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Abstract

Let ξ, ξ1, ξ2, . . . be a sequence of independent and identically distributed random
variables, and let Sn = ξ1+· · ·+ξn and Mn = maxk≤n Sk . Let τ = min{n ≥ 1 : Sn ≤ 0}.
We assume that ξ has a heavy-tailed distribution and negative, finite mean E(ξ) < 0. We
find the asymptotics of P{Mτ ∈ (x, x + T ]} as x → ∞, for a fixed, positive constant T .
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1. Introduction and main result

Let ξ, ξ1, ξ2, . . . be a sequence of independent random variables with a common distribution
F and mean m, −∞ < −m < 0. Consider the random walk

S0 = 0, Sn = ξ1 + · · · + ξn.

Let
τ = min{n ≥ 1 : Sn ≤ 0}, Mτ = max

0≤i≤τ
Si,

be the first ladder epoch and the cycle maximum of the random walk, respectively. Note that, in
this case, E(τ ) < ∞ and Mτ < ∞ almost surely. In this work we study the local asymptotics
of the cycle maximum, i.e. the asymptotics of

P{Mτ ∈ (x, x + T ]}, x → ∞,

where T is a fixed, positive constant. We consider the heavy right tail case, i.e. in which
E(eλξ1) = ∞ for all λ > 0.

Random walks with heavy-tailed increments have been the subject of many studies. Besides
their own intrinsic interest, they have many applications in queueing theory, risk theory, etc.
The subject of interest in this paper is (the local tail asymptotics of) the busy cycle maximum.
This quantity plays an important role in the analysis of the single-server queue. For example,
the (global) tail asymptotics of the busy cycle maximum has been applied to find the tail
asymptotics of the busy period of the GI/GI/1 queue; see [17]. In turn, the busy period has many
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222 D. DENISOV AND V. SHNEER

applications to various other problems, for example generalized processor sharing, priority
queues, convergence rates in queueing problems, and the sojourn time in the GI/GI/1 queue with
the last-came–first-served discipline. It may also be used to find the (global tail asymptotics of
the) sojourn time in the GI/GI/1 processor-sharing queue. Therefore, we expect that the present
paper will be useful in obtaining local versions of the above results.

The global asymptotics of P{Mτ > x} (and some related problems) has been studied by
various authors. In [13] this asymptotics was obtained for regularly varying distributions.
In [1] (see also corrections in the proof of [2, Theorem X.9.4]) this asymptotics was found for
a more general class, S∗ (see Definition 1, below): it was proved that if F belongs to S∗ then

P{Mτ > x} ∼ E(τ )F (x) (1)

(here and throughout, a(x) ∼ b(x) is written to mean that limx→∞ a(x)/b(x) = 1, and for any
distribution function F we let F(x) := 1 − F(x)). A short proof of (1) may be found in [8].
Foss and Zachary [11] showed that the converse is true: if F is long tailed and (1) holds, then
F ∈ S∗. They also proved that (1) holds even if we assume that τ is an arbitrary stopping time
with finite mean. In [12] this result was generalized to the case of infinite-mean stopping times.

In order to state our results we require some definitions.

Definition 1. A distribution function F on R belongs to the class S ∗ (see [14]) if and only if
F(x) > 0 for all x and ∫ x

0
F(x − y)F (y) dy ∼ 2m+F(x),

where m+ = ∫ ∞
0 F(y) dy < ∞.

It is known that if a distribution function F belongs to the class S∗, then it is subexponential
(see [14]). In general, the converse assertion does not hold, i.e. a subexponential distribution
with finite mean may not belong to S∗; see [9] for an example of this.

Fix a T , 0 < T ≤ ∞, and write � = (0, T ] and

x + � = (x, x + T ], x ∈ R.

Let
F(x + �) = P{ξ ∈ x + �} = P{ξ ∈ (x, x + T ]}.

