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VOLUME COMPARISON OF BISHOP-GROMOV TYPE

SUNGYUN LEE

Bishop-Gromov type comparison theorems for the volume of a tube about a sub-
manifold of a complete Riemannian manifold whose Ricci curvature is bounded
from below are proved. The Kahler analogue is also proved.

1. INTRODUCTION

In Riemannian geometry, it is a fundamental question to ask how the geometric
invariants of Riemannian manifolds are influenced by curvature restrictions. The volume
of a geodesic ball is one of the basic invariants, for which the Bishop-Gromov comparison
theorem is well-known (see [1, 6]).

In this article we prove Bishop-Gromov type comparison theorems for the volume of
a tube about a submanifold of a complete Riemannian manifold whose Ricci curvature
is bounded from below. The Kahler analogue is also proved.

To be more specific let M be a complete Riemannian manifold of dimension n
and let P C M be a topologically embedded connected submanifold of dimension q
with compact closure. For r ^ 0 let Vp*(r) denote the n-dimensional volume of a
tube of radius r about P and let A^(r) denote the (n — l)-dimensional volume of its
boundary. Let A be a constant which may be positive, negative, or zero and let Kn(X)
denote the n-dimensional space of constant curvature A.

THEOREM 1. Let P C M and suppose that the Ricci curvature pM of M satis-
fies pM ^ (n — 1)A = p*^W . £et P denote a q-dimensional totally geodesic subman-
ifold of Kn(\) such that volume (P) = volume (P).

(i) H q = dimP = 0, then V™{t) ^ V^W(t) and V^(t)/V^W(t) is a
nonincreasing function of t for 0 < t ^ ec(m). Here P is a point m £ M
and ec(m) is the minimal distance to the cut locus of m.

(ii) Ifl^q^n — 2, then for any e > 0 tiere is small to > 0 depend-
ing on e and P C M such that V$*(t,t0) < (1 + e M M V ^ ^ M o )
for t0 ^ t < ec(P), wiere V^(t,t0) = V^(t) - V£*{to) and C{t0) =
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A^{X\t0)/A~W(t0). Moreover V^{t,to)/V^W{t,to) is a nonin-
creasing function of t for t0 ^ t < ec(P). Here ec(P) is the minimal
focal distance of P in M.

(iii) If q = n - 1 and P is minimal, then V$*(t) < V^"^*) and

« s nonincreasing function of * for 0 ^ * ̂  e c(P).

REMARK. Observe that the right-hand sides of inequalities in (i), (ii), (iii) do not
depend on the embedding of P into M. (i) is just the Bishop-Gromov comparison
theorem for geodesic balls.* If dimP ^ 1, then for sufficiently small r > 0, Vp*(r)
depends strongly on P as the power series expansion in [5] shows. This fact forces
us to consider Vp*(t,<o) in (ii). Even though t0 > 0 depends on e and P C M
in (ii), sufficiently small to always satisfies the inequality. Also observe that t *-*
V p * ( * ) / ^ H T W ( < ) i s nonincreasing for 0 < t < ec(P) in (ii). When P is a hypersurface
of M, an additional assumption on P (that is, P is minimal) is needed to get the
global volume comparison in (iii), since the principal curvatures of P strongly affects
Vp'ir) for relatively large r.

Next, to state the Kahler analogue of Theorem 1, let M be a complete Kahler
manifold of real dimension 2n. Let Kjf (Kj£) denote the holomorphic (antiholomor-
phic) sectional curvature of M. The antiholomorphic Ricci curvature p%*h of M is
the sum of antiholomorphic sectional curvatures (see for example [2]). Let P C M be
a topologically embedded connected complex submanifold of real dimension 2q with
compact closure.

THEOREM 2 . Let P C M and suppose that Kg1 ^ 4A and p™h ^ ( 2 n - 2 ) A .
Let P denote a totally geodesic complex submanifold of real dimension 2q of K£(\)
such that volume (P) = volume (P) , wiere X£(A) is a Kahler manifold of complex
dimension n with constant holomorphic sectional curvature 4A.

(i) If q = 0 (that is, P is a point m G M), then V™{t) < v£*W(t) and

Vj^(t)/V^lX\t) is a nonincreasing function of t for 0 < t < ee(m).

(ii) Ifl^q^n — 2, then for any e > 0 Here is small t0 > 0 depend-

ing on t and P C M such that V^(t,t0) < (1 + e)C(to)v£*W(t,to)

for t0 < t ^ ec(P), where C(t0) = ^ ^ ( M M S ^ C M - Moreover

VpI{t,to)IV—h (Mo) is a nonincreasing function of t for to ^ t ^
ee(P).

