

Based on Henglein’s efficient binding-time analysis for the lambda calculus (with constants and
‘fix’) (Henglein, 1991), we develop three efficient analyses for use in the preprocessing phase of
Similix, a self-applicable partial evaluator for a higher-order subset of Scheme. The analyses
developed in this paper are almost-linear in the size of the analysed program. (1) A flow
analysis determines possible value flow between lambda-abstractions and function applications
and between constructor applications and selector/predicate applications. The flow analysis
is not particularly biased towards partial evaluation; the analysis corresponds to the closure
analysis of Bondorf (1991b). (2) A (monovariant) binding-time analysis distinguishes static
from dynamic values; the analysis treats both higher-order functions and partially static data
structures. (3) A new is-used analysis, not present in Bondorf (1991b), finds a non-minimal
binding-time annotation which is ‘safe’ in a certain way: a first-order value may only become
static if its result is ‘needed’ during specialization; this ‘poor man’s generalization’ (Holst,
1988) increases termination of specialization. The three analyses are performed sequentially
in the above mentioned order since each depends on results from the previous analyses. The
input to all three analyses are constraint sets generated from the program being analysed.
The constraints are solved efficiently by a normalizing union/find-based algorithm in almost-
linear time. Whenever possible, the constraint sets are partitioned into subsets which are
solved in a specific order; this simplifies constraint normalization. The framework elegantly
allows expressing both forwards and backwards components of analyses. In particular, the
new is-used analysis is of backwards nature. The three constraint normalization algorithms
are proved correct (soundness, completeness, termination, existence of a best solution). The
analyses have been implemented and integrated in the Similix system. The new analyses are
indeed much more efficient than those of Bondorf (1991b); the almost-linear complexity of
the new analyses is confirmed by the implementation.

Capsule review

This paper concerns the design and verification of efficient flow analysis algorithms and their
use in the Similix partial evaluation system. Specifically, it gives a formal account of four
analyses used in the Similix preprocessor, three replacing algorithms already in the distributed
version, and a fourth new analysis that improves the termination of partial evaluation.

The success of Similix hinges on the use of sophisticated flow analyses, in particular
binding-time analysis (bta). Recently, Henglein published an efficient bta algorithm based on
constraint solving. This paper shows that Henglein’s algorithm scales up and also that the
same technique can be used for other flow analyses. The new flow analysis algorithms have
much better complexity; the original algorithms had worse than quadratic time complexity

13 FPR 3

https://doi.org/10.1017/50956796800000769 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796800000769

316 Anders Bondorf and Jesper Jorgensen

(in the size of the program), but the new analyses are almost linear. This complexity reduction
translates into a saving of between 2 and 20 in both time and space for a typical mix of
problems.

The paper demonstrates that semantics-based analyses can be applied to realistic
problems—yet another example of the fruitful interplay between theory and practice that
characterises so much of the work in this area.

1 Introduction
1.1 Binding-time analysis

Off-line partial evaluators basically consist of two phases, a preprocessing phase
and a specialization phase. The preprocessing phase does not know the actual
static (known) values with respect to which the source program is specialized;
it only knows the text of the program being specialized and a classification of
which input values will become static and which will become dynamic (unknown).
The preprocessing phase called binding-time analysis annotates source expressions
as ‘always reducible’ or ‘not reducible’. For example, on the basis of the user
supplied static/dynamic classification of input values, the binding-time analysis may
determine that some expression (+ x y) in the analysed program is always reducible.
It may also determine that some other expression (* a b) is not reducible.

In general, generating a finite and best binding-time annotated source program
(where as many operations as possible are reducible) is undecidable because the
binding-time analysis cannot know what tests of conditionals evaluate to. Therefore,
binding-time analysis must be approximative.

Off-line specialization seems to have appeared first in the first self-applicable
partial evaluator Mix (Jones et al., 1985, 1989). In Mix, preprocessing consisted of
one phase only, binding-time analysis. The more recent Similix partial evaluator
(Bondorf and Danvy, 1991; Bondorf, 1991a, 1991b) has a more complex preprocess-
ing consisting of several (sub-)phases, with binding-time analysis being the central
one.

Several partial evaluators have used binding-time analysis (Jones et al, 1985;
Bondorf and Danvy, 1991; Consel, 1990; Launchbury, 1991; Gomard and Jones,
1991). The traditional Mix-based approach is to do binding-time analysis by
abstract interpretation, exemplified by the three distribution systems Mix (Jones
et al., 1989), Similix (Bondorf and Danvy, 1991; Bondorf, 1991a) and Schism
(Consel, 1990).

Another approach is binding-time analysis based on type inference (Schmidt,
1988; Nielson and Nielson, 1988; Gomard and Jones, 1991). The latter approach
is both elegant and expressive, but only one partial evaluator has been using it,
the experimental Lambda-mix (an elegant system due to its simplicity, but not very
useful for practical experiments).

https://doi.org/10.1017/50956796800000769 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796800000769

Efficient analyses for realistic off-line partial evaluation 317

1.2 Binding-time analysis by efficient constraint normalization

Henglein showed how to do type-inference based (monovariant, see Section 1.3)
binding-time analysis efficiently (Henglein, 1991) for the language of Lambda-
mix, the lambda calculus with constants and an explicit fixed point operator. The
inference system is re-expressed as a set of constraints that captures local binding-
time requirements. Then a constraint solver is used to find a consistent, minimal
binding-time classification of variables and expressions. In contrast to the traditional
abstract interpretation based methods, the algorithm runs in almost linear time; this
has been one of the main motivations for the work presented in this paper where
we scale up Henglein’s ideas to a realistic partial evaluator.

Another motivation is that type inference elegantly expresses binding times that
are determined by the contexts in which values may occur. This seems much more
difficult to express in a forwards analysis (abstract interpretation), as witnessed
for instance by the complex ‘raise’ operation used in the binding-time analysis of
Similix (Bondorf, 1991a). The purpose of ‘raise’ is to annotate lambda-expressions:
the annotation of a lambda-expression depends on all possible uses of the expression
(to see whether beta-reduction is always possible), so context information is crucial
here. Type-inference analyses are bidirectional, so context dependency (backwards
flow) is expressed just as easily as forwards flow; this eliminates the need for ‘hacks’
like the raise operation. The advantages of doing binding-time analysis by efficient
constraint normalization are several:

1. Elegance: the analyses are simpler to present to other people. In the abstract
interpretation approach, the formulation of an analysis intermingles the prob-
lem and the solution; this makes it hard to understand the analysis. In the
constraint-based approach, problem and solution are separated. We believe
this gives a much more elegant description.

2. Expressiveness: bidirectionality is easily expressed.

3. Speed of implementation: almost-linear run time.

1.3 Similix

Similix 4.0 is a partial evaluator for a subset of Scheme with higher-order functions
and side-effects on global variables. The system uses several preprocessing phases
(for an overview, see Bondorf, 1991b). The three bottleneck phases are closure
analysis, binding-time analysis and evaluation-order dependency analysis which all
run in worse than quadratic time (the closure analysis in worse than cubic time).
The closure analysis is used to trace flow of higher-order functions. The bt-analysis
classifies operations into static (reducible) and dynamic (non-reducible). The eod-
analysis detects potentially evaluation-order dependent expressions (such expressions
arise because of the side-effects); this information is used to prevent inverting the
order of evaluation-order dependent (residual) expressions by unsafe unfoldings
of let-expressions where the actual parameter is evaluation-order dependent. The
analyses are monovariant : only one annotation is associated with each variable and
expression in the program.
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In this work we use efficient constraint normalization to redevelop these three
analyses. We do not cover the eod-analysis in this paper; we refer to the extended
version of the paper (Bondorf and Jergensen, 1993).

1.4 Separate flow analysis needed

When analysing higher-order functional languages, information on how higher-order
values flow is usually needed; this is indeed the case for bt-analysis. In Henglein’s
bt-analysis, the information about flow of higher-order values is contained in the
types: his analysis implicitly performs a flow analysis.

In Henglein’s analysis, type information about a function is completely lost if the
function becomes dynamic. In Lambda-mix, which Henglein’s analysis was designed
for, no flow information is needed about dynamic entities, so the information loss is
no problem there.

In the context of side-effects, some flow information about a function is needed
even if the function is dynamic. For example, when analysing a higher-order
application (Eg E*) where Eg is dynamic (implying that the application will not be
beta-reduced during specialization), it is necessary to know whether the resulting
residual expression may be evaluation-order dependent. Whether this is the case
depends on the functional values that Eq may evaluate to. Thus, not only the
bt-analysis but also the eod-analysis needs flow information.

In Similix 4.0, the closure analysis provides such information: it identifies which
lambda-expressions may flow into Ey. Hence, by looking at the bodies of the
lambda-expressions in this set, it can be decided whether expression (Ey E*) is
potentially evaluation-order dependent. Notice that whether (Eg E*) is evaluation-
order dependent is independent of whether Eg is dynamic or not.

