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CHARACTERIZATIONS OF A MULTIVARIATE EXTREME VALUE
DISTRIBUTION

RINYA TAKAHASHI, *Kobe University of Mercantile Marine

Abstract

Characterizations of a multivariate extreme value distribution in terms of
its marginals are established.

UNIVARIATE MARGINALS; DEPENDENCE FUNCTION

In this note we shall characterize a k-dimensional extreme value distribution in terms of its
univariate marginals. For details of the multivariate extreme value distributions, see
Galambos (1978), Chapter 5.

Theorem. Let H be a k-dimensional extreme value distribution with univariate marginals
Hi' i = 1, ... , k.

(a) We have

H(x) = Hl(Xl)· .. Hk(Xk) for all x = (Xl' ... , Xk) e R k

iff there exists p = (PI' ... ,Pk) e R k such that 0 < Hi(Pi) < 1, i = 1, ... , k and

H(p) = Hl(Pl)· .. Hk(Pk).

(b) We have

H(x)=min{Hl(Xl), ... ,Hk(Xk)} forall xeRk

iff there exists peRk such that

0< Hl(Pl) = ... = Hk(Pk) < 1 and H(p) = Hl(Pl)'

Proof. (a) The proof of this part is similar to that of Theorem 2.2 of Takahashi (1987) and
is omitted.

(b) Necessity is obvious so that we shall prove sufficiency. Let DH(y) =
H(H1_l(Yl)' ... , H;l(Yk)), Y e (0, 1)\ be the dependence function of H, where H;l is the
generalized inverse of 11;, i = 1, ... , k. Then we have the following results:
(1) D~(ylIS) = DH(y) for all s > o. (See Lemma 5.4.1 of Galambos (1978).)
(2) If y ~ y', then DH(y) ~ DH(y ').
(3) If H' is an extreme value distribution such that HI = Hi' i = 1, ... , k, then H(x) ~H'(x)
for all x e R k iff DH(y) ~ DH,(y) for all y e (0, 1)k.

Suppose the given sufficiency condition holds. Then we have

(4)
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where c = Ht(pt) and 1 = (1, ... ,1). The proof will be completed if we show DH(y) =
min {Yt, ... ,Yk}. For any Y E (0, 1) there exists an s > 0 such that yt:.~ = c. Hence, by (1) and
(4)

(5) DH(yl) = D~(ylISl) = (yllsy =y.

Let y = (Yv ... ..») and Y = min {Yv ... ,Yk}, then by (2), (3), (5) and Theorem 5.4.1 of
Galambos (1978), we have

Y = DH(yl) ~ DH(y) ~ min {Yt, ... , Yk} =y.
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