VOLUME COMPARISON OF BISHOP-GROMOV TYPE

SUNGYUN LEE

Bishop-Gromov type comparison theorems for the volume of a tube about a submanifold of a complete Riemannian manifold whose Ricci curvature is bounded from below are proved. The Kähler analogue is also proved.

1. INTRODUCTION

In Riemannian geometry, it is a fundamental question to ask how the geometric invariants of Riemannian manifolds are influenced by curvature restrictions. The volume of a geodesic ball is one of the basic invariants, for which the Bishop-Gromov comparison theorem is well-known (see [1, 6]).

In this article we prove Bishop-Gromov type comparison theorems for the volume of a tube about a submanifold of a complete Riemannian manifold whose Ricci curvature is bounded from below. The Kähler analogue is also proved.

To be more specific let M be a complete Riemannian manifold of dimension nand let $P \subset M$ be a topologically embedded connected submanifold of dimension qwith compact closure. For $r \ge 0$ let $V_P^M(r)$ denote the *n*-dimensional volume of a tube of radius r about P and let $A_P^M(r)$ denote the (n-1)-dimensional volume of its boundary. Let λ be a constant which may be positive, negative, or zero and let $K^n(\lambda)$ denote the *n*-dimensional space of constant curvature λ .

THEOREM 1. Let $P \subset M$ and suppose that the Ricci curvature ρ^M of M satisfies $\rho^M \ge (n-1)\lambda = \rho^{K^n(\lambda)}$. Let \overline{P} denote a q-dimensional totally geodesic submanifold of $K^n(\lambda)$ such that volume $(\overline{P}) =$ volume(P).

- (i) If $q = \dim P = 0$, then $V_m^M(t) \leq V_{\overline{m}}^{K^n(\lambda)}(t)$ and $V_m^M(t)/V_{\overline{m}}^{K^n(\lambda)}(t)$ is a nonincreasing function of t for $0 < t \leq e_c(m)$. Here P is a point $m \in M$ and $e_c(m)$ is the minimal distance to the cut locus of m.
- (ii) If $1 \leq q \leq n-2$, then for any $\varepsilon > 0$ there is small $t_0 > 0$ depending on ε and $P \subset M$ such that $V_P^M(t,t_0) \leq (1+\varepsilon)C(t_0)V_{\overline{m}}^{K^n(\lambda)}(t,t_0)$ for $t_0 \leq t \leq e_c(P)$, where $V_P^M(t,t_0) = V_P^M(t) V_P^M(t_0)$ and $C(t_0) =$

Received 21 March 1919 This research was partially supported by KOSEF

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/92 \$A2.00+0.00.

S. Lee

 $A_{\overline{P}}^{K^{n}(\lambda)}(t_{0})/A_{\overline{m}}^{K^{n}(\lambda)}(t_{0})$. Moreover $V_{P}^{M}(t,t_{0})/V_{\overline{m}}^{K^{n}(\lambda)}(t,t_{0})$ is a nonincreasing function of t for $t_{0} \leq t \leq e_{c}(P)$. Here $e_{c}(P)$ is the minimal focal distance of P in M.

[2]

(iii) If q = n - 1 and P is minimal, then $V_P^M(t) \leq V_{\overline{P}}^{K^n(\lambda)}(t)$ and $V_P^M(t)/V_{\overline{P}}^{K^n(\lambda)}(t)$ is a nonincreasing function of t for $0 \leq t \leq e_c(P)$.

REMARK. Observe that the right-hand sides of inequalities in (i), (ii), (iii) do not depend on the embedding of P into M. (i) is just the Bishop-Gromov comparison theorem for geodesic balls. If dim $P \ge 1$, then for sufficiently small r > 0, $V_P^M(r)$ depends strongly on P as the power series expansion in [5] shows. This fact forces us to consider $V_P^M(t, t_0)$ in (ii). Even though $t_0 > 0$ depends on ε and $P \subset M$ in (ii), sufficiently small t_0 always satisfies the inequality. Also observe that $t \mapsto$ $V_P^M(t)/V_{\overline{m}}^{K^n(\lambda)}(t)$ is nonincreasing for $0 < t \le e_c(P)$ in (ii). When P is a hypersurface of M, an additional assumption on P (that is, P is minimal) is needed to get the global volume comparison in (iii), since the principal curvatures of P strongly affects $V_P^M(r)$ for relatively large r.