Since knowledge of flow of higher-order values is needed independently of the
binding times, we cannot scale up Henglein’s analysis directly. We instead perform
a separate flow analysis followed by what we henceforth refer to as the bt-analysis.
Both the bt-analysis and the eod-analysis (which is performed after the bt-analysis)
then have access to flow information, but notice that collecting flow information is
only done once: in the flow analysis. Neither the bt-analysis nor the eod-analysis
needs to collect any flow information.

The flow analysis corresponds to the closure analysis of Similix 4.0: it traces
higher-order flow (and, since we here also treat partially static data structures, flow
of constructed values). As we shall see later, the flow analysis does not collect sets
of closures, but simply equates information from different points of the analysed
program, for instance the information associated with the topmost expression of
the bodies of all lambdas that may flow together; this information turns out to be
sufficient for our purpose. Henglein has also described a flow analysis based on his
bt-analysis (Henglein, 1992).
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1.5 Poor man’s generalization

A major problem in partial evaluation is termination: often, partial evaluation fails
to terminate. Holst proposed a way to increase termination called ‘poor man’s
generalization’ (Holst, 1988). The idea is to generalize (make dynamic) static values
that are not used to determine control. Termination is increased this way because the
generalized static values could have taken on infinitely many values at specialization
time, had they not been generalized. By generalizing, static information is of course
lost at specialization time; however, only ‘insignificant’ static values (not used to
determine control) are generalized, so only this insignificant information is lost.
By discarding insignificant static information, poor man’s generalization in general
improves the quality of residual code (independently of the termination issue):
different specialized versions of code are only generated when needed.

The method is ‘poor man’s’ because it in no way guarantees termination, it only
makes the partial evaluator terminate more often. However, some very typical cases
are caught this way, for instance the ‘counter problem’ where some counter is
maintained in a recursion. This problem is mentioned in Katz and Weise (1992)
where an idea related to poor man’s generalization is used to increase termination
for an on-line partial evaluator (a partial evaluator without separate preprocessing).

A classical example where poor man’s generalization makes specialization termi-
nate is specialization of the following program fragment (written in Scheme syntax
(IEE, 1990)) with x dynamic and y static:

RV ¢ ZEPI <) B
(define (f xy) (if (=x0) y (£ (- x 1) (+y 1))))

A memoizing specializer such as Mix or Similix 4.0 would generate an infinite
sequence of specialized functions:

(f-0 ...)
(define (£f-0 x) (if (=x 0) 0 (£-1 (- x 1))))
(define (f-1 x) (if (=x 0) 1 (£-2 (- x 1))))
(define (f-2 x) ...)

Poor man’s generalization would generalize y in which case specialization terminates
and yields the original program.

It is clear that to obtain poor man’s generalization, a bt-analysis must know all
contexts in which a static value may be used. It may only generalize the value if
all of these contexts are insignificant. This kind of dependency is straightforward to
express in the constraint-based analysis framework, and we have exploited this by
adding a new is-used analysis that tackles the poor man’s generalization problem.

1.6 Prerequisites

Knowledge of partial evaluation is needed (for example as described in Jones et al.,
1989, or Gomard and Jones 1991). The reader should also know Henglein’s paper
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on efficient bt-analysis (Henglein, 1991). To fully comprehend the technicalities of
the paper, Similix-specific knowledge is an advantage: the basics are described in
Bondorf and Danvy (1991) and Bondorf (1991a). The manual (Bondorf, 1991b)
describes the system in an introductory non-formal way, and the paper (Bondorf,
1992) contains a short (formal) description of the specializer phase of Similix.

2 Preliminaries
2.1 Programming language

A program is a set of recursive procedures (functions) written in the Similix core
language, a subset of Scheme (IEE, 1990) augmented with user-defined n-ary con-
structors; see Figure 1.

An expression is a constant (atomic value or quoted expression) K, a variable V,
a conditional (if E; E; E3), a let-expression (let ((V E;)) Ej), a sequence ope-
ration (begin E; E;), a primitive (e.g. arithmetic) operation (O E*), a constructor
application (C E*), a selector application (C-M E,) (the associated constructor and
the field are specified), a predicate application (C? E,) (‘is this a value constructed
by constructor C ?’), a first-order call to a top-level defined named procedure (P E*),
a lambda-abstraction (lambda (V") E) or a higher-order application (E E*).

Constructors belong to constructor families, thus effectively providing ‘disjoint
sum of product’ types (sum of constructor types). Constructors belonging to the
same family have the same associated type. We shall use the term constructed values
for values generated by evaluating constructor applications.

Primitive operations may be applied to constructed values and function values,
but they may only return such values if they were supplied as arguments; this
restriction ensures that the analyses ‘know’ the sources of constructed values and
function values. The different application forms are kept syntactically distinct; the
distinction is made automatically during parsing,

IT € Program ; D € Definition ; E € Expression ; K € Constant ; V € Variable ;
O € PrimopName ; C € ConstrName ; M € Field ; P € ProcName ;
n::=D"
D ::=(define (P V") E)
E:=K|V| (if E E;E;) | (et ((VE)) Ep) |
(begin E, E;) | (OE") | (CE") |(C-ME;) | (C?E)) |
(PE') | (lambda (V') E) | (EE")

Fig. 1. Scheme Subset

2.2 Constraint systems

Every program point will be associated with a number of unique constraint variables.
As program points we shall use the variables and expressions (expression occur-
rences) of a program. Constraint variables may range over many different kinds of

https://doi.org/10.1017/50956796800000769 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796800000769

Efficient analyses for realistic off-line partial evaluation 321

information, for instance binding times. A constraint system C s a set of constraints
op'(ti,..., t;) on terms ¢,..., t, that (may) contain constraint variables. We use op”
as a syntactic operator between constraint variables and op as the corresponding
semantic operator between values (Henglein makes a similar distinction by adding
a ‘? on top of an operator to make it syntactic; our ‘¢’ corresponds to Henglein’s
‘?). What op ranges over varies from analysis to analysis. One operator has a fixed
meaning, the equality operator ="

We are searching for a solution to a constraint system. A solution is a value
substitution p. We say that p satisfies constraint op”(t,..., t,) if and only if relation
op(p(ty),..., p(t,)) holds. Substitution p is a solution to constraint system C if and
only if p satisfies all constraints cin C.

A constraint system is solved by a series of rewritings into a normalized system
that immediately can be solved. Constraints of form a="... are always solved by
substituting ... for constraint variable « everywhere in the constraint system; that
is, the elementary substitution ¢ = [0—-...] is applied to the constraint system. The
solution p is obtained by composing the value substitution that solves the normalized
constraint system with (the composition of) the elementary substitutions generated
(and applied) during rewriting.

For each analysis, we specify several parts: definitions of relevant domains for
the analysis; definitions of constraint operators op”; constraint generation from the
syntax of the analysed program; constraint-system rewrite rules used to solve the
generated constraint system.

2.3 Miscellaneous notation

To denote that a constraint variable is associated with expression E, we index the
variable: ag. Similarly, a constraint variable associated with a program variable V
is denoted by ay. We use ap to denote the constraint variable associated with the
body expression of top-level defined procedure P, and similarly we use ap, for formal
procedure parameter V; of P.

In figures displaying constraint generation, we implicitly assume ‘for all indices’
when writing constraints where some parts have index subscripts; index ranges are
implicitly defined by context. For an example, constraint ag,="... actually stands
for a series of constraints (separated by commas) parameterized over E;. The range
of E; is given by context.

We use the notation (...); to build a tuple. The tuple generated by (...)i has the
same length as the size of the range of index i. The range for index i is given by
context; for example, i might be defined indirectly through a term E; whose range
in turn is given by context.

Let D be a domain and m a natural number. Then D' is shorthand for the
cartesian product domain D x ... x D where D appears m times.

In the constraint-normalization rewriting systems, we use c... when we need to
refer to constraint ... as a whole (we can then simply refer to the variable ¢). This
notation is equivalent to the ‘as’ symbol in languages with pattern matching (such
as ML).
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The sum type associated with a constructor C is denoted by 7(C).

3 System overview

Figure 2 contains an overview of the interconnections between the three analyses
(flow, bt, is-used). The input is a program II, the output an annotated program IT'.
We use the symbol ¢ for flow constraint variables and we use f§ for bt-constraint

variables.

1§
flow-constraint traint
\ 2 L Cow — flow constrain
generation normalization

input bt-specification =*g'

\ bt-constraint L - bt-constraint
generation bt normalization

rﬁ“"*ﬂla“bt’l’bt—) !

1s-used constraint

\ is-used constraint
normalization

- — C\ood —>
generation used

( Pused J

\—bi bt-annotation }‘ Pht /

Fig. 2. Overview

The flow constraint set Cg,,,,, is generated by a one-pass compositional (recursive
descent) run over the program. The flow analysis generates two sets of equality
constraints, between bt-variables (constraints of form B=*$") and between eod-
variables (these are not displayed here; see Bondorf and Jergensen, 1993).

