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Abstract

Vertices u and u of a graph G are pseudo-similar if G — u = G — v, but no automorphisms of G maps
u to v. Let H be a graph with a distinguished vertex a. Denote by G(u.H) and G(v.H) the graphs
obtained from G and H by identifying vertex a of H with pseudo-similar vertices u and v, respectively,
of G. Is it possible for G(u.H) and G(v.H) to be isomorphic graphs? We answer this question in the
affirmative by constructing graphs G for which G(u. H) = G(v, H).

1980 Mathematics subject classification (Amer. Math. Soc): 05 C 25, 05 C 60, 20 B 15.

1. Introduction

At the recent 13th southeastern conference on Combinatorics, Graph Theory, and
Computing, B. D. McKay asked the following question, due originally to E.
Farrell.

G(u.H) G(v.H)
FIGURE 1.1
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Let G be a graph with pseudo-similar vertices u and v, and let H be a graph
with a distinguished vertex a. Two graphs G(u.H) and G(v.H) are formed from
G and H by identifying vertex a of H with M and u, respectively. Is it possible for
G(u.H) and G(v.H) to be isomorphic graphs? This is illustrated in Figure 1.1.

We answer this question in the affirmative, by constructing graphs G for which

2. 2-connected graphs

2.1 DEFINITION. Let G be a graph with vertex set V(G). Vertices u, v G V(G)
are pseudo-similar if G — u = G — v, but there is no automorphism of G mapping
u to t>.

Let M and v be pseudo-similar vertices in G, and let a graph / / be given, with a
distinguished vertex a. We denote by G(u.H) and G(v.H) the graphs obtained
from G and / / by identifying vertex a of H with vertices u and v, respectively. We
say we have attached the graph H to G at u (or t>).

It would seem that if G(u.H) s G(v.H), then this isomorphism would induce
an automorphism of G mapping u to t>. Indeed we have the following.

2.2 THEOREM. Let G, u, v, and H be as above. If G is 2-connected, then

PROOF. Since G is 2-connected, u and v are cut-vertices of G(u.H) and
G(v.H), respectively, and G is an end-block of both these graphs. Let p:
G(u.H) -» G(v.H) be an isomorphism. Notice that G is a subgraph of both
G(u.H) and G(v.H).

The image p(G) of G is an end-block of G(v.H) isomorphic to G. The image
p(u) of M is a cut-vertex of p(G). If in fact p(G) — G, then p(u) = v, since t> is
the only cut-vertex of G(v.H) in G. This induces an automorphism of G mapping
u to v, a contradiction. Therefore p(G) ¥= G. It follows that p(G) is an end-block
of H isomorphic to G, and thatp(u) is an isomorphic image of u inp(G).

Thereforep(G) is an end-block of G(u.H). Considerp2(G). Again, p2(G) is an
end-block of G(v.H). Either p2(G) — G or we can find/?3((j), etc. We continue
like this until we have pk(G) = G for some positive integer k. Thus must occur
since G and H are finite graphs. But then pk(u) = v, and this induces an
automorphism of G mapping u to v, a contradiction.

Thus if G is 2-connected, it is impossible for G(u.H) and G(v.H) to be
isomorphic. If G is separable, though, the situation is different.

We construct several graphs G with pseudo-similar vertices u and v, so that
G(u.H) = G(v.H). The construction requires a graph with a given permutation
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group acting on a subset of the vertices. T h e me thods of ei ther Bouwer ([3], [4]) or
Babai [1] will construct such a graph. T h e m e t h o d we use is based on Bouwer ' s
method , bu t is a considerable simplification of it. W e give a brief descr ip t ion of it
in the next section.

3. Bouwer's method

Let P be a permutation group acting on a set X. We construct a graph Z such
that X C V(Z), the automorphism group of Z is abstractly isomorphic to P, and
furthermore the restriction of Aut Z to X is equal to P.

Given P, form a Cayley colour-graph Y for P and label the vertices of Y with
the elements of P. Y will have coloured and directed edges. Let P have orbits
Xx, X2,...,Xn on X. Then P is a subdirect product of transitive permutation
groups acting on the sets A',, X2, • • •,Xn (see [7]).