Next, to state the Kähler analogue of Theorem 1, let M be a complete Kähler manifold of real dimension 2n. Let $K_h^M(K_{ah}^M)$ denote the holomorphic (antiholomorphic) sectional curvature of M. The antiholomorphic Ricci curvature ρ_{ah}^M of M is the sum of antiholomorphic sectional curvatures (see for example [2]). Let $P \subset M$ be a topologically embedded connected complex submanifold of real dimension 2q with compact closure.

THEOREM 2. Let $P \subset M$ and suppose that $K_h^M \ge 4\lambda$ and $\rho_{ah}^M \ge (2n-2)\lambda$. Let \overline{P} denote a totally geodesic complex submanifold of real dimension 2q of $K_h^n(\lambda)$ such that volume $(\overline{P}) = \text{volume}(P)$, where $K_h^n(\lambda)$ is a Kähler manifold of complex dimension n with constant holomorphic sectional curvature 4λ .

- (i) If q = 0 (that is, P is a point $m \in M$), then $V_m^M(t) \leq V_{\overline{m}}^{K_h^n(\lambda)}(t)$ and $V_m^M(t)/V_{\overline{m}}^{K_h^n(\lambda)}(t)$ is a nonincreasing function of t for $0 < t \leq e_c(m)$.
- (ii) If $1 \leq q \leq n-2$, then for any $\varepsilon > 0$ there is small $t_0 > 0$ depending on ε and $P \subset M$ such that $V_P^M(t,t_0) \leq (1+\varepsilon)C(t_0)V_{\overline{m}}^{K_h^n(\lambda)}(t,t_0)$ for $t_0 \leq t \leq e_c(P)$, where $C(t_0) = A_{\overline{P}}^{K_h^n(\lambda)}(t_0)/A_{\overline{m}}^{K_h^n(\lambda)}(t_0)$. Moreover $V_P^M(t,t_0)/V_{\overline{m}}^{K_h^n(\lambda)}(t,t_0)$ is a nonincreasing function of t for $t_0 \leq t \leq e_c(P)$.
- (iii) If q = n 1 (that is, P is a complex hypersurface of M), then $V_P^M(t) \leq V_{\overline{P}}^{K_h^n(\lambda)}(t)$ and $V_P^M(t)/V_{\overline{P}}^{K_h^n(\lambda)}(t)$ is a nonincreasing function of t for $0 \leq t \leq e_c(P)$.

Volume comparison

REMARK. (i) is the result essentially due to Nayatani [7] (see also [4, page 194]). In (ii) $V_P^M(t)/V_{\overline{m}}^{K_h^n(\lambda)}(t)$ is also a nonincreasing function of t for $0 < t \leq e_c(P)$.

We shall prove these theorems following the ideas in [4]. In Section 2 we review some preliminary results. The proofs of theorems are given in Section 3.

2. PRELIMINARIES [3, 4]

Let M be a complete Riemannian manifold of dimension n and let $P \subset M$ be a topologically embedded submanifold of dimension q which is relatively compact.

Let $t \mapsto \gamma(t)$ be a unit speed geodesic in M normal to P with $\gamma(0) = p \in P$. Assume that $t \ge 0$ is less than or equal to the distance between P and its nearest focal point. Denote by S(t) the second fundamental form at the point $\gamma(t)$ of the tubular hypersurface at a distance t from P. Also let $R(t) : M_{\gamma(t)} \to M_{\gamma(t)}$ be the symmetric linear transformation defined by $\langle R(t)x, y \rangle = R^M_{\gamma'(t)x\gamma'(t)y}$, where \langle , \rangle and R^M are the metric and the Riemannian curvature tensor field of M respectively, $M_{\gamma(t)}$ denotes the tangent space to M at $\gamma(t)$, and $x, y \in M_{\gamma(t)}$. Then S(t) satisfies the differential equation

(1)
$$S'(t) = S(t)^2 + R(t).$$

Let ω be the Riemannian volume form of M, and let (x_1, \ldots, x_n) be a system of Fermi coordinates such that

$$\omega\left(\frac{\partial}{\partial x_1}\wedge\cdots\wedge\frac{\partial}{\partial x_n}\right)(\gamma(t))>0.$$