The point is that neither the bt-analysis nor the eod-analysis then needs to do
any subsequent flow analysis. The equalities generated by the flow analysis already
contain full information about how actual parameters to application expressions
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may flow to formal parameters of lambda-expressions, which lambda-bodies that
may be the result of applications, and which argument expressions to constructor
expressions that may be the result of a subsequent selector application. For example,
if the analysed program contains an expression

E; = ((if ... (Qambda (...) E3) ...) ...)

the flow analysis generates an equality constraint between the bt-variables describing
the binding time of (the return value of) E, and binding time of (the return value
of) of E;; a similar eod-equality constraint is also generated.

The bt-constraint generation phase generates bt-constraints by a one-pass com-
positional run over the program and it generates additional constraints for the
bt-variables associated with the program’s input variables. The latter constraints are
generated from a user supplied input bt-specification that specifies which program
inputs are static and which are dynamic.

The input (referred to as Cp, later) to bt-constraint normalization is both the out-
put Cl_)t from the bt-constraint generation phase and the set of equality constraints
generated by the flow analysis. The bt-analysis generates a minimal substitution pp,
which could be used directly for generating a safe annotation. An annotation is safe
if and only if the specializer cannot commit any bt-tag projection errors (Gomard
and Jones, 1991); this in turn means that the tags can be avoided since they are
statically determined at bt-analysis time. There is a close analogy to type security: a
well-typed program ‘can’t go wrong’; therefore, no type tags are needed at run time.

Due to poor man’s generalization, it is not the minimal bt-substitution that is
desired: static first-order values that are never used in a significant way (to determine
control, cf. Section 1.5) will be generalized, that is, made dynamic instead of static.
This generalization must be consistent: the resulting bt-substitution must still satisfy
the normalized bt-constraint system that was used to find the minimal bt-substitution
p bt The constraints that are not trivially satisfied by the generalization process turn
out to have form f~ f'; also, the substitutions o p, and p, built during bt-analysis
are needed to obtain a consistent generalization. Details will be given in Section 6.
The is-used analysis produces a substitution p .. that is used for deciding what to
generalize. The program IT is finally annotated yielding IT". The complete preprocess
of Similix also contains additional analyses, one of which is the eod-analysis; these
analyses will not be discussed in this paper.

4 Flow analysis

The purpose of the flow analysis is to trace flow of constructed values and function
values. We shall not restrict ourselves to describe only strongly typed programs in the
usual sense known from e.g. ML (we are dealing with Scheme, a dynamically typed
language), so we want to be able to describe potential flow of several constructed
values and several function values into the same program point. This motivates
the definition of FlowVal in Figure 3: a flow value fis a pair of fields containing
information about constructed values and function values.

The constructor field is a finite tuple capturing that constructed values constructed
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f € FlowVal = CstrValField x FctValField
cf € CstrValField = C,-CstrVal, x ... x Cp-CstrVal,
cve € C-CstrVal = ArgVaPiV© ; for all C€{C,...Cp}
yid € FctValField = 0-FctVal  x ... x FA-FctVal;
fv, € n-FetVal = ArgVal' x ResultVal ; for all ne{0... FA}
av € ArgVal = FlowVal x BtVar
rv € ResultVal = FlowVal x BtVar
¢ € FlowVar
B € BtVar
Pflow € FlowValSub = FlowVar— FlowVal
S fow € FlowVarSub = FlowVar— FlowVar
c € FlowConstraint = Flow-=" + Flow-<¢ + Flow-<;
Flow-=" = FlowVar x FlowVar
Flow-<¢ = (FlowVarx BtVan@TtyC x - constructor args.
FlowVar
Flow-<, = (FlowVar x BtVan"x ; function args.
(FlowVar x BtVar)x ; function result
FlowVar

Fig. 3. Flow analysis: domains

by different constructors can flow into the same program point. The tuple domain
CstrValField contains one field for each constructor C;...C,, used in the analysed
program II. If no constructors are present in the program at all, the tuple degenerates
to a unit-domain with L being the only element. For each program Il, we consider
a finite family of domains C;-CstrVal...Cy,-CstrVal The field corresponding to
constructor C € {Cy,...,Cp,} in the tuple domain CstrValField is of type C-CstrVal, .

The values in C-CstrVal, are interpreted as follows: if no value constructed by
constructor C can ever flow into the program point being described, then the value
is L (the least element). If some value constructed by constructor C may possibly
flow into the program point, then the value is in C-CstrVal. At any program point,
we are not interested in distinguishing between different values constructed by the
same constructor C. Therefore each domain C-CstrVal contains only one description
for the arguments to the constructor. The domains C-CstrVal are domains of tuples
of lengths equal to the constructor arities.

The domain FctValField is similar to CstrValField. Different function arities play
the same role in FctValField as different constructors do in CstrValField: there is
one field in the tuple for each function arity 0... FA used in the analysed program
I1. We write elements of a domain n-FctVal as ‘arguments — result’, in accordance
with standard notation in type inference; but notice that the domains n-FctVal are
cartesian product domains, not function domains.

Flow of simple values (integers, booleans, etc.) is not traced as we are not interested
in that information; such flow could be analysed by extending FlowVal to contain
more fields.
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If we had just been interested in the flow analysis for its own sake, argument
and result fields would just be flow variables. However, we want to collect flow
information for the bt-analysis: we have therefore added bt-variables to argument-
and result-information. In Bondorf and Jergensen (1993), eod-variables are also
present.

A constraint is either equality between flow variables (="-constraints) or a con-
straint that expresses flow of constructor or function values (< - and <}-constraints).
We use infix notation for the three kinds of flow constraints, as exemplified in Fig-
ure 4. The definition of the relations <¢ for constructor values and <, for function
values follows (where | is used to project on product domains):

DerINITION 1 (Flow relations)

1. cve<cf = cw = (f| CstrValField) | C-CstrVal
(it always holds that cvc has form av ---3"arity(C))-
2. fvy,<nf = fv, = (f | FctValField) | n-FctVal
(it always holds that fv, has form av,...av,—>rv). ]

Flow-constraint generation is specified in Figure 4; the figure shows the constraints
generated for the different expression forms. The complete set of flow constraints
is obtained by generating constraints for every (sub-)expression is the analysed
program IT.

Notice from Figure 4 and from Definition 1 that the flow analysis is equality-
based, not inclusion-based. Using equality is quite conservative as the flow values
of for instance the branches of a conditional then influence each other. A more
precise analysis would use inclusion (with appropriate changes of the definitions of
ArgVal and ResultVal to be sets of (FlowVal x BtVar): such an analysis would
correspond closely to the closure analysis of Sestoft (1988) (and that of Bondorf,
1991a). Whether it is important to get the improved precision provided by an
inclusion-based analysis is not clear to us; equality-based analyses are common in
type inference, and the experiments we have done so far indicate that the equality-
based analysis suffices in practice. The motivation for using equality is efficiency:
the equality-based flow analysis can be done in almost-linear time (see Section 9)
whereas an inclusion-based analysis is expected to be at least cubic.

Let us now inspect Figure 4 in more detail. No flow constraints are generated
for constant expressions as these generate neither constructed nor function values.
If the expression is a variable, the flow value of the expression is simply that of
the variable. For a conditional, the flow values of the branches and of the whole
conditional must be equal (which, as mentioned above, is conservative). The rules
for let- and begin-expressions are straightforward. The rule for primitive operations
reflects the restriction on primitives mentioned in Section 2.1: the only possible
constructed or function values that may be returned are those given as arguments.

Constructor expressions are the source of constructed values; the overbars on
top of some bt-variables will be discussed in Section 5. Selector expressions may
return whatever is described by the selected M’th field of the argument value; pairs
of fresh ‘dummy’ nodes (¢;, Bi)/(¢;, Bj) are generated for all other fields than the
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E=K {3}

E=V  {de="dv}

E= (if E, E; E3) : {$e="¢E, PE="¢E,}

E=(let ((VE)) E) : {dg,="dv. bE="¢E,}

E = (begin E; E;) : {¢e="¢,}

E=(0E...E,) : {¢e="¢€}

E=(CE...E) : {{(E, BE )i <C ¢}

E=(C-ME)D {85 B))i+H((@E, BEN +H(95: B)); < ¢, }

where 1 <i<M—1, M+ 1 << anity(C)

= (C?7 Ep) {3

E=(PE...Ey) . {¢e="dp, ¢, ="0p,}

E= (lambda (Vi...Va) E1) : {{(¢v,Bv))i—(¢E,,BE,) <i dE}

E= (Eo E...En) : {{(¢g, BE))i—(¢E. BE) <i ¢E,}

Fig. 4. Flow analysis: constraint generation

M’th one (4++ denotes tuple-concatenation and {(¢g, fg)) is a one-element tuple).
No constraints are generated for predicate expressions: with respect to E, predicate
expressions are comparable to constant expressions; with respect to the argument
E1, the treatment is comparable to the treatment of the test of a conditional.