(iii) If q = n — 1 (that is, P is a complex hypersurface of M), then Vp*(<) ^

VplX\t) and V?{t)/VpW{t) is a nonincreasing function oft for 0 <
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REMARK, (i) is the result essentially due to Nayatani [7] (see also [4, page 194]). In

(ii) V$*(t)/v£*(X\t) is also a nonincreasing function of t for 0 < t ^ e c (P) .

We shall prove these theorems following the ideas in [4]. In Section 2 we review

some preliminary results. The proofs of theorems are given in Section 3.

2. PRELIMINARIES [3, 4]

Let M be a complete Riemannian manifold of dimension n and let P C M be a
topologically embedded submanifold of dimension q which is relatively compact.

Let t •—> f(t) be a unit speed geodesic in M normal to P with 7(0) = p £ P.
Assume that t ^ 0 is less than or equal to the distance between P and its nearest focal
point. Denote by S(t) the second fundamental form at the point 7(1) of the tubular
hypersurface at a distance t from P. Also let R(t) : AfT(t) —» M^t) be the symmetric
linear transformation denned by (R(t)x,y) = ^ y ( «)„-/(«),,> where ( , ) and RM are
the metric and the Riemannian curvature tensor field of M respectively, MT(t) denotes
the tangent space to M at ~f{t), and x, y £ -^7(1) • Then S(t) satisfies the differential
equation

(1) S'(t) = S{t)2 + R{t).

Let u> be the Riemannian volume form of M, and let (x i , . . . , xn) be a system of
Fermi coordinates such that

For u e Pf with ||w|| = 1, put

M«)

Then 0U(O) = 1 and

P) m
Let Vp'(r) = n-dimensional volume of {m 6 M | d(m,P) ^ r} and A$?(r) = (n - 1)-
dimensional volume of {m G M | d(m, P) = r}. Then

(3) ^(0= / /

and

(4) W r ) = [rA?(t)
Jo
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where S71'9'1^) is the unit sphere in Pj-. If P C Kn(\) is a totally geodesic sub-
manifold,

(5) A^ ( 0 = Tfn=l) 1 v/A ) (cos tVAj volume (P ) ,

and if P C if£(A) is a totally geodesic complex submanifold,

In (5) and (6) we interpret f sintvAJ/%/A as (sinht\/— A)/\/— A (respectively <) when

A < 0 (respectively A = 0).

3. P R O O F OF THEOREMS

We will use many results of [4]. The proof of Theorem 2 is similar to but a little
more complicated than that of Theorem 1.

PROOF OF THEOREM 1: (i) This is just the Bishop-Gromov volume comparison

theorem for geodesic balls (see [1, 4, 6]). Observe that the proof of case (ii) gives us

(i) easily.

(ii) Let 1 ^ q - d i m P ^ n - 2, and 0 < t ^ ec(P).

Then t -» 0u(t)/(sin ty/X/ty/xY t« is nonincreasing (see [4, p. 181]).

For any e > 0, there is small t0 > 0 depending on e and P C M such that

0«(M < (l+e)(sinioV/A/*o'/\)n (cost0V\Y since lim 0u(t0) = 1.

Then we have for 0 < to ^ s ^ t

(7) * * . ( ' )< (1+

and

-a-i f smtoy/X\ ( r-\9 / f smtoy/X\
* I _ _ _ I I pf\c fn\/ A I / I I

Integrating (7) over the unit sphere 5tl~'~1(l) in Pj- and using (3), (5), we obtain
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Then integrating (9) with respect to a from t0 to t and using (4) we get

(10) V**(t,tQ) < (1 + e)C(to)vJrw(t,to),

where C(t0) = A?f>W(t0)/A??'(A)(t0). Similarly from (8) we obtain

But (11) implies that

' -- ^
to) 1 X

,*o)J O £ n W (

(iii) Let P be a minimal hypersurface of M and 0 ̂  t ^ ec(P). Then Lemma 8.28
in [4, page 181] shows that

n - l
(12) 0«(i)< (costv'A)

and

(13) 0u(t) (cos sV^y 1 ̂  9u(a) (cos tV^Y

Integrating (12) and (13) we get

(14)

and

(15) Vf £

But (15) implies that d(v^I(t)/V^n<-X\t)) /dt < 0. This completes the proof of The-

orem l. D

PROOF OF THEOREM 2: Let {ci, ci«,. . . , en, en»} be an orthonormal basis of the
tangent space Mv such that ej« = Jei and ei, ei»,. . . , eq, e,» are tangent to P . Let 7(t)
be a unit speed geodesic with 7(0) = p and 7*(0) — u — en. Extend e\, e\*,..., en,en*
to orthonormal vector fields Ei(t),Ei*(i),... ,En(t),En*(t) along 7 so that En{t) =
y'(t) and the other Ei(t) diagonalise S(t). Consider the functions