For $u \in P_p^{\perp}$ with ||u|| = 1, put

$$heta_u(t) = \omega \bigg(rac{\partial}{\partial x_1} \wedge \cdots \wedge rac{\partial}{\partial x_n} \bigg) (\gamma(t)).$$

Then $\theta_u(0) = 1$ and

(2)
$$\frac{\theta'_u(t)}{\theta_u(t)} = -\left(\frac{n-q-1}{t} + trS(t)\right).$$

Let $V_P^M(r) = n$ -dimensional volume of $\{m \in M \mid d(m, P) \leq r\}$ and $A_P^M(r) = (n-1)$ dimensional volume of $\{m \in M \mid d(m, P) = r\}$. Then

(3)
$$A_P^M(t) = \int_P \int_{S^{n-q-1}(1)} t^{n-q-1} \theta_u(t) \, du \, dP$$

and

(4)
$$V_P^M(r) = \int_0^r A_P^M(t) dt$$

S. Lee

[4]

where $S^{n-q-1}(1)$ is the unit sphere in P_p^{\perp} . If $\overline{P} \subset K^n(\lambda)$ is a totally geodesic submanifold,

(5)
$$A_{\overline{P}}^{K^{n}(\lambda)}(t) = \frac{2\pi^{(n-q)/2}}{\Gamma(\frac{n-q}{2})} \left(\frac{\sin t\sqrt{\lambda}}{\sqrt{\lambda}}\right)^{n-q-1} \left(\cos t\sqrt{\lambda}\right)^{q} \text{ volume } (\overline{P}),$$

and if $\overline{P} \subset K_h^n(\lambda)$ is a totally geodesic complex submanifold,

(6)
$$A_{\overline{P}}^{K_h^n(\lambda)}(t) = \frac{2\pi^{n-q}}{(n-q-1)!} \left(\frac{\sin t\sqrt{\lambda}}{\sqrt{\lambda}}\right)^{2n-2q-1} \left(\cos t\sqrt{\lambda}\right)^{2q+1} \text{volume}(\overline{P}).$$

In (5) and (6) we interpret $(\sin t\sqrt{\lambda})/\sqrt{\lambda}$ as $(\sinh t\sqrt{-\lambda})/\sqrt{-\lambda}$ (respectively t) when $\lambda < 0$ (respectively $\lambda = 0$).

3. PROOF OF THEOREMS

We will use many results of [4]. The proof of Theorem 2 is similar to but a little more complicated than that of Theorem 1.

PROOF OF THEOREM 1: (i) This is just the Bishop-Gromov volume comparison theorem for geodesic balls (see [1, 4, 6]). Observe that the proof of case (ii) gives us (i) easily.

(ii) Let $1 \leq q = \dim P \leq n-2$, and $0 < t \leq e_c(P)$. Then $t \to \theta_u(t)/(\sin t\sqrt{\lambda}/t\sqrt{\lambda})^{n-1}t^q$ is nonincreasing (see [4, p. 181]). For any $\varepsilon > 0$, there is small $t_0 > 0$ depending on ε and $P \subset M$ such that $\theta_u(t_0) \leq (1+\varepsilon)(\sin t_0\sqrt{\lambda}/t_0\sqrt{\lambda})^{n-q-1}(\cos t_0\sqrt{\lambda})^q$ since $\lim_{t_0\to 0} \theta_u(t_0) = 1$. Then we have for $0 < t_0 \leq s \leq t$

(7)
$$s^{n-q-1}\theta_u(s) \leq (1+\varepsilon)t_0^{n-q-1}\left(\frac{\sin t_0\sqrt{\lambda}}{t_0\sqrt{\lambda}}\right)^{n-q-1}\left(\cos t_0\sqrt{\lambda}\right)^q \left/\left(\frac{\sin t_0\sqrt{\lambda}}{\sqrt{\lambda}}\right)^{n-1}$$

and

(8)
$$t^{n-q-1}\theta_u(t)\left(\frac{\sin s\sqrt{\lambda}}{\sqrt{\lambda}}\right)^{n-1} \leqslant s^{n-q-1}\theta_u(s)\left(\frac{\sin t\sqrt{\lambda}}{\sqrt{\lambda}}\right)^{n-1}$$