Procedure calls straightforward. Lambda-expressions are the source of function
values, and the applications dually ‘consume’ function values.

4.1 Normalizing the constraints

The rewrite system in Figure 5 specifies the rules used to solve the flow constraint
system. Rule 1 solves equality by substitution. The rules 2 and 3 reduce the number
of <¢- and <j-constraints and generate flow-equality and bt-equality constraints
instead. The intuition behind the rules is simple: <¢- and <j-constraints specify
equality with a component of ¢ (cf. Definition 1); the rules follow by transitivity of
equality. Of the generated equality constraints, only the flow-equality constraints are
solved during flow-constraint normalization. The generated bt-equality constraints
are supplied to the bt-analysis as described in Section 3.

In Section 7.1 we prove that the rewrite system in Figure 5 correctly solves any
flow constraint system (not necessarily generated from Figure 4): the system is sound
(does not introduce false solutions), complete (does not discard any solutions), and
terminating. Notice from Figure 2 that we are not interested in the minimal solution,
a flow substitution pg,,.- A minimal solution exists (provided the f="f’ constraints
are solved, see Section 7.1), but the interesting output are the generated bt-equality
constraints: the net effect that interests us in the end is the bt-annotation of the
program II.
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Fl : Cu{¢="¢'} = [p—¢']C

F2 0 Cu{c@((¢i, B))i <c ¢, (@', B)i <¢ ¢} =
Cu{ctuU{gi="¢/, Bi="B'}

F3 1 CU{c@((¢i, Bi))i—(do. Bo) <p &, (@, Bi))i—=(d0, B0’} <; ¢} =
CU{ctu{gi="9{, dpo="d', Bi="Hi", Po="H0'}

Fig. 5. Flow analysis: constraint normalization

5 Binding-time analysis

Foliowing Henglein (Henglein, 1991), the bt-analysis associates two constraint vari-
ables with every expression, f and B. The bt-variable § describes the ‘internal’
bt-value whereas f§ describes the ‘external’ bt-value. As we shall see when generating
constraints, § will be determined by the components of an expression, and § will be
determined by the contexts in which the expression occurs; this also explains the
overbars that were used in Figure 4: notice that the fg’s being defined never have
overbars whereas the Bg,’s being referred to all have overbars. The values of f and
B are usually equal, but they may differ: § may be dynamic and f static. When this
happens, a lift-operation is inserted in the annotated source expression (Gomard
and Jones, 1991); lift’s argument is static, its result dynamic. At specialization time,
the value generated by processing lift’s argument is transformed into a residual
expression by the specializer.

As in Henglein (1991), we shall only allow lifting first-order constants. This is
a natural restriction in the context of Similix as Similix also refuses to lift higher-
order values into residual expressions (Bondorf, 1991a): lifting higher-order values
and data structures is in general unsafe since it may lead to residual code that
exponentially duplicates data structure and closure allocations.

Also as in Henglein (1991), we do not consider ‘induced’ lift operations that
lift one higher-order value into another one. We believe that induced lifts would
complicate the analysis significantly, but we do not know whether the complexity
would be severely worsened. We briefly discuss the consequences of not considering
induced lifts in Bondorf and Jergensen (1993).

The bt-analysis is done over the partially ordered set given in Figure 6; the
diagram defines the ordering C. Notice that the domain is simple in that it consists
solely of atomic values; all structure flow has already been resolved in the flow
analysis.

The top value is the bt-value D (‘dynamic’). The bt-value S describes first-order
static values. A family of bt-values Cl describes static function values; contrasting to
the single Cl-value used in Bondorf (1991a), we use a value Cl, for each function arity
n. This gives a more conservative analysis than the one in Bondorf (1991a), but also
a safer one: if functions of different arity flow together, they are made dynamic. This
ensures that no arity errors occur when beta-reducing static function applications
at specialization time. A similar family of bt-values Ps describes constructor values,
indexed by the sum type ¢ = 1(C) of the constructor C. The domains used in the
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_//l\\
\\l//

Fig. 6. BtVal-domain

b € BtVal ; defined in Figure 6
v € BtVall = BtVal\ {1,D}
B € BtVar
BtVarD = BtVar + {D}
Ppt € BtValSub = BtVar— BtVal

opt € BtVarValSub = BtVar— BtVarD

¢ € BtConstraint Bt-=" + Bt-C* + Bt~ + Bt-p
Bt=" = BtVarD x BtVarD

Br-C* = BtVall x BtVarD
Bt~s = BtVarD x BtVarD
Bt-* = BtVarD x BtVarD

Fig. 7. Binding-time analysis: domains

bt-analysis are specified in Figure 7. Infix notation is used when writing constraints.
The relations are defined as follows:

DEFINITION 2 (Bt-relations)

1. C is the partial order on BtVal.
2. byoby = (bh=b) V(b=SAb=D)V (b =1)
3. bbb, = (b =D = b, =D). O

A constraint § >*8 is identical to the one used in Henglein (1991): if 8 is dynamic,
B’ must be dynamic too. A ‘lift constraint’ has form g~ g’ (*~’ corresponds to
Henglein’s ‘<’); notice that it is satisfied if § and p’ get assigned the same value
(and it is satisfied if § gets assigned L), but also if § is S and f’ is D: this latter case
corresponds exactly to lifting a static first-order value. Notice that neither Ps¢~D
nor Cl,~D holds: we only allow lifting first-order constants. As a consequence of
this, if a constructed or function value at any point flows together with something
dynamic, then the constructed/function value must (will) be made dynamic right
back at its source. On the other hand, a first-order static value may well be used
statically some place and at the same time flow together with something dynamic at
another place.

Constraint generation is specified in Figure §; constraints are generated by (recur-
sively) inspecting all (sub-)expressions of the program. In addition to the constraints
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generated from Figure 8, the following constraints are part of the initial constraint
system:

1. For each expression E, a ‘lift’ constraint S~ .

2. For each input variable V, either a constraint SC*By or a constraint fy="D,
depending on the binding times for inputs supplied by the user.

3. A constraint fg="D for the body E of the goal procedure (since partial
evaluation always generates residual code, never a value, at the top-level).

4. The equality constraints produced by the flow analysis.

The rules in Figure 8 are derived in a straightforward way by inspecting the
specializer as defined in Bondorf (1992): the constraints must ensure that no bt-tag
projection error can be committed by the specializer.

E=K : {SC*Be}

E=V : {Be="Bv}

E= (if E, E; E;) : {Be="BE,» Be="Bk,, B, »*Pe., SC"Bg,}
E=(let ((VED) E) : {Bg,="Bv, Pe="PE,}

E = (begin E, E;) . {Be="Bk,}

E=(ofrans g E)) : {Be="BE, SC"Bg}

E= (0305 g, E.) : {fe="Bg,, Be="D}
E=(CE...E) : {Ps,c,C*Be, Be >"BE}
E=(C-ME)) : {Ps,c,C" B, » B, > Be}
E=(C?E) . {Ps,c,C"BE, » Be, >"Be. SC*Be}
E=(PE...E) : {Be="Bp, Be,="Bp,}

E = (lambda (V,...Va) Ey) : {CLC'Bg, B >"Bv,. Be > Be, )
E=(EE;...Ep) : {CLE'Bg, » Bg, > Be}

Fig. 8. Binding-time analysis: constraint generation

A constant expression is thus expected to specialize to a static first-order value.
Therefore its bt-value must be S; since we have limited the constraints to contain
only equality constraints between bt-variables and D, we must express the constraint
as SC”"Be (this is similar to what is done in Henglein (1991)). The treatment of a
variable expression is straightforward.

The conditional requires the branches and the whole expression to have the same
bt-value. In addition to this, the result is dynamic if the test is: EEI >*Be. This,
however, depends on the specializer: a specializer that can treat ‘dynamic choice
of static values’ (see e.g. Bondorf 1992) does not have this requirement; for such
a specializer, the >"-constraint is simply left out. Finally, the test must be at least
static. If, for instance, the test may evaluate to a function value, this last constraint
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ensures that the test becomes dynamic (since in that case, Fgl must both be greater
than S and greater than Cl,). Let- and begin-expressions are straightforward.

In Similix, the user can specify that a primitive operator is transparent or not
(Bondorf and Danvy, 1991). Transparent operations are reduced if all arguments
are (first-order) static, but non-transparent primitive operations are always dynamic.
Therefore there are two rules for primitive operations.

The flow analysis has already determined flow of constructed values and function
values, so the remaining operations for constructors and higher-order functions are
quite straightforward. Constructor expressions thus generate the bt-value Ps;. Also,
if the value is ever made dynamic by some context (in which case the constructor
application will not be reduced during specialization), the argument expressions also
become dynamic. Selector and predicate expressions are straightforward.