Choose a representative xx €E Xx. Denote by Stab(x,) the stabilizer subgroup of
x, in P. Now Aut Y is abstractly isomorphic to P. Moreover, every representation
of Aut Y by a transitive permutation group is isomorphic to a representation by
cosets of some subgroup (see [7]). Thus if we join xx to Stab(x,) C V{Y), and
then join the remaining vertices of Xx to their respective cosets of Stab (x,) in P,
the action of Aut Y on the resulting graph will induce a permutation group /*,
acting on Xx. Px will be equal to the transitive constituent of P on Xx, since the
representation by cosets of a point-stabilizer subgroup is always faithful (see [7]).
Whether right or left cosets are used will depend on how the Cayley colour-graph
is constructed.

If we now do the same for the remaining orbits X2, X3,...,Xn, then Aut Y will
induce on A' a permutation group exactly equal to P.

This is the essence of Bouwer's method.
We now alter the coloured and directed edges of Y, replacing them with

"gadgets" (see [2]), using Frucht's method, so that no new automorphisms are
introduced.

Finally, to ensure that the only automorphisms of the resultant graph are those
arising from P, we adjust the degrees of the vertices, if necessary (by adding
" tails", say, as in [3]), to distinguish the set X from the remaining vertices of the
graph. Call the resultant graph Z. It has the required properties.

4. The main construction

Let a graph H with a distinguished vertex a be given.
Let A4 denote the alternating group acting on X = {«, v, w, x). Use the

method of Section 3 to construct a graph Z such that X C V(Z) and the
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restriction of Aut Z to X is equal to A4. Form Z(x.H) by attaching H to x. Let
G = Z(x.H) — w. This is illustrated in Figure 4.1.

G:

FIGURE 4.1

To ensure that the only automorphisms of G are those arising from A4, it may
be necessary to adjust the construction of Section 3 somewhat, since attaching H
and deleting »v may conceivably introduce new automorphisms. This can be done
by adding " tails" to some of the vertices to distinguish them by their degree.

4.1 THEOREM. Vertices u and v are pseudo-similar in G.

PROOF. Notice that (x)(uvw) e A4. This permutation takes {v, w) to {u,w}.
Therefore G — u s= G — v. However u and v are not similar in G; for the only
possible automorphism mapping « t o c would be (x)(w)(uv), which is not in A4.
Therefore u and v are pseudo-similar.

Now form G(u.H) and G(v.H), as illustrated in Figure 4.2.

G(u.H) G(v.H)

FIGURE 4.2
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4.2 THEOREM. G(U.H) S G(V.H).

PROOF. The permutation (uxy)(w) e A4 maps G(u.H) to G(v.H).

57

5. Further examples

The graph arising from the alternating group AA is not the only graph with this
property. We demonstrate a second example.

Let 0 = (1234)(56) and <#> = (1456)(23) be permutations acting on 1 =
{1,2,3,4,5,6}. Let P= (0,<f>). The order of P is 36. (The author found the
CAMAC [10] group theory computer program useful for these calculations.)

Let Z be the graph formed in Section 3, so that Aut Z s / > and (Aut Z)x = P,
and let H be given.

We form two graphs G and G' from Z and H. Let G - Z(3.//,4.//) - 1, that
is, we attach copies of H to vertices 3 and 4 of X C V(Z), and delete vertex 1.
Similarly, let G' = Z(5.H,6.H) - {1,2}. Graphs G and G' are illustrated in
Figure 5.1.

FIGURE 5.1

Again we adjust the construction of Section 3 if necessary so that the only
automorphisms of G and G' are those arising from P. As in Section 4, the
properties of the group P give the following results.

5.1 THEOREM. Vertices 2 and 6 are pseudo-similar in G, but G(2.H) == G(6.H).

5.2 THEOREM. Vertices 3 and 4 are pseudo-similar in G\ but G'(3.H) = G'(4.H).

Pseudo-similar vertices are studied in some detail in [5], [6], [8], and [9]. Interest
in them arose from attempts to settle the reconstruction conjecture.
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