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Mahler’s Measure and the Dilogarithm (I)
David W. Boyd and Fernando Rodriguez-Villegas

Abstract. An explicit formula is derived for the logarithmic Mahler measure m(P) of P(x, y) = p(x)y−
q(x), where p(x) and q(x) are cyclotomic. This is used to find many examples of such polynomials for
which m(P) is rationally related to the Dedekind zeta value ζF(2) for certain quadratic and quartic
fields.

Introduction

The logarithmic Mahler measure of a non-zero Laurent polynomial P ∈ C[x±1
1 , . . . ,

x±1
n ] is defined as

(1) m(P) =
∫ 1

0
· · ·
∫ 1

0
log |P(e2πiθ1 , . . . , e2πiθn )| dθ1 · · · dθn

and its Mahler measure as M(P) = em(P), the geometric mean of |P| on the torus

Tn =
{

(z1, . . . , zn) ∈ Cn
∣∣ |z1| = · · · = |zn| = 1

}
.

In the early 80’s Smyth [Sm] proved that

(2) m(x + y + 1) = L ′(χ,−1)

where χ is the Dirichlet character associated with the field Q(
√
−3).

In this paper we will consider the Mahler measure of polynomials of the form
P(x, y) = p(x)y − q(x). We will show that for appropriate choices of p and q, m(P)
can be expressed in terms of the values of Bloch-Wigner dilogarithm function at
certain algebraic arguments; using a theorem of Borel we will then find that m(P) is
related to special values of certain Artin L-functions with Smyth’s result (2) being the
prototypical example.

We begin by proving the basic formula (8) of Proposition 1 for m(P) =
m
(

p(x)y− q(x)
)

where p and q are cyclotomic. It expresses the measure as a sum of
Bloch-Wigner dilogarithms evaluated at various algebraic numbers lying on the unit
circle. In Section 2, we apply the formula directly to compute m(y + 1 + x + · · ·+ xn).

In Section 3 and Section 4 we summarize the basic theory of the Bloch group and
show how it applies to the formula (8) in certain circumstances. This leads to our
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Mahler’s Measure and the Dilogarithm (I) 469

Theorems 1 and 2 which give conditions under which m(P) is rationally related to
ζF(2) for a number field F with a single pair of complex embeddings. Of necessity,
the fields to which these theorems apply are of even degree 2n and have Galois group
a subgroup of the hyperoctahedral group C2 o Sn, of order 2nn!.

A couple of examples involving more general fields are mentioned in the con-
cluding Section 13. These are derived from the study of A-polynomials of certain
hyperbolic manifolds.

Section 6 contains a general discussion of the restrictions on the rational function
r(x) = q(x)/p(x) imposed by the conditions of Theorems 1 or 2. These considera-
tions are applied in Section 7–Section 11 to construct the examples summarized in
Tables 1 and 2 in which the field F is either imaginary quadratic or quartic. It seems
likely that there are only a finite number of different fields to which Theorems 1 and 2
apply, but we do construct an infinite number of distinct examples for some of these
fields. For example, Proposition 5 gives a three parameter family of generalizations
of Smyth’s formula (2) relating m(P) to L ′(χ,−1).

In general, although we know from Section 3 and Section 4 that the ratios s ap-
pearing in Tables 1 and 2 are rational, the quantities indicated are those surmised
from numerical calculation (to 50 decimal places). We would like to thank Don Za-
gier for several conversations and for supplying the proof in Section 12. We would
also like to thank the referee for several excellent suggestions for improving the expo-
sition.

1 Calculation of m(P)

We say a polynomial p(x) ∈ Z[x] is cyclotomic if it is a non-zero polynomial of the
form p(x) = ±xk p0(x), where p0 is monic and its roots consist of roots of unity only.
By a theorem of Kronecker it is equivalent to require that m(p) = 0. Note that given
any cyclotomic polynomial there exist unique integers k, cm for m ∈ N, with cm = 0
except for finitely many m’s, such that

(3) p(x) = ±xk
∞∏

m=1

(1− xm)cm .

We recall the definition of the Bloch-Wigner dilogarithm. Starting with the usual
dilogarithm

Li2(z) =
∞∑

n=1

zn

n2
, |z| < 1

one defines

D(z) = Im
(

Li2(z)
)

+ arg(1− z) log |z|

and checks that it extends to a real analytic function on C \ {0, 1}, continuous on C.
See [Za1] for an account of its many wonderful properties. It is obvious that

(4) D(z̄) = −D(z)
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and

D(eiθ) = −
∫ θ

0
log |1− eit | dt,

=
∞∑

n=1

sin(nθ)

n2
.

(5)

Proposition 1 Let P(x, y) = p(x)y − q(x) with p and q cyclotomic and relatively
prime and let

(6) r(x) =
q(x)

p(x)
= ±xk

∞∏
m=1

(1− xm)cm with k, cm ∈ Z,

with cm = 0 except for finitely many m. Let α1, . . . , αN ∈ C be the different roots of the
equation

(7) r(x)r(x−1) = 1,

with |αk| = 1 which have odd multiplicity, ordered counterclockwise around the unit
circle. Then

(8) m(P) =
ε

2π

N∑
n=1

(−1)n
∞∑

m=1

cm

m
D(αm

n ),

for some ε = ±1, where D(z) is the Bloch-Wigner dilogarithm.

Proof The proof is essentially the same as Smyth’s. Applying Jensen’s formula in the
variable y to the integral defining m(P) we obtain

(9) m(P) =
1

2πi

∫
|x|=1

log+ |r(x)|dx

x
,

where log+ |z| = log |z| if |z| ≥ 1 and 0 otherwise.
It is not hard to see that as x moves counter clockwise on the circle r(x) enters or

leaves the unit circle precisely at the points r(α1), . . . , r(αN ) and in that order. Hence,
up to possibly a global sign ε we have (note that N is even)

m(P) =
ε

2π

N/2∑
j=1

∫
γ j

log |r(x)|dx

ix
,

where γ j is the arc of circle from α2 j−1 to α2 j . Now we can separate the factors that
make up r(x) and, ignoring the factor ±xk which does not contribute, we are left to
consider the integral ∫

γ j

log |1− xm|dx

ix
,

which is easily seen by changing variables in the integral in (5) to equal

− 1

m
D(αm

2 j) +
1

m
D(αm

2 j−1)

and the claim follows.
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2 An Example

For example, to compute m(y+1+x+· · ·+xn), we need the roots of (1+x+· · ·+xn)2 =
xn, an equation which simplifies to (xn+2 − 1)(xn − 1) = 0, x 6= 1 (a fact pointed
out in [MPV]). Let R(x) = 1

n+1 D(xn+1) − D(x), so if αn = 1 and βn+2 = 1 then
R(α) = − n

n+1 D(α) and R(β) = − n+2
n+1 D(β). Since the roots of xn − 1 and xn+2 − 1

interlace on the upper half of the unit circle, we obtain the following formula for n,
writing α = exp(2πi/n) and β = exp

(
2πi/(n + 2)

)
:

(10) m(y + 1 + x + · · · + xn) =
1

(n + 1)π

(
−(n + 2)

n+1
2∑

k=1

D(βk) + n

n−1
2∑

k=1

D(αk)
)
.

Since all roots appearing in (10) are roots of unity one can regard the sum that ap-
pears there as a finite Fourier transform and thus write the measure as a combination
of L ′(χ,−1) for various Dirichlet characters. The functional relation D(x̄) = −D(x)
ensures that only odd characters appear in such formulas.