Integrating (7) over the unit sphere $S^{n-q-1}(1)$ in P_p^{\perp} and using (3), (5), we obtain

(9)
$$A_P^M(s) \leq (1+\varepsilon) \frac{A_{\overline{P}}^{K^n(\lambda)}(t_0)}{A_{\overline{m}}^{K^n(\lambda)}(t_0)} A_{\overline{m}}^{K^n(\lambda)}(s).$$

Then integrating (9) with respect to s from t_0 to t and using (4) we get

(10)
$$V_P^M(t,t_0) \leq (1+\epsilon)C(t_0)V_{\overline{m}}^{K^n(\lambda)}(t,t_0),$$

where $C(t_0) = A_{\overline{P}}^{K^n(\lambda)}(t_0)/A_{\overline{m}}^{K^n(\lambda)}(t_0)$. Similarly from (8) we obtain

(11)
$$V_P^M(t,t_0)A_{\overline{m}}^{K^n(\lambda)}(t) \ge V_{\overline{m}}^{K^n(\lambda)}(t,t_0)A_P^M(t).$$

But (11) implies that

$$\frac{d}{dt}\left\{\frac{V_P^M(t,t_0)}{V_{\overline{m}}^{K^n(\lambda)}(t,t_0)}\right\} = \frac{1}{\{V_{\overline{m}}^{K^n(\lambda)}(t,t_0)\}^2} \times \left(V_{\overline{m}}^{K^n(\lambda)}(t,t_0)A_P^M(t) - V_P^M(t,t_0)A_{\overline{m}}^{K^n(\lambda)}(t)\right) \leqslant 0.$$

(iii) Let P be a minimal hypersurface of M and $0 \le t \le e_c(P)$. Then Lemma 8.28 in [4, page 181] shows that

(12)
$$\theta_u(t) \leq \left(\cos t\sqrt{\lambda}\right)^{n-1}$$

and

(13)
$$\theta_u(t) \left(\cos s\sqrt{\lambda}\right)^{n-1} \leqslant \theta_u(s) \left(\cos t\sqrt{\lambda}\right)^{n-1}$$

Integrating (12) and (13) we get

(14)
$$V_P^M(t) \leqslant V_{\overline{P}}^{K^n(\lambda)}(t)$$

and

(15)
$$V_P^M(t)A_{\overline{P}}^{K^n(\lambda)}(t) \ge A_P^M(t)V_{\overline{P}}^{K_n(\lambda)}(t).$$

But (15) implies that $d\left(V_P^M(t)/V_{\overline{P}}^{K^n(\lambda)}(t)\right)/dt \leq 0$. This completes the proof of Theorem 1.

PROOF OF THEOREM 2: Let $\{e_1, e_{1^*}, \ldots, e_n, e_{n^*}\}$ be an orthonormal basis of the tangent space M_p such that $e_{i^*} = Je_i$ and $e_1, e_{1^*}, \ldots, e_q, e_{q^*}$ are tangent to P. Let $\gamma(t)$ be a unit speed geodesic with $\gamma(0) = p$ and $\gamma'(0) = u = e_n$. Extend $e_1, e_{1^*}, \ldots, e_n, e_{n^*}$ to orthonormal vector fields $E_1(t), E_{1^*}(t), \ldots, E_n(t), E_{n^*}(t)$ along γ so that $E_n(t) = \gamma'(t)$ and the other $E_i(t)$ diagonalise S(t). Consider the functions

(16)
$$f_i(t) = \langle S(t)E_i(t), E_i(t) \rangle, \quad i \neq n.$$

S. Lee

Taking the derivative of both sides of (16) and using (1) and the Cauchy-Schwarz inequality, we get

(17)
$$f'_{i}(t) = \langle S'E_{i}, E_{i} \rangle = \langle S^{2}E_{i} + RE_{i}, E_{i} \rangle = \|SE_{i}\|^{2} + \langle RE_{i}, E_{i} \rangle$$
$$\geq \langle SE_{i}, E_{i} \rangle^{2} + \langle RE_{i}, E_{i} \rangle = f^{2}_{i}(t) + \langle R(t)E_{i}(t), E_{i}(t) \rangle.$$