Definition 2. We say that a distributionF on R belongs to the classL� if and only ifF(x+�) >

0 for all sufficiently large x and, for all t ∈ [0, 1],
F(x + t + �)

F(x + �)
→ 1 as x → ∞. (2)

Remark 1. The class L� was introduced in [3]. Note that Definition 2 implies local uniform
convergence (uniform convergence on each compact set of t in (0, ∞)) in (2). Indeed, it follows
from Definition 2 that (2) holds for all t ≥ 0. Let f (x) = F(log x+�); then (2) is equivalent to
f (tx)/f (x) → 1 as x → ∞. This means that the function f is slowly varying (see [5] for the
relevant definition and properties). Uniform convergence in (2) follows now from the uniform
convergence theorem for slowly varying functions (see, e.g. [5, Theorem 1.2.1]). Moreover,
it follows from the uniform convergence on any compact set that we can choose a function
h(x) → ∞ such that (2) holds uniformly in |t | ≤ h(x).
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Definition 3. Let F be a distribution on R+ with unbounded support. We say that F is
�-subexponential, and write F ∈ S�, if F ∈ L� and

(F ∗ F)(x + �) ∼ 2F(x + �) as x → ∞.

If T = ∞ then we simply say that F is subexponential.

The notion of �-subexponential distributions was introduced in [3]. The case in which
T = ∞ corresponds to that of subexponential distributions introduced by Chistyakov [7].
In [3] it was shown that the basic properties of subexponential distributions carry over virtually
without change to the case of �-subexponential distributions.

In this paper we introduce a new class of distributions.

Definition 4. We say that a distribution F belongs to the class Sτ ∗
� if F ∈ L�, m+ < ∞, and

∫ x/2

0
F(x − y + �)F((y, x]) dy ∼ m+F(x + �) as x → ∞.

This class is an extension of the class S∗ introduced in [14]. It is not difficult to see that
S∗ = S∗

(0,∞) since S∗ ⊂ L(0,∞) (see [14]). We will also show that if F belongs to Sτ ∗
� for

some �, then it belongs to S� as well.
Now we are in position to state our main result.

Theorem 1. (i) Suppose that F ∈ Sτ ∗
�. Then

P{Mτ ∈ x + �} ∼ E(τ )F (x + �), x → ∞. (3)

(ii) Conversely, suppose that the asymptotics (3) holds and that F ∈ L�. Then F ∈ Sτ ∗
�.

The proof of Theorem 1 is given in Section 3.
Foss and Zachary [11] gave a natural extension of (1) to the case of a general stopping time σ :

they showed that, for an arbitrary stopping time σ with finite mean, P{Mσ > x} ∼ E(σ )F (x).
In the local case such an extension of Theorem 1 does not hold in general. In Section 5 we
show that for any F ∈ L� there exists a finite-mean stopping time σ such that

lim sup
x→∞

P{Mσ ∈ x + �}
F(x + �)

> E(σ ). (4)

The paper is organized as follows. In Section 2, in the form of nine lemmas, we present some
properties of the new class, Sτ ∗

�. We show that the main properties of the class S∗ remain valid
for the case of an arbitrary, positive T . We also give sufficient conditions for a distribution to
belong to the class Sτ ∗

�. Using these sufficient conditions we show that standard examples of
subexponential distributions are contained in the class Sτ ∗

�. The proof of Theorem 1 is given in
Section 3. In Section 4 we prove Theorem 2, which gives the asymptotics of the taboo renewal
function (see (11) for the definition). In Section 5 we construct a stopping time σ for which
strict inequality (4) holds. Proofs of the nine lemmas formulated in Section 2 are collected in
the appendix.
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2. Basic properties of the class Sτ∗
�

We start with a lemma which gives equivalent definitions of the class Sτ ∗
�.