More explicitly, let χ be a primitive odd Dirichlet of conductor N and L(χ, s) =∑∞
n=1 χ(n)n−s for Re(s) > 1 be its associated L-function. Then a standard calcula-

tion using the series in (5) shows that

(11) L(χ, 2) = τ (χ̄)−1
∑

k mod N

χ̄(k)D(e2πik/N ),

where

(12) τ (χ̄) =
∑

k mod N

χ̄(k)e2πik/N

is a Gauss sum.
For example, using the notation d f = L ′(χ− f ,−1), we have m(y + 1 + x) = d3,

m(y + 1 + x + x2) = 2
3 d4, m(y + 1 + x + x2 + x3 + x4) = 2d3 − 2

5 d4 and m(y + 1 + x +
x2 + x3 + x4 + x5 + x6) = 1

7 (−10d3 + 4d4 + 2d8).
Let us remark that by results of Boyd and Smyth [Bo1, Sm] we have

(13) lim
n→∞

m(y + 1 + x + · · · + xn−1) = m(1 + x + y + z) =
7

2π2
ζ(3) = 14ζ ′(−2),

where ζ(s) =
∑∞

n=1 n−s is Riemann’s zeta function. Using the Euler-Maclaurin for-
mula, one can derive this directly from the formula (10).

3 The Bloch Group and Borel’s Theorem

We summarize in this section the results that we need in order to relate in general the
calculation of Section 1 to special values of L-functions. We refer the reader to [Za2]
for details.
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For any field F we define

(14) A(F) =
{∑

i

ni[zi] ∈ Z[F]
∣∣∣ ∑

i

ni

(
zi ∧ (1− zi)

)
= 0
}

where the corresponding term in the sum is omitted if zi = 0, 1. We extend the
Bloch-Wigner dilogarithm D to Z[C] by linearity.

Next we define the group

(15) C(F) =
{

[x] + [y] +
[ 1− x

1− xy

]
+ [1− xy] +

[ 1− y

1− xy

]
| x, y ∈ F, xy 6= 1

}
.

It is not hard to check that C(F) ⊂ A(F). We define the Bloch group as the quotient

(16) B(F) = A(F)/C(F).

Clearly an embedding of fields σ : F → L extends by linearity to a map σ : B(F) →
B(L) and in particular Gal(F/Q) acts on B(F) if F/Q is Galois.

One of the wonderful properties of the dilogarithm, the 5-term relation, guaran-
tees that D induces a well defined function on B(C) (still denoted by D).

The main result we need is the following (due to Bloch, Borel, Suslin, and others).

Theorem Let F be a number field with r1 real and r2 complex embeddings. Then

1) The group B(F) is finitely generated of rank r2.
2) Let ξ1, . . . , ξr2 be a Q-basis of B(F) ⊗Z Q and σ1, . . . , σr2 a set of pairwise non-

conjugate complex embeddings of F into C. Then

(17) det
(

D
(
σi(ξ j)

))
∼Q?

|∆F|3/2

π2(r1+r2)
ζF(2),

where ζF is the zeta function of F, ∆F its discriminant, and a ∼Q? b means a = rb
for some non-zero rational number r.

In particular, if F is a number field of degree n with only one pair of complex
embeddings σ, σ̄ and 0 6= ξ ∈ B(F)⊗Z Q then

(18) D
(
σ(ξ)

)
∼Q?

|∆F|3/2

π2(n−1)
ζF(2).

We will also need the following Galois descent property of the Bloch group.

Theorem Let L/F be a Galois extension of number fields with G = Gal(L/F). Then

B(F)⊗Z Q = B(L)G ⊗Z Q.
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4 Some Elements of B(Q̄)

We let Q̄ be the algebraic closure of Q in C.

Proposition 2 Let p, q ∈ Z[x] be cyclotomic and relatively prime. Let

(19) r(x) =
q(x)

p(x)
= ±xk

∞∏
m=1

(1− xm)cm

as in (6). Then for any α ∈ Q̄ root of

(20) r(x)r(x−1) = 1

we have

(21)
∞∑

m=1

cm

m
[αm] ∈ A(Q̄)⊗Z Q.

Proof We need to verify that

∞∑
m=1

cm

m

(
αm ∧ (1− αm)

)
= 0.

We have

∞∑
m=1

cm

m

(
αm ∧ (1− αm)

)
=
∞∑

m=1

α ∧ (1− αm)cm = α ∧
∞∏

m=1

(1− αm)cm

It is clear that r(x−1) = ±xN r(x) for some N ∈ Z. Hence if α is a root of
r(α)r(α−1) = 1 then r(α)2 is (up to sign) a power ofα, soα∧r(α) = 0 in A(Q̄)⊗Z Q
and we are done.

The type of element of B(Q̄) ⊗Z Q given in the proposition is called a “ladder”;
see [Za] for more details.

5 Putting Things Together

By Proposition 1, the value of m
(

y p(x)−q(x)
)

is determined by the points on |x| = 1
where the graph of r(x) = q(x)/p(x) crosses the unit circle; i.e. those α with |α| = 1
at which r(x)r(x−1) = 1 has a zero of odd multiplicity. Since r(x)r(x−1) = 1 is
equivalent to

(22) q(x)q(x−1)− p(x)p(x−1) = 0,

these points are the roots of a square-free polynomial C(x) ∈ Z[z] that we call the
crossing polynomial of r(x). For example, if p = (x + 1)4, q = x4 + 1 then (22) reduces
to

(x2 + x + 1)2(2x2 + 3x + 2) = 0,
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where both factors have their roots on the unit circle. Here the graph of |r(x)| crosses
the circle at the roots of C(x) = 2x2 + 3x + 2, and touches the circle at the primitive
3rd roots of unity.

Combining the Propositions 1 and 2 we obtain the main result of the paper.

Theorem 1 Let P(x, y) = p(x)y − q(x) with p and q cyclotomic and relatively prime
and let r(x) = q(x)/p(x). If the graph of r(x) crosses the circle at exactly one pair of
complex conjugate points α, ᾱ, and if α is defined over a number field F with only one
pair of complex embeddings then

(23) m(P) ∼Q?

|∆F|3/2

π2n−1
ζF(2).

Proof Let

ξ =
∞∑

m=1

cm

m
[αm] ∈ Z[F],

where the cm ∈ Z are defined as in (6).
By Proposition 1 and (4) we have

m(P) = ± 1

π
D(ξ)

and by Proposition 2 ξ ∈ A(F). Our claim now follows from (19).

As an illustration consider Smyth’s case where p = 1, q = −(x+1). Here P(x, y) =
1 + x + y and the solutions to (22) are (ζ3, ζ

2
3 ), where ζ3 = e2πi/3, and its complex

conjugate. Then

ξ = −[ζ3] +
1

2
[ζ2

3 ] ∈ A(F), F = Q(ζ3)

and a direct calculation as in Section 2 yields (2), which is an explicit version of (23)
for this case.

Theorem 2 With the notation of the previous theorem suppose that the crossing poly-
nomial C(x) is an irreducible polynomial in Q[x], of degree 4 and splitting field L with
G = Gal(L/Q) isomorphic to the Klein group V4. Order these roots counterclockwise
around the unit circle as follows: α, β, β̄, ᾱ, with Im α, Im β > 0. Let σ ∈ G be the
Galois element that takes α to β̄ and F the fixed field of σ. Then

m(P) ∼Q?

|∆F|3/2

π3
ζF(2).

Proof The Bloch element ξ ∈ B(L) which, by Proposition 1, satisfies 2πm(P) =
±D(ξ) is a linear combination of

ξm = [αm]− [βm] + [β̄m]− [ᾱm] ∈ Z[L].
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By our choice of σ we verify easily that

ξσm = ξm

and hence σ fixes ξ. By the Galois descent property of the Bloch groups quoted in
Section 5, ξ represents an element in B(F) ⊗Z Q . Since F is an imaginary quadratic
field (σ is not complex conjugation) the desired identity follows from (18).

Remark Note that exactly the same argument applies to any η ∈ B(L) which is a
linear combination of

ηm = [αm] + [βm]− [β̄m]− [ᾱm].