Let

(18)
$$f(t) = \frac{1}{2n-2} \sum_{i=1}^{(n-1)^*} f_i(t).$$

Since $ho_{ah}^M=(2n-2)f(t)\geqslant (2n-2)\lambda$ and $K_h^M\geqslant 4\lambda$, we have

(19)
$$f'(t) \ge f^2(t) + \lambda$$

and

(20)
$$f'_{n^*}(t) \ge f^2_{n^*}(t) + 4\lambda.$$

The differential inequalities (19) and (20) can be solved explicitly (see for example [4, pp.174–175]).

(i) This is the result essentially due to Nayatani [7]. Observe that the proof of case (ii) gives us (i) easily.

(ii) Let $1 \leq q = \dim P/2 \leq n-2$ and $0 < t \leq e_c(P)$. Since $f(0) = f_{n^*}(0) = -\infty$, we have from (19) and (20)

$$f(t) \ge -\sqrt{\lambda} \cot t \sqrt{\lambda}$$
 and $f_{n^*}(t) \ge -2\sqrt{\lambda} \cot 2t \sqrt{\lambda}$.

Summing the functions $f_i(t)$, we find that

(21)
$$tr S(t) \ge -(2n-2)\sqrt{\lambda} \cot t\sqrt{\lambda} - 2\sqrt{\lambda} \cot 2t\sqrt{\lambda}.$$

From (2) and (21) we obtain

$$\frac{d}{dt}\ln\theta_u(t) = -\frac{2n-2q-1}{t} - tr\,S(t) \leqslant \frac{d}{dt}\ln\alpha(t),$$

where

$$\alpha(t) = \left(\frac{\sin t\sqrt{\lambda}}{t\sqrt{\lambda}}\right)^{2n-2q-1} \left(\sin t\sqrt{\lambda}\right)^{2q} \cos t\sqrt{\lambda}.$$

Then $d(\ln(\theta_u(t)/\alpha(t)))/dt \leq 0$, and $\theta_u(t)/\alpha(t)$ is a nonincreasing function of t. For any $\varepsilon > 0$, there is $t_0 > 0$ depending on ε and $P \subset M$ such that $\theta_u(t_0) \leq$

$$(1+\varepsilon)\left(\sin\left(t_0\sqrt{\lambda}\right) \middle/ \left(t_0\sqrt{\lambda}\right)\right)^{2n-2q-1} \left(\cos t_0\sqrt{\lambda}\right)^{2q+1} \text{ since } \lim_{t_0\to 0}\theta_u(t_0) = 1. \text{ Then}$$

we have for $0 < t_0 \leq s \leq t$

$$(22) \quad s^{2n-2q-1}\theta_u(s) \leqslant (1+\varepsilon) \frac{A_{\overline{m}}^{K_h^n(\lambda)}(s)}{A_{\overline{m}}^{K_h^n(\lambda)}(t_0)} t_0^{2n-2q-1} \left(\frac{\sin t_0\sqrt{\lambda}}{t_0\sqrt{\lambda}}\right)^{2n-2q-1} \left(\cos t_0\sqrt{\lambda}\right)^{2q+1}$$

and

(23)
$$t^{2n-2q-1}\theta_{u}(t)\left(\frac{\sin s\sqrt{\lambda}}{\sqrt{\lambda}}\right)^{2n-2q-1}\left(\cos s\sqrt{\lambda}\right)$$
$$\leqslant s^{2n-2q-1}\theta_{u}(s)\left(\frac{\sin t\sqrt{\lambda}}{\sqrt{\lambda}}\right)^{2n-2q-1}\left(\cos t\sqrt{\lambda}\right)$$

Integrating (22) using (3) we obtain

(24)
$$A_P^M(t) \leq (1+\varepsilon) \frac{A_{\overline{P}}^{K_h^n(\lambda)}(t_0)}{A_{\overline{m}}^{K_h^n(\lambda)}(t_0)} A_{\overline{m}}^{K_h^n(\lambda)}(t).$$