Lambda-expressions are similar to constructor expressions. Again, if the value
is made dynamic by some context (in which case residual code will be generated
for the lambda-expression when specializing), both the formal parameters and the
lambda-body become dynamic too. This is similar to Lambda-mix (Gomard and
Jones, 1991); in the traditional Similix bt-analysis, the ‘raise’ operator ensured the
same property. Finally, application is straightforward.

Constraint normalization is specified by the rewrite system in Figure 9. Soundness,
completeness and termination theorems are given in Section 7.2: the rewrite system
correctly solves any bt-constraint system (not necessarily generated from Figure 8).

Bi : Cu{f="D} = [—D]C
B2 : Cu{p="p} = [B—p'1C
B3 : CU{c@SC*B, c@p~+ B'} = Cu{c, ¢,SC A}, if SC*B' ¢ C
B4 : CU{c@Ps;C"8, f~* p'} = CU{c, B="§"}
B5 : Cu {c@Cln;"B, B~ ﬂ'} = CU {c’ ﬁ:'/j”}
B6 : CU{vC*'B,V'C*B} == CU {f="D}, if v£v’
B7 : Cu{Dp B} = CU{f="D}
B8 : CU{D~ f} => CU{f="D)}
B9 : Cu{D="8} = Cu{f="D}

Fig. 9. Binding-time analysis: constraint normalization

Let Cpspn be the normalized constraint system. The output of the bt-analysis
consists of (cf. Figure 2): (1) the f~ B’ constraints in Cp,py; (2) the substitution
o p¢ built during constraint normalization (by composing all substitutions generated
from rules B/ and B2 during normalization); (3) the minimal substitution (solution)
p py defined by

D ifop(f) =D
ppeB)=qv i v opB) € Cpn
1 otherwise
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This definition of py, is equivalent to the one given in Section 7.2 (Theorem 18)
where it is proved that pp, is the minimal solution.

6 Is-used analysis

As briefly outlined in Section 3, the is-used analysis generates a substitution p,c.q
that is used for deciding what to generalize. Substitution p ;.4 identifies the values
that are used in a significant way, cf. Section 1.5: those values may not be generalized.
The new non-minimal bt-substitution p,; is then defined in the following way:

D if ppe(B) =S A —pygeq(B)

Poul(F) = { ppB)  otherwise

Notice that pp,; sometimes returns D when the minimal pp, returns S. It does so
exactly when f§ is not used in a significant way.

Substitution p,q.4 is defined as the minimal solution to an is-used constraint
system. Substitution pp,; should be best in the sense that it should make as much
dynamic as possible; thus, p,..4(B) should hold for as few B’s as possible. This
motivates the ordering true > false on the boolean domain UsedVal (Figure 10); we
use the symbol > in order to distinguish it from the ordering on bt-values.

u € UsedVal

B € BtVar
Pused € UsedValSub

It

BtVar — UsedVal

c € UsedConstraint = Used-used” + Used->*
Used-used = BtVar
Used->* = BtVar x BtVar

Fig. 10. Is-used analysis: domains
The constraint used”(B) specifies that § is used in a significant way. We define the
following relations:
DEeFinITION 3 (Is-used relations)
1. used(u) = u O

2. > is the partial order on UsedVal.

The minimal solution (Section 7.3, Theorem 22) to a normalized is-used constraint
system C,;c. g is defined by

true  if used (0py(B)) € CpyseaN
false  otherwise

pused(ﬂ) = {

The definition of pp,; constrains the values that p,..q may assume since ppg
must be a solution to the normalized bt-constraint system Cppy: it is necessary to
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propagate used -constraints in order to make p used(B) hold for more B’s than those
directly specified (by Figure 11). The >"-constraints serve this purpose; how these
constraints are added is described in Section 6.1.

E=K : {used (opBE))}  if ppe(BE) =S
E=(if E E; E3)  : {used (op(BE,))} if ppe(BE) =S
E= (O3S g, . E,) : {used (0pBE)}  if ppslBE) =S
E=(C?E) : {used” (0 p(BE))}  if pps(BE) =S
All other cases {}

Fig. 11. Is-used analysis: constraint generation

Generation of is-used constraints is specified in Figure 11 (applied recursively to
all program (sub-)expressions). Recall that a used”-constraint should be understood
as ‘if this value can possibly become static, then make it static’: the value is used
in a ‘significant way’. The generation of used”-constraints depends on p pt- only
those bt-variables that are assigned S by pp, are of interest. In fact, we would
in general obtain a greater value for p,..q if we had not been careful only to
generate the absolutely necessary used -constraints. The reason for this is that,
as we shall see below, used”-constraints get propagated by the is-used constraint
normalization. So even though a constraint used”(8) has no effect on the value of
Ppt1 if ppdB) = D, some derived constraint used” (f") may show up for a variable
B’ for which pp(f’) = S. This potentially prevents a desired generalization of f'.
Notice that we have applied o, whenever referring to bt-variables (indirectly when
applying ppy since pp, = ppNOC pg): this ensures that bt-variables that have been
equated by the bt-analysis are treated equally.

In Figure 11, we have specified that constants should not be generalized; constant
expressions are the source of static first-order values. Then we specify that if the
test of a conditional can become static, then it should be (what determines control
should be static if possible).

The used"-constraint for an expression (015 E, .. E.) is not obvious: should
one always reduce (transparent) primitive operations if possible? If yes, a constraint
should be generated as shown in Figure 11. If no, no such constraint should be
generated; for example, the +-operation in the example from Section 1.5 should
not be reduced since this exactly leads to non-termination as described. In the
implementation, we have split the transparent operators into two subclasses such
that the user can declare whether the operator should always be reduced if possible;
if it is declared that reduction should not necessarily take place, the primitive
operation will only be reduced if some context forces it to, for instance if the
primitive operation is the test of a conditional. In practice, operators that can
only be repeatedly applied a finite number of times can safely be declared ‘always
reduce’; an example is arithmetic test-predicates. Other operators (such as +) should
be declared ‘do not necessarily reduce’.
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Finally, we have specified that constructor testing predicates should always be
reduced: predicate expressions provide a source of static first-order values.

Static input variables are also similar to constants, so in addition to the constraints
generated from Figure 11, we generate a used” -constraint for each of the static input
variables as well. Also, a constraint used” (Bg) is generated for the body E of the
goal procedure if pp,(Bg) = S (this has effect in the rare cases where the body of
the goal procedure is static).

Is-used constraint normalization is specified by the rewrite system in Figure 12.
Soundness, completeness and termination theorems are given in Section 7.3: the
rewrite system correctly solves any is-used constraint system.

Ul : Cu{used ('), p="B'} = CU {used" (8’), used" ()}

Fig. 12. Is-used analysis: constraint normalization

6.1 Additional is-used constraints

Let us now return to the criteria that the minimal solution p 4.4 must fulfill to
ensure that pp,; is a solution to Cpnr The outcome of the considerations in this
section is the following: for every constraint S~ ' in Cppy; a constraint >’
must be contained in Cjg.4 the initial is-used constraint system. In addition to
this, we exploit that the particular constraint system generated from Figure 8 has a
certain form regarding the >*-constraints.

We prove later (Section 7.2, Theorem 17) that Cp, s consists of the following
kinds of constraints: (1) ‘garbage’ constraints (constraints that are trivially satisfied
by any substitution), (2) vC*f constraints, (3) f~ B’ constraints and (4) g >*f’
constraints; it furthermore holds that substitution pp, does not assign D to any of
the variables in the non-garbage constraints. By adjusting p,,¢.4, We must ensure
that pp,; solves all of these constraints. We do a case analysis over the different
constraint forms.

Case (1), garbage constraints: trivially satisfied by pp;;.

Case (2), vE* B constraints: since p pt(B) E ppr1(B) holds for any B, these constraints
are trivially satisfied by pp,; (since all constraints in Cp,py are satisfied by pp,).

Case (3), B~ B’ constraints: we need to look at the cases where p bt differs from pp,
on § and/or f’. This happens when f and/or ' get assigned Sby pp, and D by pp, ;-
Case pp(B) = S A ppe1(B') = D: it holds for all bt-values b that b~8S = bwD, so it
is trivial that p,,; satisfies S~ B'. Case pp(B) = S A pps1(B) = D:since pp(f') =S
(otherwise the constraint S~ B’ would not be satisfied), we must generalize f’ such
that pp,;(8) = D holds; otherwise, f~ B’ would not be satisfied by pp,;. Notice
that —p ,c.q(B) holds. We can obtain the desired generalization by ensuring that
=P ysed(B") also holds (cf. the definition of pp,1): =pysed(B) = —p yseqd(B’) Which is

equivalent to pceq(B) <= pygeq(B’) and to peq(B) = pgeq(B’)- Hence, whenever
CpsN contains a p~+ B’ constraint, we must add a constraint >*f to Cpeeqs
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notice from Figure 12 that is-used information thus in effect flows backwards
through ~#-constraints. In practice, there is no need to generate >*-constraints
for all B~ B’ constraints in Cp,py; it suffices to generate a B>*f' constraint ‘by
need’ each time there actually is a constraint used”(f’); this turns out to make the
implementation simpler and more efficient since the ~-constraints need only be
represented indirectly by attaching information to the f’s (no explicit pass over

~#-constraints is then needed).