Giving an identity for D(η) in which a different imaginary quadratic field appears.
This will be useful later.

6 Applications of the Theorem

In order to apply the results of the previous paragraphs, we need to construct rational
functions r(x) = q(x)/p(x) with p, q cyclotomic, that cross the circle exactly at the
roots on |x| = 1 of a squarefree polynomial C(x).

Since |r(x)| = |r(x̄)|, r(x) cannot cross the circle at x = ±1 so C(±1) 6= 0. Since
each irreducible factor of the crossing polynomial C(x) must have a zero 6= ±1 on
the unit circle each of these factors is a reciprocal polynomial of even degree. The
field defined by such a factor of degree 2n has a Galois group which is a subgroup of
the hyperoctahedral group Bn = Z2 oSn of order 2nn! [La]. So the formulas we obtain
from Theorems 1 and 2 are restricted to such fields.

We will denote by R the set of rational functions r(x) with all poles and zeros at
roots of unity. The subset of these with the crossing polynomial C(x) and normalized
so that |r(1)| < 1 will be denoted by R(C). (This normalization is harmless since
m+(r) = m+(1/r).)

In the application of Theorem 1, we are interested in C(x) with exactly one root
α = eit0 on the upper half circle. The assumption that r(x) crosses the upper half
circle exactly at one point is very restrictive. All the zeros and poles of r(x) are at roots
of unity. Between each zero and pole there must be a point where r(eit ) crosses the
circle. If there is only one such point eit0 , then the zeros of r(x) must lie in | arg(x)| <
t0 and the poles in | arg(x)| > t0. Thus the numerator and denominator of r(x) can
only be products of certain restricted sets of cyclotomic polynomials which we call
the admissible numerators and admissible denominators for t0.

It will be convenient to say that r(x) ∈ R is admissible for C if its numerator (de-
nominator) is a product of admissible numerators (denominators) and if it crosses
the circle at the roots of C(x) (even if it also crosses the circle at other points).

Take for example C(x) = 2x2 + 3x + 2, with root α = (−3 +
√
−7)/4, so t0 =

arg(α) = 2.418858 · · · = (0.769946 · · · )π. Hence the admissible numerators are
Fn with n = 1, 3, 4, 6, 8, 10, 14 and the only admissible denominator is F2 = x + 1.
(We will write Fn for the n-th order cyclotomic polynomial, i.e. the minimal monic
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polynomial for the primitive n-th roots of unity.) Observe that Table 1 gives the
two examples r1(x) = F3/F2

2 and r2(x) = F8/F4
2 , mentioned above. Since both of

these satisfy |rk(x)| ≤ 1 for | arg(x)| < t0 and |rk(x)| ≥ 1 for | arg(x)| > t0, the
same is true for any r(x) = r1(x)ar2(x)b for any non-negative integers a, b not both
zero, and hence this infinite set of r(x) also has crossing polynomial 2x2 + 3x + 2.
By Proposition 1, we have m+(ra

1rb
2) = am+(r1) + bm+(r2). It can be shown that

these rational functions and their reciprocals exhaust the set R(C). (We prove similar
results below.)

For C(x) with a single pair of roots e±it0 on |x| = 1, there is a simple rule to
determine the admissible numerators and denominators. If t0 < π/3, then the only
admissible numerator is F1 = x − 1, and the admissible denominators are those
Fn with n < 2π/t0. If π/3 < t0 < π/2 then F1 and F6 are the only admissible
numerators and Fn for n ∈ {2, 3, 4} are the admissible denominators. If π/2 <
t0 < π then find the admissible numerators and denominators for π − t0, apply the
permutation that takes

(24)


n→ 2n if n is odd,

n→ n/2 if n ≡ 2 mod 4,

n→ n if n ≡ 0 mod 4,

then interchange numerators and denominators. The proof uses the basic facts that
Fn(−x) = F2n(x) if n is odd and Fn(−x) = Fn(x) if n ≡ 0 mod 4.

For a general crossing polynomial C(x) again one easily sees that there are finite
and easily determined sets of admissible numerators and admissible denominators.
As in the example above, if r1(x), r2(x) ∈ R(C) then for any non-negative integers a,
b not both zero ra

1rb
2 ∈ R(C).

Let F be a field of discriminant dF , degree n with r2 = 1. Tables 1 and 2 will
express suitable m

(
y p(x) − q(x)

)
= m+

(
r(x)

)
in the form sFZF , where sF is a non-

zero rational number and

(25) ZF =
3|∆F|3/2ζF(2)

22n−3π2n−1
.

The apparently peculiar choice of the rational multiplier 3/22n−3 here is so that for
the quadratic field of discriminant− f , one will have

(26) ZF = L ′(χ− f ,−1),

where χ− f is the real odd character of conductor f . As in [Bo3], we use the notation
d f = L ′(χ− f ,−1).

For our first class of examples, we apply the discussion of the previous section to
quadratic C(x) = ax2 + bx + a with b2 − 4a2 < 0, with roots α and 1/α on the
unit circle. Let F = Q(

√
b2 − 4a2) have discriminant − f . Then by Theorem 1, an

r(x) = q(x)/p(x) ∈ R(C) will give us a formula of the form

(27) m
(

y p(x)− q(x)
)

= m+
(

r(x)
)

= s f d f .
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Chinburg [Ch] asked whether one can generalize Smyth’s result for the conductor
3 to other conductors, i.e. whether for each f there is a polynomial P f (x, y) with
integer coefficients and a non-zero rational s f so that m(P f ) = s f L ′(χ− f ,−1) where

χ− f = (− f
n ) is the real odd primitive character of conductor f . He proved that there

are rational functions P f with this property. Ray [Ra] constructed examples for the
conductors f = 3, 4, 7, 8, 20 and 24. Here we construct examples for the conductors
f = 3, 4, 7, 8, 11, 15, 20, 24, 35, 39, 55 and 84.

7 Quadratic Fields I (d3 & d4)

We begin by treating the special cases C(x) = F3(x) = x2 + x + 1 and F4(x) = x2 + 1
which are particularly simple since α is a root of unity. As usual, we write ζn =
exp(2πi/n). We have the elementary formulas

(28) d3 =
D(ζ6)

π
=

3

2

D(ζ3)

π
,

and

(29) d4 =
2D(ζ4)

π
.

Smyth’s formula (2)

(30) m(y + x + 1) = d3

has already been mentioned, and there is an equally simple formula for d4 from
[Bo2]:

(31) m
(

y(x + 1) + (x − 1)
)

= d4.

In these examples the crossing polynomials are C(x) = F3(x) = x2 + x + 1 and
F4(x) = x2 + 1, respectively. So formulas (28) and (29) give the results (30) and (31)
without the intervention of Theorem 1. In fact there is a 3 parameter infinite family
of r(x) with crossing polynomial F3 and a 3 parameter infinite family for F4 giving
infinitely many generalizations of (30) and (31). In each case, we can show that these
are all the possible solutions. There is a subtle difference between the two cases as we
see below.

Proposition 3 The rational functions r(x) ∈ R(x2 + 1) are given by

(32) r(x) =
(x − 1)a(x2 − x + 1)b

(x + 1)a(x2 + x + 1)c
,

where a, b, c are non-negative integers, not all 0. For each such r(x), one has

(33) m
(

y ± r(x)
)

= m+
(

r(x)
)

=
(

a +
2

3
b +

2

3
c
)

d4.
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Proof The admissible numerators are F1 = x − 1 and F6 = x2 − x + 1 and the
admissible denominators are F2 = x + 1 and F3 = x2 + x + 1. So r(x) is of the form
Fa

1Fb
6/Fd

2 Fc
3. However, |F1(i)| = |F2(i)| =

√
2 and |F3(i)| = |F6(i)| = 1, so in order

that |r(i)| = 1, we must have d = a and hence r(x) is of the form (32).
Now consider the size of fn(t) = |Fn(eit )|. We clearly have f1(t) < f2(t) and

f6(t) < f3(t) for 0 ≤ t < π/2 and the reverse inequalities hold in π/2 < t ≤ π.
Hence r(x) of the form (32) crosses the circle exactly at t = π/2, as required.