Integrating (24) with respect to s from t_0 to t we get

(25)
$$V_P^M(t,t_0) \leq (1+\varepsilon)C(t_0)V_{\overline{m}}^{K_h^n(\lambda)}(t,t_0),$$

where $C(t_0) = A_{\overline{P}}^{K_h^n(\lambda)}(t_0)/A_{\overline{m}}^{K_h^n(\lambda)}(t_0)$. Similarly, from (23) we obtain

(26)
$$V_P^M(t,t_0)A_{\overline{m}}^{K_h^n(\lambda)}(t) \ge A_P^M(t)V_{\overline{m}}^{K_h^n(\lambda)}(t,t_0).$$

But (26) implies that $d\left(V_P^M(t,t_0)/V_{\overline{m}}^{K_h^n(\lambda)}(t,t_0)\right)/dt \leq 0.$

(iii) Let P be a complex hypersurface of M and $0 \leq t \leq e_c(P)$. Then $f_i(0)$, $1 \leq i \leq (n-1)^*$, are finite and f(0) = 0 since the mean curvature vector fields of a Kähler submanifold of M vanishes. Hence we obtain from (19) and (20)

$$f(t) \ge \sqrt{\lambda} \cot t \sqrt{\lambda}$$
 and $f_{n^*}(t) \ge -2\sqrt{\lambda} \cot 2t \sqrt{\lambda}$.

Summing the functions $f_i(t)$, we find that

(27)
$$tr S(t) \ge 2(n-2)\sqrt{\lambda} \cot t\sqrt{\lambda} - 2\sqrt{\lambda} \cot 2t\sqrt{\lambda}.$$

From (2) and (27) it follows that

$$rac{d}{dt}\ln heta_u(t)=-rac{1}{t}-tr\,S(t)\leqslantrac{d}{dt}\lneta(t),$$

[8]

248

where $\beta(t) = \left(\frac{\sin t \sqrt{\lambda}}{t \sqrt{\lambda}} \right) \left(\cos t \sqrt{\lambda} \right)^{2n-1}$. Then $d \ln \left(\frac{\theta_u(t)}{\beta(t)} \right) / dt \leq 0$, and $\frac{\theta_u(t)}{\beta(t)}$ is a nonincreasing function of t, whose value for t = 0 is 1, whence

(28)
$$\theta_u(t) \leq \beta(t)$$

and

(29)
$$t\theta_u(t)A_{\overline{P}}^{K_h^n(\lambda)}(s) \leqslant s\theta_u(s)A_{\overline{P}}^{K_h^n(\lambda)}(t)$$

for $0 \leq s \leq t$, follows. Integrating (28) using (3), (4), we get

(30)
$$V_P^M(t) \leq V_{\overline{P}}^{K_h^n(\lambda)}(t)$$

Similarly integrating (29), we obtain

(31)
$$V_P^M(t)A_{\overline{P}}^{K_h^n(\lambda)}(t) \ge A_P^M(t)V_{\overline{P}}^{K_h^n(\lambda)}(t).$$

But (31) implies that $V_P^M(t)/V_{\overline{P}}^{K_h^n(\lambda)}(t)$ is a nonincreasing function of t. This completes the proof of Theorem 2.

References

- [1] R.L. Bishop and R.J. Crittenden, *Geometry of manifolds* (Academic Press, New York, 1964).
- [2] F. Giménez and V. Miquel, 'Volume estimates for real hypersurfaces of a Kaehler manifold with strictly positive holomorphic sectional and antiholomorphic Ricci curvatures', *Pacific J. Math.* 142 (1990), 23-39.
- [3] A. Gray, 'Comparison theorems for the volumes of tubes as generalizations of the Weyl tube formula', *Topology* 21 (1982), 201-228.
- [4] A. Gray, Tubes (Addison-Wesley, New York, 1990).
- [5] A. Gray and L. Vanhecke, 'The volume of tubes in a Riemannian manifold', Rend. Sem. Math. Univ. Politec. Torino 39 (1983), 1-50.
- [6] M. Gromov, Structures Métriques pour les Variétés riemanniennes (Cédic Nathan, Paris, 1981).
- [7] S. Nayatani, 'On the volume of positively curved Kähler manifolds', Osaka J. Math. 25 (1988), 223-231.

Department of Mathematics and Mathematics Research Center KAIST Taejon, 305-701 Korea