Case (4), "' constraints: we need to look at the cases where pp,; differs
from pp, on B and/or B'. Case pp(f) = S N ppsy(f’) = D: it holds for all
bt-values b that b>S = b>D so it is trivial that pj,; satisfies g >"f'. Case
Ppe(B) =S A pps1(B) = D: here we cannot know whether p p(B') is L, S, Cl, or Ps;
(in contrast to the ~#-case where we could deduce and exploit the fact p plB) =8S).
We want to obtain pp(f’) = D in order to make pp,; satisfy f ", but only
when pp,(B') = S since only values with bt-value S are allowed to be poor man’s
generalized (this case, pp(B’) = S, can be handled as above under case (3), ie.
by generating >"-constraints). In the other three cases (pp(f') € {L,Ps¢,Cl,}), we
must prevent S from being generalized. This can be done by generating an is-used
constraint used” (f). To summarize, whenever Cp¢N contains a constraint f>"f
where pp () = S, the value of pp(f’) must be inspected. If this value is S, an is-
used constraint f>*p’ must be generated; if the value is in {L,Ps¢, Cl,}, an is-used
constraint used” () must be generated. Alternatively, one could instead generate a
constraint used” (f) indiscriminately of the value of p pe(B’), but this would yield
more conservative results (less generalization).

For the particular Cpp; that we generate, it is easy to sce that 1>*-constraints
do not need any consideration at all in the is-used analysis: first notice (Figure 9)
that no >"-constraints are generated during normalization, so any b*-constraint in
Cp¢n Will have form ap () "0 (') where B >"f’ is contained in the initial Cp,.
By inspecting Figure 8, we can see that p () can only become 8 for >*-constraints
originating from the if-rule (in which case B, plays the role of f); for all other
>"-constraints in Figure 8, constraints Ps,c,E*f or CI,="p prevent pp,(f) = S
from holding (so these >*-constraints need not be considered). However, notice
from Figure 11 that an appropriate used -constraint is always generated for the
if-rule; hence we have a case corresponding to the ‘more conservative’ situation
from above, that is, we can safely ignore the value of ¢ p(f'). Summarizing, for the
particular constraint-generation systems in Figure 8 and Figure 11, >"-constraints
in Cpypy can be completely ignored by the is-used analysis. We have exploited this
in the implementation; this implies that the implementation only works for initial
bt-constraint systems whose f "’ constraints fulfill that pp,(f) can only become
S if there also exists a constraint used"(abt(ﬂ)).

7 Correctness proofs

In this section we give correctness proofs for the normalization algorithms. For
each analysis, we prove that constraint normalization is sound and complete, that it
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terminates, and we constructively prove existence of a minimal solution (substitution)
to the initial constraint system. We first give some general definitions and we prove
some lemmas that are common to all analyses; we state and prove a general theorem
{Theorem 10) that we then use to prove soundness and completeness of the analyses.
Then we give analysis-specific proofs in the following sections.

We consider two kinds of substitutions:

DEFINITION 4 (Substitutions)

o € Var

v € Val

p € ValSub = Var— Val ; Value substitutions

o € VarValSubst = Var — Var + Val ; Variable/value substitutions D

These definitions are more general than the ones used for the particular analyses
(compare with the definitions of the p- and s-substitution domains in the figures 3,
7, 10). We show some properties that hold for these more general definitions; hence
they also hold for the particular domains used in the analyses.

We lift the domain of substitutions to include terms in the usual componentwise
way: applying a substitution to a term ¢ yields a new term identical to ¢ except
that any subterm of ¢ that is a variable in the domain of the substitution has been
replaced by the value obtained by applying the substitution to the variable. We may
therefore always compose a substitution p and a substitution ¢ to get a new value
substitution p’ = pog. We define

DerFINITION 5 (Solutions)

1. pl=c < oplp(ty),...,p(t)) where c= op*(ty,..., tn)-
2.pCeVcelipEc O

where op € Val' — Boolean is the (semantic) relation corresponding to the (syn-
tactic) constraint operator op*. We say that a constraint c is satisfied by a value
substitution p if and only if p = c holds. We say that p is a solution to a constraint
set Cif and only if p &= C holds.

DEFINITION 6 (Set of solutions) Given a constraint system C, we define the set of
solutions Sol(C) to C by

Sol(Q) = {p|p = C} o

The following lemma states that p is a solution to ¢(Q) if and only if the composition
poo is a solution to C itself:

LemMMa 7 Let ¢ be a variable/value substitution and p a value substitution, then

pEIQ = poo=C
PRrOOF: Let ¢ = op*(ty,..., t;) be an arbitrary element in C. Then

pEG(Q <= plEop'a(t),....,o(t)) <= op(poa(t),...,pod(tn)) <= poo = ¢
Since ¢ was picked arbitrarily from C, the lemma follows. ]
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Notice that we use the precedence rule that function composition binds stronger
than function application: fog(x) = (fog)(x). The next lemma is used later for
compositionally proving preservation of substitutions:

Lemma 8 Let C Cjand Cy be constraint sets, then
Sol(Cy) = Sol(Cy) = So(CU Cy) = Sol(CU C))

PROOF: Let p be an arbitrary element in So/(CU Cy). Assume that the premise holds.
Then

PECUC; <> pECApEC; < pECApEC) < pECUC) m]

DEerFINITION 9 (Constraint-system rewrite rules) A set # of constraint-system rewrite
rules is a set containing the following two kinds of rules:

1. Substitution rules:
(@) CU{a="a} = [0—d']C
(b) CU{a="v} = [0—>V]C
2. Proper rules:
(@ CuCy=Cu(Cy O

We thus consider two kinds of substitution rules, those binding a variable to another
variable and those binding a variable to a value (cf. the definition of o-substitutions
in Definition 4). The proper rules replace some constraints by others, but they do
not introduce substitutions.

We use the notation R : C4 = g(Cp) to express that the rule named R rewrites
C4 to 6(Cp). Rules may have side-conditions that limit the applicability of a rule
(e.g. Rule B3 in Figure 9). We have ignored side-conditions here since they do not
influence soundness and completeness; they do, however, influence termination of
constraint normalization (in particular, Theorem 16). For proper rules, ¢ is the
identity substitution and we may leave ¢ out and just write R : C4 = Cp.

THEOREM 10 (Soundness and completeness) Consider a constraint system C4 and a
set of constraint system rewrite rules £. If (for all p) p = C; <= p = C) holds for
all proper rules R : CU C; = CU C; of %, then the system is sound and complete,
ie. for all rules R : C4 => a(Cp) the following holds:

Sol(C4) = {poc | p € Sol(a(Cp))}
ProOF: By case analysis over the different kinds of rewrite rules (cf. Definition 9).

Case: First substitution rule. Here ¢ = [0—a']. First we observe that for any
variables o and « and any value substitution p the following holds: p(x) = p(¢/) <=
3p’ : p = p'ofw—a’]. To see this, note that we can always choose p’ to be p.

Sol(C4) = Sol(CU {a="a’}) “L° {p|p = CU {u="a'}} ‘L’
{plpECApEa="d} {plpl= CA ple) =p()} =

{plpECA3p' :p=polemd]} = {po[w—a]]|p'olw—d] = C}

def 5

renaming
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le_n__17 { de=f6

{polw—) | polw—o] = C}
{polw—o]| p € Sol([w—]O)} = {poc| p € Sol(e(Cp))}

Case: Second substitution rule. Similar to the case above.

polo—a}|p = [0—o]C}

Case: Proper rules. Because ¢ is the identity substitution, we have to prove:
Sol(C4) = Sol(Cpg) <= Sol(CuU Cy) = So(CU Cj). We have assumed that for all
value substitutions p and all proper rules, p = C; <= p = C; holds; we therefore
have Sol(C;) = Sol(C5) and then by Lemma 8, So(CuU Cj) = Sol(CU C)). o

Thus, if we can show that p = C; < p = C) for all proper rules of constraint
rewriting system £, then we know that the system is sound and complete: for any
rewriting step, a substitution p is a solution to the rewritten system if (soundness)
and only if (completeness) p is a solution to the original system.

THEOREM 11 (Solution to constraint system) If a constraint-normalization system
is sound and complete, then a (possibly minimal) solution p to a constraint system
Z can be found by composing a (possibly minimal) solution p’ to the normalized
version of # with the composition of the g-substitutions generated by the rewrite
steps during normalization.

Proor: By Theorem 10, transitivity of equality of solution sets and associativity of
function composition. a

7.1 Flow analysis

THEOREM 12 (Soundness and completeness of flow-constraint normalization) The
set of rewrite rules for flow-constraint normalization, shown in Figure 5, is sound
and complete.