The formula (33) follows from Proposition 1 and (29).

It should be emphasized that these are not the only r(x) for which m+
(

r(x)
)

is
a rational multiple of d4, as is evident from Table 1. But other examples must have
different crossing polynomials.

A trivial way that this can occur is to consider r(x2) where r(x) is as in Proposi-
tion 3. This has crossing polynomial F8 = x4 + 1. We do not include such examples
in Table 1. However there are non-trivial examples with crossing polynomial F8, for
which r(x) is not even. According to Proposition 1, we can compute m

(
r(x)

)
by

evaluating the quantities D(ζk
8 ) − D(ζ3k

8 ). For this we need the following known re-
sult whose proof is a pleasant exercise in the use of the basic distribution relations for
D(z):

(34) D(zn) = n
n−1∑
j=0

D(ζ j
nz),

for every positive integer n.

Lemma 1 For any integer k,

(35) D(ζk
8 )− D(ζ3k

8 ) = skD(ζ4),

where sk = 0, 1
2 , 2,− 1

2 , 0, 1
2 ,−2,− 1

2 if k ≡ 0, 1, . . . , 7 modulo 8, respectively.

Proposition 4 The rational functions r(x) ∈ R(x4 + 1) are given by

(36) r(x) = r1(x)ar2(x)br3(x)cr4(x)dr5(x)e,

where a, b, c, d, e are non-negative integers, not all zero, and where

(37)



r1 = F4/(F1F2),

r2 = F3F6,

r3 = 1/F12

r4 = F3F4/F2
2 ,

r5 = F4F6/F2
1

For such r(x) we have

(38) m
(

y − r(x)
)

= m+
(

r(x)
)

=
(

a +
2

3
b +

2

3
c +

4

3
d +

4

3
e
)

d4.
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Proof One easily sees that only Fn with n|12 can be admissible numerators or de-
nominators. We also verify that each of the 5 functions rk(x) of (37) has crossing
polynomial F8 and hence so does r(x) of (36).

To see that there are no other possibilities, check that the values of the relevant

|Fn(x)| at x = ζ8 are given by
√

2−
√

2,
√

2 +
√

2, 1 +
√

2,
√

2, −1 +
√

2 and 1
for n = 1, 2, 3, 4, 6 and 12, respectively. Thus if a product r(x) =

∏
n|12 Fn(x)cn is to

have |r(ζ8)| = 1, there is no restriction on c12, but c1, . . . , c6 must satisfy the linear
equation

(39) log(2−
√

2)c1 +log(2+
√

2)c2 +2 log(1+
√

2)c3 +log 2c4 +2 log(−1+
√

2)c6 = 0.

There is thus at most a 5-dimensional solution for c1, . . . , c12, and since (36) exhibits
such a solution, this is the complete solution to the problem.

Finally, the formula (38) follows from Proposition 1, (35) and (29).

Remark Notice that r1, r2 and r3 of Proposition 4 are even functions of x. obtained
from the basis (x − 1)/(x + 1), F3(x) and 1/F6(x) of the r(x) in Proposition 3 by the
substitution x → x2. The functions r4 and r5 satisfy r4(−x) = r5(x) and give a basis
of the new solutions.

The next result shows that one cannot always expect there to be a finite basis of
solutions as in the previous two results.

Proposition 5 The rational functions r(x) ∈ R(F3) are given by

(40) r(x) = F2(x)−aF4(x)bF10(x)c,

where a is a positive integer, and where b, c are non-negative integers satisfying b ≤ a
and the inequality on c determined by the condition that

(41) c ≤ min
t∈[π/3,π/2]

a log(2 cos t/2)− b log(2 cos t)

log(cos 5t/ cos t)
.

A sufficient condition for (41) to hold is that c ≤ 2a and a necessary condition is that

(42) c ≤ (2.05314185 · · · )a + (3.10628371 · · · )b,

where the coefficients in (42) are log(5/2)/ log(25/16) and log 2/ log(5/4).
For such r(x), we have

(43) m
(

y − r(x)
)

= m+
(

r(x)
)

=
(

a +
1

2
b +

6

5
c
)

d3.

Proof The admissible numerators are F1, F4, F6 and F10, and the only admissible
denominator is F2. However, |Fn(ζ3)| = 1 for n = 2, 4 and 10, while |F1(ζ3)| =

√
3

and |F6(ζ3)| = 2, so the requirement that |r(ζ3)| = 1 rules out F1 and F6, hence r(x)
must be of the form (40).

To determine the restrictions on a, b, c, consider fn(t) = |Fn(eit )| for n =
2, 4, 10 and t ∈ [0, π]. We have f2(t) = 2 cos(t/2), f4(t) = |2 cos t| and f10(t) =
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|2 cos 2t − 2 cos t + 1| = | cos(5t/2)/ cos(t/2)|. Clearly f10(t) > f4(t) > 1 > f2(t)
for t ∈ (2π/3, π] so |r(eit )| > 1 in this interval for any nonnegative b, c and a > 0.

Observe that f2(t) > 1 for t < 2π/3, that f4(t) < 1 exactly for π/4 < t < 3π/4,
while f10(t) < 1 exactly in (0, π/3) ∪ (π/2, 2π/3). Since f10(t) ≤ 1 < f4(t) < f2(t)
in [0, π/3], we will have |r(eit )| ≤ f4(t)b f2(t)−a ≤ 1 if b ≤ a. Furthermore, |r(1)| =
2b−a so b ≤ a is necessary.

In the interval [π/2, 2π/3] we will have |r(eit )| ≤ 1 with no restriction on a, b, c
since all of f4(t), f10(t) and 1/ f2(t) are≤ 1 here.

This leaves the interval [π/3, π/2] on which f10(t) > 1 > f4(t). The condition
(41) is equivalent to |r(eit )| ≤ 1 for t ∈ [π/3, π/2] and hence for r to have a single
crossing of the circle at x = ζ3.

To analyze this condition further, we observe that the maximum of f10(t) on
[π/3, π/2] is attained at t = t1 = cos−1(1/4), where f10(t1) = 5/4, f2(t1) =√

5/2 = 1.581138 · · · and f4(t1) = 1/2. The necessary condition that r(t1) ≤ 1
is exactly (42). To obtain the sufficient condition c ≤ 2a, we find by Calculus that
f10(t)2/ f2(t) < .994557 · · · < 1 on [π/3, π/2]. Hence if c ≤ 2a, we will have
|r(eit )| ≤ f4(t)b f10(t)c/ f2(t)a ≤ f10(t)2a/ f2(t)a < 1 on this interval, so (41) will
hold.

Finally, the formula (43) follows from Proposition 1 and (28).

Remarks 1. Let r1 = 1/F1, r2 = F4/F2 and r3 = F10/F2. Then ra
1rb

2rc
3 ∈ R(F3) for all

nonnegative integers a, b, c not all zero. However, there are elements of R(F3) not of
this form.

2. From Proposition 5, by replacing r(x) by 1/r(−x), we find that the elements of
R(F6) are

(44) r(x) = F1(x)aF4(x)−bF5(x)−c,

with the same restrictions on a, b, c as in Proposition 5.
As with d4, we can obtain further r(x) with m

(
y − r(x)

)
a rational multiple of d3

by changing x to x2 in (40). These functions will have crossing polynomial F12. As in
Proposition 3, there are further non-even elements of R(F12), and the proof involves
a similar lemma, again proved by the distribution relations for D(x):

Lemma 2 For any integer k,

(45) D(ζk
12)− D(ζ5k

12 ) = tkD(ζ3),

where tk = 0, 3
4 , 3, 0, 2, − 3

4 , 0, 3
4 , −2, 0, −3, − 3

4 for k = 0, 1, . . . , 11 modulo 12,
respectively.