(16)
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Taking the derivative of both sides of (16) and using (1) and the Cauchy-Schwarz
inequality, we get

(17) /!(<) = (S'E^Ei) = {S'Ei + REi,Ei) = \\SEi\\* + (REt,Ei)

Let

(18) ^ = 2^2

Since p™h = (2n - 2)/(f) > (2n - 2)A and Kff > 4A, we have

(19) / ' ( * ) > / a ( 0 + >

and

(20) /;.(<) >/; . (*)+4A.

The differential inequalities (19) and (20) can be solved explicitly (see for example [4,
pp.174-175]).

(i) This is the result essentially due to Nayatani [7]. Observe that the proof of case
(ii) gives us (i) easily.

(ii) Let 1 s$ q = dimP/2 ^ n - 2 a n d O < < < ec(P). Since /(0) = /n .(0) = -oo ,
we have from (19) and (20)

-V\ cot tV\ and /„. (f) > -2VX cot 2tV\.

Summing the functions /<(<), we find that

(21) trS(t) > -(2n-2)\/Acot<-yA-2v/Acot2<\/A.

From (2) and (21) we obtain

^ln0u(t) = - 2 n " ^ " 1 - <r5(t) < ^ In a(t),

where

Then d(ln(0u(t)/a(i)))/(ft < 0, and tfu(t)/a(i) is a nonincreasing function of t. For
any e > 0, there is i0 > 0 depending on e and P C M such that 0v(fo) ^
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(1 + e) (sm(to\/\\ /(toV^j ) (costoVx) * since lim 6u(t0) = 1. Then

we have for 0 < t o

2n—2o —1
2q+l

and

(23)

(cos

Integrating (22) using (3) we obtain

(24) A¥(t)^(l+e)A"h ( t 0 )

Integrating (24) with respect to s from to to t we get

(25) vP{t,to) < (1 +

where C(<0) = i4^(A)(<o)/i4?(A)(<o). Similarly, from (23) we obtain

(26) V?(t

But (26) implies that d(y^(t,to)/V^{X\t,io)j/di ^ 0.

(iii) Let P be a complex hypersurface of M and 0 ̂  i < ee(P). Then fi(0),
1 ^ i ^ (n — 1)*, are finite and /(0) = 0 since the mean curvature vector fields of a
Kahler submanifold of M vanishes. Hence we obtain from (19) and (20)

v/Acotiv/A and /„.(<) ^ -2v/X cot 2ty/\.

Summing the functions fi(t), we find that

(27) tr S(t) > 2(n - 2)\/A cot ty/X - 2\/Acot 2t\/\.

From (2) and (27) it follows that
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where /?(<) = (sinty/\ /ty/X J (cos<\/A)*" \ Then d]n(6u(t)/0(t))/dt ^ 0, and

9u(t)/(3(t) is a nonincreasing function of t, whose value for t — 0 is 1, whence

(28) 0u(t) ^ /?(<)

and

(29) tf f

for 0 ^ 8 ^ t, follows. Integrating (28) using (3), (4), we get

(30) V?

Similarly integrating (29), we obtain

(31) V

But (31) implies that Vp^iJ^/V— h (t) is a nonincreasing function of t. This completes

the proof of Theorem 2. D

REFERENCES

[1] R.L. Bishop and R.J. Crittenden, Geometry of manifolds (Academic Press, New York,
1964).

[2] F. Gimenez and V. Miquel, 'Volume estimates for real hypersurfaces of a Kaehler manifold
with strictly positive holomorphic sectional and antiholomorphic Ricci curvatures', Pacific
J. Math. 142 (1990), 23-39.

[3] A. Gray, 'Comparison theorems for the volumes of tubes as generalizations of the Weyl
tube formula', Topology 21 (1982), 201-228.

[4] A. Gray, Tubes (Addison-Wesley, New York, 1990).
[5] A. Gray and L. Vanhecke, 'The volume of tubes in a Riemannian manifold', Rend. Sem.

Math. Univ. Politec. Torino 39 (1983), 1-50.
[6] M. Gromov, Structures Metriques pour les Varietes riemanniennes (Cedic Nathan, Paris,

1981).
[7] S. Nayatani, 'On the volume of positively curved Kahler manifolds', Osaka J. Math. 25

(1988), 223-231.

Department of Mathematics and Mathematics Research Center
KAIST
Taejon, 305-701
Korea

https://doi.org/10.1017/S0004972700030100 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700030100