Proor: By Theorem 10 we have to prove that for all proper rules of # and all
value substitutions p € FlowVaiSub, p = C; < p = Cj holds. The proof is by case
analysis over the two proper rules. We only give the proof for Rule F3; the proof
for Rule F2is similar.

pEC <
p = (i B))i— (@0, Bo) <5 & A p = (@7, BNi—(do's Bo) <5y b S

def 1

{(p b3, p Bi))i— (0 Do, p Bo)<np d A (0 &', p Bi"))i—= (0 b0, p B0 ) <npd =
{(0 &3, pBi))i—(p Do, p Po)<np & N
pdi=pd/ Apdo=pdd’ NpBi=pB' ApPo=pBo' Npeo=peo <
p E {(#i, B1)i—=(do, Bo) <, ¢ A p ¢i=*¢i’f/\/) = do="¢o' N

def 5

PpEB="BNpEP="P Np = a="ef <=
PEC =
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Notice that for all 8, p § = f. Thus, a flow-constraint system will only rarely have a
solution at all since f-variables must be identical to be considered equal. However, a
flow-constraint system can always be solved modulo a substitution o, (see below).

THEOREM 13 (Termination of flow-constraint normalization) Flow-constraint nor-
malization terminates.

PrOOF: Rule F2 and rule F3 can only be applied finitely many times since each
application of removes one of finitely many <¢ /<; constraints. Each application of
the rules F2 and F3 adds a finite number of equality constraints. Hence rule FI can
only be applied finitely many times. Normalization therefore terminates. O

THEOREM 14  (Form of normalized flow-constraint system) A normalized flow-
constraint system Cg,,, v contains the following kinds of constraints:

L {(¢i, 8:))i <c ¢ and ((¢i, Bi))i— (o, Bo) <, ¢-
2. p=*p.

Furthermore, for every constructor C, Cg,, v contains at most one constraint of
the form ((¢i, Bi))i <¢ @ for each variable ¢. Similarly, for every function arity,
ChowN contains at most one constraint of the form ((¢;, £;))i— (o, fo) < ¢ for
each variable ¢.

PRrROOF: By inspection of the constraint-normalization algorithm. m]

Theorem 14 ensures that all flow equalities ¢;="¢;" have been resolved. We are not
interested in a minimal solution pg,,, to the initial system Cg,.., but it does exist
modulo that the f="$" constraints are solved by a substitution o, We refer to
Bondorf and Jergensen (1993) for details.

We note that the bt-analysis introduces additional f="8' constraints, both during
constraint generation (Figure 8) and during constraint normalization (Figure 9).
Hence o4, as generated during bt-constraint normalization, will typically equate
more variables than those required to be equal by the flow analysis. This of course
influences the resulting minimal solution p g,

7.2 Binding-time analysis

THEOREM 15 (Soundness and completeness of bt-constraint normalization) The set
of rewrite rules for bt-constraint normalization, shown in Figure 9, is sound and
complete.

Proor: By Theorem 10 we have to prove that for all proper rules of £ and all value
substitutions p € BtValSub, p = C; <= p |= C5 holds. The proof is by case analysis

over the proper rules. We use the abbreviations p(f) = band p(f') = b.

Case: Rule B3. p = C; ‘S’ SCb A bl <> SCh A bl ASCH S p = G,

Case:Rule B4. p|= Cy < Ps:Cb A bbb < Ps;CbAN b=V <« p|= C).
Case: Rule B5. pk= C; <> CLEb A bl <= CLEbA b=V < pE C).
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Case:Rule B6. pl=C; <> vEbDAVEDbAV#Y <« b=D « pE Cy.
Case:Rule B7. pl=C; < Db < b=D <« pFE Cy.

Case:Rule B8. pl=C; <> DCb< b=D < pk C,

Case:Rule B9. p=Cy <> D=b< b=D < plk=C,. o

THEOREM 16 (Termination of bt-constraint normalization) Bt-constraint normaliza-
tion terminates.

PROOF: We show that each of the rules of Figure 9 can only be applied a finite
number of times; this is done by case analysis over all constraint-normalization
rules. We refer to Bondorf and Jergensen (1993) for details. o

THEOREM 17 (Form of normalized bt-constraint system) A normalized bt-constraint
system Cp,p; contains the following kinds of constraints:

1. Garbage: p~* D, D~ D, "D, D>*D, vC*D, D="D.

2. v’ B; Cpy N never contains two constraints vE*f and v'C*f where v # v/,
3. B~ B

4. g

Furthermore, for any f, neither constraints f~ ' and Ps;C*f nor constraints
p~+ B’ and Cl,E"B co-exist in Cppy-

ProoF: By inspection of the constraint-normalization algorithm. o

THEOREM 18 (Minimal solution) There exists a minimal solution pp,p; to a nor-
malized bt-constraint system Cp,nr (and hence there also exists a minimal solution
Pbt = PpeN©O b to the original system Cp, cf. Theorem 11). The minimal solution
ppeN is found by first solving Cp,afs vE* B constraints by p ptN{(B) = v, and then
letting pp,N(B) = L for all remaining unbound constraint variables §.

ProoF: The minimal solution to the vC*f§ constraints is the one obtained by letting
PpeN(B) = v. We must show that the other constraints in Cppy then also are
satisfied. The garbage constraints are always satisfied. The >’ constraints are
satisfied because no variable is assigned D. By considering the possible values that
can be assigned to f and f', it can be verified that the f~ f’ constraints are also
satisfied (see Bondorf and Jergensen, 1993 for details.) O

7.3 Is-used analysis
Proofs for the following theorems can be found in Bondorf and Jergensen (1993).

THEOREM 19  (Soundness and completeness of is-used constraint normalization)
The set of rewrite rules for is-used constraint normalization, shown in Figure 12, is
sound and complete. O
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THEOREM 20 (Termination of is-used constraint normalization) Is-used constraint
normalization terminates. ]

THEOREM 21 (Form of normalized is-used constraint system) A normalized con-
straint system C,;c.yn contains the following kinds of constraints:

1. used (B).
2. p>"p"

Furthermore, for any f’, constraints used” (') and f>"#' do not co-exist in Cygogn-
(|

THEOREM 22 (Minimal solution) There exists a minimal solution p 4. qp t0 2 nor-
malized is-used constraint system Cq. s (and hence there also exists a minimal
solution p ceqd = P used N°C used = PusedN to the original system C,;q.q, cf. Theo-
rem 11). The minimal solution p 4.4n is defined by, for all B’s, if C,;coqpn contains
a constraint used"(f), then P usedNB) = true; otherwise, p ,c.aN(B) = false. a

8 Implementation

In this section we give a short description of the implementation of the three
analyses. The analyses have all been implemented in Scheme (IEE, 1990) and
integrated into the Similix system; the implementation will be publically available
in Similix version 5.0. The implementation is based on Henglein (1991). We thus
also use a union/find-based algorithm that operates on a term graph representation
of the constraints systems.

The main difference between Henglein’s and our algorithm is that we do not keep
one global list of constraints to be solved. We instead solve constraints in a particular
order; this order is determined from observations of which constraints are generated
during normalization. For example, notice that in the bt-constraint normalization
algorithm from Figure 9, no ~¥-constraints are ever generated. This can be exploited
by always handling the (initial) ~"-constraints before C*-constraints. Then only one
piece of code for discovering matches between the two kinds of constraints is needed
(the code that implements rewriting by one of the rules B3, B4, BS).

Avoiding the global constraint list speeds up constraint normalization by saving
some bookkeeping, but the main benefit is that the code is simpler: we found it much
easier to convince ourselves that no cases had been overlooked. The disadvantage is
that the implementation cannot immediately be used incrementally. Notice that this
is not a limitation of the analyses, only of the implementation: nothing in constraint
generation, constraint normalization nor in correctness proofs requires constraints
to be solved in any specific order.

In the following we will describe how the bt-analysis was implemented; the
other two analyses were implemented in a similar way. Each constraint variable is
represented by a variable node in the term graph. To each variable node we associate
an equivalent class representative (henceforth called ‘ecr’) which is also a variable
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node. The ecrs represent equivalence classes of variable nodes; ecrs implement the
substitution ¢ generated during constraint normalization. To each ecr, we associate
two dependency lists, one for p*-dependencies and one for ~"-dependencies. We
also associate a so-called leq-field representing C*-constraints (cf. (Henglein, 1991)).
In general, when a constraint is examined, the constraint is removed from the
constraint set and the information it conveyed about constraint variables is either
combined with (using one of the rules of the rewrite system) or added to information
associated with the involved variable nodes. If, say, a constraint 8 "’ is examined,
the >"-dependency field of 8’s ecr is updated to contain f’. Equality constraints
between variables are solved right away by unifying the two corresponding variable
nodes (this implements Rule BI); one of these nodes becomes the new ecr. Any
information associated with the node that ‘loses’ its ecr-status is then combined with
the information of the new ecr.