We leave the proof of Proposition 6 as an exercise:

Proposition 6 The rational functions r(x) ∈ R(F12) are given by

(46) r(x) = r1(x)ar2(x)br3(x)cr4(x)dr5(x)e,
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where

(47)



r1 = 1/(F1F2),

r2 = F8/(F1F2),

r3 = F5/F2
2 ,

r4 = F10/F2
1 ,

r5 = F5F10

and where a, b, c, d, e are non-negative integers satisfying further inequalities which are
implied by e ≤ 2a.

For such r(x), we have

(48) m
(

y − r(x)
)

= m+
(

r(x)
)

=
(

a +
3

2
b +

8

5
c +

8

5
d +

6

5
e
)

d3.

Remarks 1. Note that (46) only formally involves 5 parameters a, b, c, d, e since
r3r4 = r5r2

1 . However, the inclusion of a 5-th parameter makes the determination of
the restrictions on the parameters considerably easier.

2. One can use a result similar to Lemmas 1 and 2 to determine R(F4F12), where
P = F4F12 is a polynomial with 3 pairs of roots on the unit circle. Now the formula
for m+

(
r(x)

)
will be a sum of terms of the form D(ζk

12)−D(ik)+D(ζ5k
12 ), and again the

distribution relations show that these are rational multiples of D(ik). One can show
that

(
D(ζk

12) + D(ζ5k
12 )
)
/D(ik) is 0, 4

3 , 0, 2, 0,
4
3 , 0,−

4
3 , 0,−2, 0,− 4

3 if k ≡ 0, 1, . . . , 11

modulo 12. Thus one can express m+
(

r(x)
)

as an explicit rational multiple of d4.
3. Notice that the polynomials F8(x) = x4 + 1 and F12(x) = x4 + x2 + 1 in

Propositions 4 and 6 have Galois group V4, the Klein 4-group. The significance of
this will be apparent in Section 9 where we considerably extend Propositions 4 and 6.

8 Quadratic Fields II (Non-Monic Quadratics)

Next we consider the crossing polynomial C(x) = ax2 +bx+a with a > 1, 0 < b < 2a
and root α = (−b +

√
b2 − 4a2)/(2a) on the unit circle. Browkin [Br] has searched

for cyclotomic relations for such α, i.e. functions in R with |r(α)| = 1. This is less
restrictive than requiring r ∈ R(C) since such r(x) may have other crossings of the
unit circle. By a result of Schinzel, [Sc], there is a finite set of independent relations
for each suchα. Browkin determined 23 suchα for which a cyclotomic relation holds
but did not always determine a complete set of relations because of his restriction to
Fn of degree at most 5. Even if one knows a basis of relations for a given C(x), it is
not entirely trivial to determine the set R(C) as we illustrate below. On the other
hand, our situation is somewhat simpler in that we know which Fn may appear as
admissible numerators and denominators and hence can restrict consideration to
relations involving these Fn.

In our computations, we decided to start afresh so the results here are independent
of [Br] and provide an independent confirmation of those results. It is worthwhile
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noting that we did not find any further quadratic α of this form which satisfy a cyclo-
tomic relation, so perhaps the list of 23 found by Browkin is complete. However, we
did find one cyclotomic relation that does not appear in [Br]: the relation F4

3F−5
5 F13

for α = (−3 +
√
−7)/4 can be added to the 7 relations determined there for this α.

(Note that Browkin considers the equivalent −ᾱ = (3 +
√
−7)/4 so one must apply

the permutation (24).)
We considered all C(x) as above, with 1 < a ≤ 30. The first step was to identify

those which satisfy some cyclotomic relation. For this we applied the LLL algorithm to
find linear relations of the form

∑
cn log |Fn(α)| = 0, where the sum is over n ≤ 30,

and the cn are small integers. We ignored any C(x) for which the LLL algorithm
did not produce at least one such relation and thus may have missed some possible
relations, but this seems rather unlikely since we used 100 decimal place accuracy in
this step. Each relation found can be verified by exact arithmetic (so there are no false
positives).

In the next stage, for each of the C(x) identified in the first stage, we determined
the admissible numerators and denominators. Then we again used the LLL algorithm
to find linear relations of the form

∑
cn log |Fn(α)| = 0, where now the sum is over

only admissible n, identifying those that satisfy such a relation and determining a
plausible set of basis elements for such relations.

From these relations, we formed linear combinations if necessary to form relations
in which the signs of the cn are correct, i.e. so that admissible numerators appear with
a positive cn and denominators with a negative cn. At this stage, we only know that we
have r(x) =

∏
n Fn(x)cn of the correct shape with |r(α)| = 1, but r(x) may cross the

circle at other points besides α and ᾱ. (Recall that we refer to such r(x) as admissible.)
Plotting |r(eit )| for t ∈ [0, π] for the various r that we had now identified, we

attempted to form products of these r to obtain |r(eit )| < 1 in t < t0 = arg(α) and
|r(eit )| > 1 in t > t0. If we found more than one independent r(x) we obtained a
multi-parameter family in R(C). Finally, using the methods of Proposition 3 and 5,
we were able to show that we had identified all of R(C).

The results are exhibited in Table 1 which exhibit a “basis” of each R(C) for those
C(x) = ax2 + bx + a for which the above succeeded. More explicitly, if there is a
basis of solutions (as for C(x) = x2 + 1) then these are listed. If the situation is
as for C(x) = x2 + x + 1, in which there are inequality constraints, we list a set
of independent elements that generate an infinite subset of R(C), as in Remark 1
following Proposition 5.

As an example, consider C(x) = 4x2 + 5x + 4 with α = (−5 +
√
−39)/8 with

t0 = arg(α) = 2.245927 · · · so arg(α)/π = .714901 · · · > 5
7 . Here the admis-

sible numerators are Fn with n ∈ {1, 6, 4, 10, 3, 14} and F2 is the only admissi-
ble denominator. Using LLL we found the cyclotomic relations r1 = F3F6/F4

2 and
r2 = F3

6F14/F12
2 (both appear in [Br]). These are both admissible and it can be shown

they form a basis for the admissible functions by considering the norms of Fn(α) with
n ∈ {1, 2, 3, 4, 6, 10, 14}.

Observe that |r1(eit )| < 1 for 0 ≤ t < t0 and |r1(eit )| > 1 for t0 < t ≤ π,
hence r1 ∈ R(C). However, r2 has two further crossings of the circle at arguments
t1 = 1.886385 · · · and t2 = 2.241937 · · · . We find that |r2(eit )| < 1 for 0 < t < t1

and t2 < t < t0 and that the inequality is reversed in t1 < t < t2 and t0 < t < π.
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Since |r1(eit )| achieves a maximum strictly less than 1 in [t1, t2], it is clear that there is
a smallest constant c0 such that rc

1(eit )r2(eit ) crosses the circle exactly at t = t0 for all
c > c0. A calculation gives c0 = 11.3855380775153 where the last decimal place has
been rounded up. So r = ra

1rb
2 will be in R(C) provided a, b are non-negative integers

with a ≥ c0b. For such a, b, we have

(49) m+(ra
1rb

2) =
1

18
a +

4

21
b.

In Table 1, we have listed simply r1 and r12
1 r2.

9 Quadratic Fields III (4-Group Quartics)

Theorem 2 gives us a way of producing examples with m+(r) of the form s f d f from
quartics with Galois group V4. Here we are interested in C(x) = ax4 +bx3 +cx2 +bx+a
with all four roots on the unit circle and with Galois group V4. For fixed a, there are
only a finite number of C(x) with all roots on the unit circle and these are easily
enumerated: one writes C(x) = x2A(x + 1/x), where A(y) = ay2 + by + (c− 2a), and
A(y) has two real roots in the interval (−2, 2).

We considered all such polynomials with a ≤ 30. The first step was to select
the polynomials with Gal(C) = V4 using Pari’s function “polgalois”. There are a
surprisingly large number of these, but one must keep in mind that there are only 3
possibilities for Gal(C), i.e. V4, C4 and B2 = D4 as we observed earlier. Next, the
LLL algorithm was used, as in Section 8, to determine cyclotomic relations involving
Fn with n ≤ 18. Finally, these were combined as already described to yield suitable
rational r(x).

The largest a for which a cyclotomic relation was found is a = 17. If C(x) =
17x4 + 12x3 + 17x2 + 12x + 17, then C has roots

α = (−6 + 5
√

13 +
√
−15 + 2

√
−195)/17

and its conjugates, all of absolute value 1. Let

β = (−6− 5
√

13−
√
−15 + 2

√
−195)/17

be the other conjugate on the upper half circle. We find the single cyclotomic relation

r = F−6
1 F2

2F3
3F3

5F−3
6 F−2

8

= (x − 1)−17(x2 − 1)5(x3 − 1)6(x4 − 1)2(x5 − 1)3(x6 − 1)−3(x8 − 1)−2.
(50)

If we let

R(x) = 17D(x)− 5

2
D(x2)− 2D(x3)− 1

2
D(x4)− 3

5
D(x5) +

1

2
D(x6) +

1

4
D(x8),

as in Proposition 1, then from the proof of Theorem 2, R(α)± R(β) will be rational
multiples of πd15 and πd195. We find numerically that

(51)

R(α)− R(β)

π

?=
2

5
d15,

R(α) + R(β)

π

?=
1

20
d195.
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Unfortunately, r /∈ R(C) (there is an extra pair of crossings) so (51) does not give us
a value for m+(r).

The five polynomials of this form to which Theorem 2 can be applied are given in
Table 1. The polynomial C(x) = 2x4 + 2x3 + x2 + 2x + 2 is the most fruitful. This
has roots α = (−1 +

√
−1 +

√
7 +
√
−7)/4 and its conjugates, β =

√
−1α, ᾱ and β̄.

We found that there are two independent relations r1 = F1F2/F3 and r2 = F2
2F6/F5,

giving a basis of R(C) so there is a complete two parameter family ra
1rb

2 with

m+(ra
1rb

2) =
(

a +
14

15
b
)

d4,

for non-negative a, b not both zero.
As an unexpected byproduct of this computation, we found one further example

r = F2
2F4/F12 = (x− 1)2(x4− 1)−2(x6− 1)−1(x12− 1) with crossing polynomial the

reducible sextic C(x) = (2x4 + 2x3 + x2 + 2x + 2)(2x2 + x + 2) which has all its roots
on the unit circle. The first factor has the roots α, β of the previous paragraph on the
upper half circle and the second factor has the root γ = (−3 +

√
−7)/2. Hence if

R(x) = 2D(x)− 1
2 D(x4)− 1

6 D(x6) + 1
12 D(x12), then

(52) m+(r) =
(

R(α)− R(γ) + R(β)
)
/π

?=
1

2
d7,

according to Theorem 1 and the remark following Theorem 2. (As usual 1
2 here

represents a number known to be rational and equal to 1
2 to 50 decimal places.)

10 Quadratic Fields IV (d19)

The smallest discriminant that does not appear in Table 1 is−19. For example, taking
α as a root of 5x2 + 9x + 5 the LLL algorithm finds two independent cyclotomic
relations, but there are no elements of R(P) that one can construct from these. One
of these is r(x) = F4

2F3F4/F2
12 = q(x)/p(x). We find that

p(x)− q(x) = −x(5x2 + 9x + 5)(x4 + x3 + x2 + x + 1).

This has α = (−9 +
√
−19)/10 and its inverse, and the 5-th roots of unity as its roots

on the unit circle. On the other hand p(x) + q(x) is irreducible and has no roots on
the unit circle. If we write

R(x) = 5D(x)− 1

2
D(x2)− 1

3
D(x3)− 3

4
D(x4)− 1

3
D(x6) +

1

6
D(x12),

then Proposition 1 gives

m
(

y p(x) + q(x)
)

=
1

π

(
R(ζ5)− R(ζ2

5 ) + R(α)
)
,

where ζ5 = exp(2πi/5). Numerically, R(α)/π
?= 1

6 d19 (to 50 d.p.). For the conductor
f = 5, we take χ5(2) = i and write L ′(−1, χ5) = d ′5 + d ′ ′5 i. Then can easily check
that

(
R(ω)− R(ω2)

)
/π = 13

6 (d ′5 − d ′ ′5 ). Hence

m1 := m
(

y p(x) + q(x)
) ?=

1

6
(d19 + 13d ′5 − 13d ′ ′5 ).
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We can eliminate d ′5 and d ′ ′5 by finding further polynomials in which these quantities
appear. For example,

m2 := m
(

y(x2 + x + 1) + (x + 1)
)

=
1

3
(d ′5 + d ′ ′5 ),

and

m3 := m
(

y(x4 + 1)2 + (x2 − x + 1)
)

= d ′5 −
1

3
d ′ ′5 .

Combining the last three equations, we have

4m1 + 13(m2 −m3)
?=

2

3
d19,

which gives d19 as a rational multiple (presumably 3
2 ) of the measure of the rational

function(
y p(x) + q(x)

) 4(
y(x2 + x + 1) + (x + 1)

) 13(
y(x4 + 1)2 + (x2 − x + 1)

)−13
.

As mentioned earlier, Chinburg [Ch] has shown that one may obtain every d f as a
rational multiple of m(r f ) for a rational function r f . In general his method produces
rather more complicated r f than in this example.

We should remark that the authors have recently constructed a polynomial P(x, y)

of degree 2 in y such that m(P)
?= 2

5 d19. This will appear in a future article.

11 Quartic Fields

Our final set of examples, summarized in Table 2, are of rational functions with cross-
ing polynomial quartics C(x) = x4 + bx3 + cx2 + bx + 1 that have two real and two
complex roots, the pair of complex roots lying on the unit circle. Then Theorem 1
applies and gives a relation m+

(
r(x)

)
= sFZF , where ZF is as in (25) and sF ∈ Q∗.

The values of sF given in Table 2 are those surmised from 50 decimal place approxi-
mations. The techniques are identical with those used in the quadratic case.

1. Notice that the discriminant −507 = −3 · 132 appears 6 times in Table 2, as-
sociated to two different crossing polynomials. If α is the root on the upper half
circle of C(x) = x4 + x3 − x2 + x + 1 then −ᾱ2 is the corresponding root of Q(x) =
x4 + 3x3 + x2 + 3x + 1.

For C(x) = x4 + x3 − x2 + x + 1, and α = (−1 +
√

13 +
√
−2− 2

√
13)/4, one

obtains the four admissible solutions r1 = F3F6/F2
1 , r2 = F2

2F6, r3 = F3F7/F2
1 and

r4 = F2
2F7. (Here it is convenient to use the normalization |r(1)| > 1, in defining

R(C).) If one lets fn = |Fn(α)|2, then one finds that fn ∈ Z[
√

13] with Nm( fn) =
3,−1, 32, 32, 24, 1, 1 for n = 1, . . . , 7. Using this, one can prove that all admissible
solutions are of the form

∏
rak

k for non-negative integers a1, . . . , a4. However, r1

is the only one of the rk with crossing polynomial P. As in the discussion of the
example 4x2 + 5x + 4, above, we find that r1r2 ∈ R(C) and that there are constants
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c3 = .7945464942 · · · and c4 = 2.0678582845 · · · so that rc3
1 r3 and rc4

1 r4 have a single
crossing of the half circle 0 ≤ t ≤ π at t0 = arg(α). Then ra1

1 ra2
2 ra3

3 ra4
4 ∈ R(C) if

a1 ≥ a2 + c3a3 + c4a4, and one has

(53) m+(ra1
1 ra2

2 ra3
3 ra4

4 ) =
(

2a1 +
2

3
a2 +

64

21
a3 +

12

7
a4

)
ZF.