Let us now look more specifically at the different bt-constraints. Equality con-
straints between constraint variables are always handled immediately at creation
time. In particular, the bt-equality constraints generated by the flow analysis are
solved already during the flow analysis; no other bt-constraints have been examined
at this point, so the two corresponding bt-variable nodes can be unified without
considering (the still empty) associated information such as the b>"-dependency field.
The rest of the constraints are examined in the following order:

1. B~# B’ constraints. The ~-dependency fields are initialized.

2. SC*B constraints. If the leq-field of 8 has not been updated, it is updated to
S. If furthermore the ~#-dependency of § is non-empty, Rule B3 is applied
by adding a constraint SC*B’ for each " in §’s ~-dependency list.

3. Ps;C* B constraints. These are handled quite similarly to the SC* f-constraints,
namely by updating leq-fields. If the leq-field of § has already been updated to
something different from Ps;, a f="D constraint is generated. This implements
one usage of Rule B6. If furthermore the ~-dependency of § is non-empty,
Rule B4 is applied by generating (and immediately solving) a constraint f="§'
for each B’ in B’s ~¥-dependency list.

4. Cl,C*B constraints. These are treated similarly to the Ps;C*B-constraints,
except that Rule B3 is used instead of Rule B4. If the leq-field of § has already
been updated to something different from Cl,,, a f="D constraint is generated.

5. B f constraints. The >"-dependency fields are initialized.

6. B="D constraints. These are handled by first unifying the variable node
corresponding to f with a special dynamic node and then, for each ' in §’s
dependency lists (both >"and ~"-dependencies), adding a new constraint
B'="D. These actions implement the rules B2, B7 and BS.

When all constraints have been examined (including those generated during con-
straint normalization), the bt-value associated with each constraint variable, hence
also with each program point, is found from the associated variable node in the
following way: if the variable node is in the same equivalence class as the special
dynamic node, then the bt-value is D. If not, we look at the variable node’s leq-field;
if this field has been updated, the bt-value is the value of this field. Otherwise, the
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bt-value is L. This way, the minimal solution (cf. Section 5) is found. The desired
bt-solution is found after is-used analysis by also taking the then updated is-used
fields of variable nodes into account.

9 Complexity

Let us now reason about the complexity of the flow analysis.

First ignore the operations on constructed data structures (construction, selec-
tion, predicate testing). For this limited language, the number of generated initial
constraints is linearly bounded by N where N is the (textual) size of the analysed
program; this is easy to see since the constraint generation algorithm is composi-
tional and since it generates a constant number of constraints for each syntactic
construct.

The equality constraints have constant size. The size of the <}-constraints is
varying, but the size of each <} -constraint is linearly bounded by the size of the
source expression from which it was generated (the constraint grows as the function
arity grows, but so does the source expression). Hence the total size of the initial
constraint system (where the varying size of each constraint is taken into account)
is also linearly bounded by the size of the program text.

Normalization Rule F3 generates new equality constraints that were not in the
initial constraint system. However, the number of such generated equality constraints
is linear in the size of <] -constraint that is removed by Rule F3. Since each <;-
constraint can at most be removed once and since no <j;-constraints are generated
during normalization, the total number of generated constraints, the initial ones
plus the ones generated during normalization, is also linearly bounded by the size
of the program text.

All operations performed during normalization can be done in constant time,
except those related to unification and those that search for matching arities to
check applicability of Rule F3. This search is (if implemented naively) at least
bounded by 1 + FA where FA is the maximum function arity of any lambda-
expression in the analysed program. Unification adds a factor a(N, N) due to the
union/find operations (« is an inverse of Ackermann’s function, see Henglein (1991)
for further details). The time complexity for the flow analysis without constructor
operations thus becomes O(N - a(N, N) - (1 + FA)) for the flow analysis.

The factor a(N, N) is less than 4 for all practical purposes (Henglein, 1991), so
in practice the time complexity is linearly bounded by N. For hand-written source
programs, the factor FA is also small in practice. However, machine generated
programs might look quite different (but in particular, the ones generated by Similix
do not), so an efficient implementation of the search operation to reduce the FA-
factor might become crucial. Notice further that if the analysed language had been
strongly typed instead of dynamically typed (such as Scheme), clashing function
arities would generate a type error. Hence no search would be needed, and thus the
factor FA would vanish. Notice that the complexity would then be equal to that of
Henglein (1991).

Now consider the full language including constructor operations. Here the
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constraint-generation rule for selector expressions (C-M E;) breaks one linear-
ity: the size of the generated constraint depends on the constructor arity and is
thus not linear in the size of the expression (which always has just one argument).
This implies that the total number of generated constraints is linearly bounded by
M = N max(l, CA) where CA is the maximum constructor arity. Additionally,
search time increases as a search is needed to check applicability of Rule F2. This
search is (if implemented naively) at least bounded by N; where N; is the number
of constructors used in the analysed program. The time complexity then becomes
O(M - a(M, M) - (1 + max(FA, N.))). Again, CA and N, are typically small for both
hand-written and Similix-generated programs, but for machine generated programs
in general, that might not be the case.

By similar considerations, it can be deduced that the time complexities of the bt-
and is-used analyses are bounded linearly by N, modulo the small factor af...,...)
(Bondorf and Jergensen, 1993). The linearity claim is supported by the experimental
results presented in Section 10.

Without getting into details, we mention that in the implementation it holds for
all three analyses that the amount of storage allocated is linearly bounded by the
size of the total number of constraints generated by the analyses. Therefore space
complexity can be expected to be linear in the size of the program modulo a small
factor. This claim is also supported by the experiments (see Section 10).

10 Performance

This section contains performance results. We compare the performance of the new
Similix preprocessor based on the analyses described in this paper with that of the
old preprocessor that used abstract interpretation based analyses; the old system is
the one described in Bondorf (1991b) extended with partially static data structures.
The tests were run on a Sparc Station 2/Sun OS 4.1 using Chez Scheme Version
3.2. Run times are for the full preprocessing time (of which by far the most takes
place in the flow-, bt- and eod-analyses).

Run times do not include garbage collection (but storage allocation is measured
separately): the time spent on garbage collection depends on many irrelevant factors
(the method used for garbage collection, the system configuration, etc.). Garbage
collection time may be significant in practice; for example, the old preprocessor
garbage collected 192 times when preprocessing one of the test programs, Cogen;
the new preprocessor only garbage collected 9 times.

Figure 13 gives the time and space consumption of preprocessing performed
on four selected programs. The first column contains the names of the programs.
All four programs are realistic examples: BAWLO and BAWL1 are interpreters for a
substantial lazy functional language (Jorgensen, 1992), Specializer and Cogen are
the specializer and the automatically generated compiler generator of Similix. The
second column gives the size of the programs (measured as the number of ‘cons’
cells needed to represent the program as an S-expression). The last two columns
show the time and space consumption of the two sets of analyses.

Figure 14 shows complexity results for the two sets of analyses. The figures show
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Program Size/cells Old New
Time/s Storage/Kb| Time/s Storage/Kb
BawL0 1420 2.6 674 1.3 320
Specializer 2112 4.1 683 1.9 494
BawL1 4506 12.8 3,420 3.8 978
Cogen 10881 249. 50,043 9.2 2,554
Fig. 13. Performance: benchmarks
Program Old New
Time/Size Storage/Size| Time/Size Storage/Size

BawL0 1.86 .47 0.91 .23

Specializer 1.93 .32 0.88 .23

BawL1 2.83 .76 0.84 .22

Cogen 229 4.60 0.85 .23

Fig. 14. Performance: complexities

the ratios time/size and storage/size. The tests confirm that the new preprocessor in
practice runs linearly in the size of the analysed program while the old preprocessor
performs much worse. In particular, the figures for Cogen are very large for the old
preprocessor.

11 Conclusion

We have successfully scaled up Henglein’s efficient bt-analysis and integrated it
into the Similix system. We do a separate flow analysis prior to the bt-analysis;
the flow analysis traces flow of constructed and function values. The bt-analysis
therefore becomes quite simple: no structured bt-values are needed. A new is-
used analysis implements ‘poor man’s generalization’ which improves termination of
specialization. We have shown that this new analysis can be formulated elegantly in
the same framework as the flow and bt-analyses. In Bondorf and Jergensen (1993),
also the eod-analysis of Similix is formulated in the framework.

Experiments have confirmed dramatic speedups compared to the traditional ab-
stract interpretation based analyses (Bondorf, 1991a, 1991b). Previously, the analyses
have never in practice been a major bottleneck though, but that is probably mostly
due to the fact that we have never specialized programs that were substantially larger
than the BAwL interpreters (Jorgensen, 1992). The experiments in this paper show
that if significantly larger programs (of a size comparable to the Cogen-program of
Similix) are to be partially evaluated, the new preprocessing proves very useful.

This paper does not prove that the initial constraint systems are correctly spec-
ified: the specifications must ensure that the specializer cannot commit any bt-tag
projection errors. Such proofs exist for specializers for the pure lambda calculus
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(Wand, 1993, Palsberg, 1993); the Scheme subset treated in this paper is of course
much more complex.
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