The examples given in Table 2 are r1, r1r2, r1r3 and r1r3r4.

2. The construction of the unique example for C(x) = x4+x3−2x2+x+1 with ∆F =
−1156 is an interesting illustration of a point mentioned earlier—that knowing a
basis for the admissible relations does not necessarily make it easy to determine R(C).
In this case if t0 = arg(α), then t0/π = .241823 · · · so the admissible numerators
are Fn for n ∈ {2, . . . , 9} and the admissible denominator F1 (again adopting the
convention of requiring |r(1)| > 1). LLL finds four independent relations involving
F1, . . . , F9, namely v1 = F4F−2

8 F9, v2 = F2
2F−1

8 F9, v3 = F−2
1 F8, and v4 = F−1

3 F2
6F−1

9 .
Of these only v3 is admissible (since only F1 may appear as a denominator) but v3 is
not in R(C) (because of extra crossings of the circle).

Let r1 = v3 = F−2
1 F8, r2 = v2v3 = F−2

1 F2
2F9 and r3 = v1v2

3 = F−4
1 F4F9. Then

r1, r2, r3 can be proved to form a basis of the admissible solutions but none is in
R(C). Examining the graphs of |rk(eit )| we find that all are > 1 in 0 < t < t0, but
each has other intervals in t > t0 in which they are > 1. Furthermore, r1 and r2

share such an interval so that no product ra1
1 ra2

2 can be in R(C). However, noticing
that mint≥t0 (|r1|, |r3|) ≤ 1 with equality at t = t0 and t = π/3 it is conceivable that
rn

1 r3 ∈ R(C) for some n. In fact that this does hold for the unique choice n = 3,
giving the solution r = r3

1r3 = F−10
1 F4F3

8F9 ∈ R(C) given in Table 2. Note that
r(x) touches the unit circle at x = eiπ/3. If instead |r(eit )| < 1 had held for t > t0,
then combinations of the form rnrk would have been in R(C) for sufficiently large n.
However, one can prove that the powers of r exhaust R(C).

3. Notice the interesting trio of examples: α = (1 + β)/(1− β), with β = (−2)1/4,
(−3)1/4 and (−5)1/4, with discriminants−2048,−6912 and−2000 respectively.

4. To generate Table 2, we tested all irreducible C(x) = x4 + bx3 + cx2 + bx + 1
with 0 ≤ b ≤ 30 with 2 real roots and two complex roots on |x| = 1. The only
C(x) found for which R(C) is non-empty are those listed in Table 2. For each C(x)
listed in Table 2, we have determined the set R(C) by the method illustrated above
for C(x) = x4 + x3 − x2 + x + 1. It seems likely that there are no other P of this form
for which R(C) is non-empty.

For b > 12, we found only one example of an admissible relation, namely r(x) =
F24

1 F−36
2 F5

3 for x4 +20x3 +22x2 +20x+1 which generates a field of discriminant−1600.
Unfortunately, r(x) has other crossings of the circle so r /∈ R(C).

We also considered more general quartics C(x) = ax4 + bx3 + cx2 + bx + a with a
pair of roots on the circle and with a > 1. Although many cyclotomic relations were
found, especially for small a, none of these were admissible. This is perhaps some-
what surprising in view of the examples discussed in Section 8. We also considered
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monic sextic polynomials with 4 real roots and a pair of complex roots on the unit
circle. Although some cyclotomic relations were found, none of these was admissible.

12 Verification of an Identity Relating Two Mahler Measures

The tables in Section 14 imply several relations between Mahler measures; for exam-
ple, taking the first two corresponding to the quadratic field K = Q(

√
−7) we find,

to high accuracy, that

(54) m
(

(x + 1)2 y + x2 + x + 1
) ?=

9

4
m
(

(x + 1)4 y + x4 + 1
)
.

The purpose of this section is to sketch a rigorous proof of this identity. In princi-
ple, all the implied relations between Mahler measures in our tables can similarly be
proven in a finite amount of time. However, there is no know general algorithm for
the calculations outlined below and the process is rather long.

Let α = (−3 +
√
−7)/4 and

ξ1 = [α]− [α2] +
1

3
[α3], ξ2 = 4[α]− 2[α2]− 1

4
[α4] +

1

8
[α8].

Using Proposition 1 we see that (54) is equivalent to proving that D(ξ ′) = 0, where

ξ ′ = 18ξ1 − 8ξ2 = −14[α]− 2[α2] + 6[α3] + 2[α4]− [α8].

The calculations that follow are entirely due to Don Zagier. First, by using the
duplication formula

D(x) + D(−x) =
1

2
D(−x2)

with x = α4 we reduce the question to showing that D(ξ) = 0, where

ξ = 7[α] + [α2]− 3[α3] + [−α4].

We will verify that D(ξ) = 0 is a consequence of the 5-term functional equation
satisfied by the dilogarithm, which we now recall (how to actually find which combi-
nation of such relations to consider is of course another matter).

(55) D
(

V (x, y)
)

= 0, x, y ∈ C \ {0, 1},

where

V (x, y) = [x] + [y] +
[ 1− x

1− xy

]
+ [1− xy] +

[ 1− y

1− xy

]
∈ Z[C].

Limiting cases of this identity yield the following

(56) D(x) = −D
( 1

x

)
= −D(1− x) = D

( 1

1− x

)
= D

(
1− 1

x

)
= −D

( x

1− x

)
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for any x ∈ C \ {0, 1}; recall that also

(57) D(x̄) = −D(x)

We let a = (1 +
√
−7)/2 and b = ā and consider

η = V (a−1, b)−V (2, b)−V (b, b−4) + 2V (−a−1,−b)− 2V (−b,−b2).

Using (56) and (57) repeatedly one may check that D(ξ) = D(η) and hence by (55)
D(ξ) = 0 as claimed.

13 Concluding Remarks

As we have pointed out, because the formula (8) of Proposition 1 involves only α on
the unit circle, the fields that appear in Theorem 1 are necessarily of even degree and
with Galois group a subgroup of the hyperoctahedral group C2 oSn. It would be inter-
esting to obtain formulas relating m(P) to ζF(2) for other fields. Some such examples
have been obtained in the course of the investigation described in [Bo5], where the
measures m

(
P(x, y)

)
of the “A-polynomials” of certain hyperbolic 3-manifolds have

been evaluated as sums of dilogarithms of algebraic numbers obtained from repre-
sentations of the fundamental group of the manifold into SL(2,C). The terms in
these sums are interpreted as “pseudovolumes” of the manifold in question. A sim-
ple example, related to the complement of the knot 52 is the polynomial

(58) P(x, y) = y3 + y2(x2 − x3 + 2x5 + 2x6 − x7) + y(−1 + 2x + 2x2 − y4 + y5) + 1.

It can be shown by the methods of [Bo5] that

πm(P) = vol (52) = 3D(α) = 2.8281220883 · · · ,

is the volume of the manifold in question. Here α is the complex root of f (x) =
x3− 3x2 + 2x− 1 with Im(α) > 0. Notice that |α| 6= 1. If F = Q(α) then ∆F = −23
and if

ZF =
3(23)3/2ζF(2)

23π5
= 0.1500365366 · · · ,

then

(59) m(P)
?= 6ZF,

where here again the multiplier is known to be rational and is numerically equal to 6
to 50 decimal place accuracy.

Another example is constructed from the manifold m019 of the survey [HW].
From the A-polynomial of this manifold we derive

P(x, y) = x4 y4 + x3(−y8 − y7 + 2y6 + 2y5 − 5y4 − y3)

+ x2(y7 + 2y6 − y5 + 2y4 − y3 + 2y2 + y)

+ x(−y5 − 5y4 + 2y3 + 2y2 − y − 1) + y4.

(60)
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p q C(x) ∆F s

F2 1 x2 + x + 1 −3 1
F2 F4 x2 + x + 1 −3 3/2
F2 F10 x2 + x + 1 −3 11/5
F2

2 F5 x4 − x2 + 1 −3 8/5
F4

2 F2
1F6 7x2 + 2x + 7 −3 20/3

F2
2F5F6 F2

3F2
4 3x4 + 3x3 + 4x2 + 3x + 3 −3 21/5

F2
1F2

5F6 F2
3F4

4 3x4 + 3x3 + 4x2 + 3x + 3 −3 32/5
F2 F1 x2 + 1 −4 1
F3 1 x2 + 1 −4 2/3
F3 F6 x2 + 1 −4 4/3
F2

2 F4F6 x4 + 1 −4 4/3
F4

2 F2
1F3 5x2 + 6x + 5 −4 8/3

F3 F1F2 2x4 + 2x3 + x2 + 2x + 2 −4 1
F5 F2

2F6 2x4 + 2x3 + x2 + 2x + 2 −4 14/15
F2

2 F3 2x2 + 3x + 2 −7 1/3
F4

2 F8 2x2 + 3x + 2 −7 3/4
F2

3 F2
1F4 4x2 + x + 4 −7 5/6

F2
2F6F12 F2

4F5 4x4 + 3x3 + 2x2 + 3x + 4 −7 4/5
F2

2F4 F12 (2x4 + 2x3 + x2 + 2x + 2)(2x2 + 3x + 2) −7 1/2
F4

2 F2
1F4 3x2 + 2x + 3 −8 1

F2
2F3 F2

4 3x2 + 2x + 3 −8 2/3
F12

2 F8
1F10 3x2 + 2x + 3 −8 16/5

F2
2F3 F2

6 5x2 + x + 5 −11 2/3
F2

1F2
2F3

6 F2
3F2

5 5x4 + 6x3 + 3x2 + 6x + 5 −11 14/15
F2

2 F6 2x2 + x + 2 −15 1/6
F3 F4 2x2 + x + 2 −15 1/12

F6
1F4

2F6 F3
5 6x4 + 6x3 + x2 + 6x + 6 −15 7/15

F4
2 F3F4 3x2 + 4x + 3 −20 1/6

F2
2F3 F2

1F4 5x2 + 2x + 5 −24 1/6
F2

3 F4F6 3x2 + x + 3 −35 1/12
F4

2 F3F6 4x2 + 5x + 4 −39 1/18
F60

2 F12
3 F15

6 F14 4x2 + 5x + 4 −39 6/7
F2

2F3 F10 4x2 + 3x + 4 −55 1/30
F4

2 F4F6 5x2 + 4x + 5 −84 1/36

Table 1: (Quadratic Fields)
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p q C(x) ∆F s

F2
2F3 1 x4 + 3x3 + 3x2 + 3x + 1 −275 20/3
F2

3 F4 x4 + 3x3 + 3x2 + 3x + 1 −275 35/6
F2

2F6 F2
1 x4 + 2x3 − 2x2 + 2x + 1 −400 10/3

F3
4F6 F6

1 x4 + 2x3 − 2x2 + 2x + 1 −400 25/3
F4

2F4 F5
1 x4 + 8x3 − 2x2 + 8x + 1 −400 10

F2
2F4 1 x4 + 2x3 + x2 + 2x + 1 −448 2

F4F3 F6 x4 + 2x3 + x2 + 2x + 1 −448 8/3
F12

2 F3F4
4 x4 + 8x3 + 10x2 + 8x + 1 −448 40/3

F4
2 F3 x4 + 5x3 + 7x2 + 5x + 1 −475 10/3

F3F6 F2
1 x4 + x3 − x2 + x + 1 −507 2

F2
2F3F2

6 F2
1 x4 + x3 − x2 + x + 1 −507 8/3

F2
3F6F7 F4

1 x4 + x3 − x2 + x + 1 −507 106/21
F2

2F2
3F6F2

7 F4
1 x4 + x3 − x2 + x + 1 −507 142/21

F3 F1 x4 + 3x3 + x2 + 3x + 1 −507 5/3
F2

2F4 F6 x4 + 3x3 + x2 + 3x + 1 −507 5/2
F2

2F3
4 F6

1 x4 + 4x3 − 2x2 + 4x + 1 −1024 2
F6

4 F8
1F6 x4 + 4x3 − 2x2 + 4x + 1 −1024 8/3

F4F3
8F9 F10

1 x4 + x3 − 2x2 + x + 1 −1156 139/72
F2

2 F1 x4 + 5x3 + 4x2 + 5x + 1 −1156 1/2
F2

2F3
3 F2

4F6 x4 + 5x3 + 4x2 + 5x + 1 −1156 4/3
F3

3F4 F3
6 x4 + 4x3 + x2 + 4x + 1 −1375 5/4

F4F3 F2
1 x4 + 2x3 + 2x + 1 −1728 1/3

F5 F6 x4 + 2x3 + 2x + 1 −1728 1/5
F2

2F3 F4 x4 + 4x3 + 4x2 + 4x + 1 −1792 1/3
F6

2F3 F3
4 x4 + 6x3 + 6x2 + 6x + 1 −2000 5/6

F16
2 F12

1 F4 x4 + 12x3 + 6x2 + 12x + 1 −2048 2
F2

2F4 F2
1 x4 + 3x3 + 3x + 1 −2312 1/8

F2
2F3 F6 x4 + 4x3 + 3x2 + 4x + 1 −5616 1/12

F8
2F2

3 F4
1F3

4 x4 + 8x3 + 6x2 + 8x + 1 −6912 1/6
F6

3 F4F4
6 x4 + 6x3 + 3x2 + 6x + 1 −7616 1/6

F4
2 F6 x4 + 5x3 + 5x2 + 5x + 1 −8619 1/18

F4
2F4F2

6 F10
1 x4 + 6x3 − 6x2 + 6x + 1 −9248 1/12

F6
2 F8F10 x4 + 2x3 − 4x2 + 2x + 1 −9408 3/80

F4
2F2

3 F2
1F4F6 x4 + 6x3 + 4x2 + 6x + 1 −9408 1/18

F6
2F3F2

4 F4
1F3

6 x4 + 7x3 + 7x + 1 −9747 1/14
F2

2F2
3F3

4 F8
1F6 x4 + 6x3 − 2x2 + 6x + 1 −24336 1/36

F2
2F2

3F4 F4
1F6 x4 + 5x3 + 5x + 1 −26136 1/72

F3F4F2
5 F4

1F3
6 x4 + 5x3 − 2x2 + 5x + 1 −168100 1/960

Table 2: (Quartic Fields)
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Again, πm(P) is the volume of m019 and this leads to

(61) πm(P) = vol (m019) = 3D(α) = 2.4622842205 · · · .

Here α is the complex root of f (x) = x4 − x − 1 with Im(α) > 0. If F = Q(α) then
∆F = −283 and the Galois group is S4, so this field does not appear in Table 1. Once

again one finds that m(P)
?= 6ZF . It would be interesting to prove this and (59) by

computations in the Bloch group as in [Za2].

14 Tables

The construction of Tables 1 and 2 have been described in the preceding sections.
Recall that the quantity s is the ratio

s =
m
(

p(x)y − q(x)
)
· 22n−3 · π2n−1

3 · |∆F|3/2ζF(2)
.

Except for the quadratic fields of discriminants −3 and −4, where the methods of
Section 7 apply, we know that s ∈ Q but we do not have an a priori bound for its
height, so the tabulated values are the most likely value inferred from the numerical
calculations.
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