Lemma 1. Let F ∈ L� and let h(x) ↑ ∞, with h(x) ≤ x/2 being a function such that
F(x − y + �) ∼ F(x + �) uniformly in y ≤ h(x). Then

F ∈ Sτ ∗
� ⇐⇒

∫ x/2

h(x)

F ((y, x])F (x − y + �) dy = o(F (x + �)) (5)

⇐⇒
∫ x−h(x)

h(x)

F ((y, x])F (x − y + �) dy = o(F (x + �)) (6)

⇐⇒
∫ x−h(x)

0
F((y, x])F (x − y + �) dy ∼ m+F(x + �). (7)

In addition, F ∈ Sτ ∗
� implies that

∫ x

0
F(x − y + �)F((y, x]) dy = O(1)F (x + �). (8)

We give some conditions for a distribution to belong to the class Sτ ∗
�. These conditions

show that standard examples of subexponential distributions are contained in the class Sτ ∗
�.

Lemma 2. Let a distribution F belong to the class L�. Assume that there exist c > 0 and
x0 < ∞ such that F(x + t + �) ≥ cF (x + �) for any x > x0 and t ∈ (0, x]. Assume also
that m+ < ∞. Then F ∈ Sτ ∗

�.

Remark 2. In [3] it was shown that if a distribution F satisfies the conditions of Lemma 2,
then F ∈ S�. It is clear that F(2x) ≥ cF (x) for such distributions, and it was shown in
[14, Theorem 3.2] that distributions with this property belong to the class S∗.

The Pareto distribution (with the tail F(x) = x−α, α > 1, x ≥ 1) satisfies the conditions of
Lemma 2 for any T > 0. The same is true for any distribution F such that P{ξ ∈ x + �} is
regularly varying at infinity, i.e. for any distribution F(x +�) ∼ x−αl(x) where l(x) is slowly
varying at infinity.

Let Q�(x) = −ln F(x + �) for any finite T , and let Q(x) = −ln F(x). Following,
with obvious changes, the construction presented in [14] (see also [16]), it is easy to check
that for any distribution F ∈ L� we can always find a distribution G such that G ∈ L�,
F(x + �) ∼ G(x + �) as x → ∞, and R�(x) := −ln G(x + �) is differentiable. In view of
Lemma 9, below, we may give sufficient conditions for F ∈ S∗

�, assuming the existence of the
derivative Q′

�(x).

Lemma 3. Assume that r := lim supx→∞ xQ′
�(x)/Q(x) < 1, that the function Q(x)/x is

eventually nonincreasing, and that F
1−r−ε

(x) is integrable for some ε > 0. Then F ∈ Sτ ∗
�.

Remark 3. Lemma 3 is a generalization of [15, Theorem 2.8(c)] to the case of an arbitrary,
positive T . Note that, in the case T = ∞, the conditions of Lemma 3 and [15, Theorem 2.8(c)]
coincide, since in this case the fact that Q(x)/x is a nonincreasing function follows from the
assumption that r < 1.

Direct computations show that any Weibull distribution (i.e. any distribution with the tail
F(x) = e−xγ

) satisfies the conditions of Lemma 3 for any T > 0 if 0 < γ < 1. It can also
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be shown that so-called semiexponential distributions (i.e. distributions with the tails F(x) =
e−xγ l(x) where 0 ≤ γ < 1 and l(x) is a slowly varying function such that l′(x) = o(l(x)/x) as
x → ∞; see, e.g. [6]) satisfy the conditions of Lemma 3 for any T > 0.

The next two lemmas will be extensively used in the proof of Theorem 1. Lemma 4 shows
that F((y, x]) behaves like a long-tailed function.

Lemma 4. Let F ∈ L� with a finite T ≥ 0. For any t > 0 and ε > 0, there exists a y0 > 0
such that, for all x and y with y ∈ (y0, x − y0),

F((y − t, x + t])
F ((y, x]) ≤ 1 + ε.

Lemma 5 shows that F((y, x]) behaves like a distribution function from S∗.

Lemma 5. Let F ∈ Sτ ∗
� with a finite T ≥ 0. Then, for any ε > 0, there exists a y0 > 0 such

that, for all x and y with y ∈ (y0, x − y0),∫ y−y0

y0

F((y − u, x − u])F ((u, x]) du ≤ εF ((y, x]) (9)

and

2m+ − ε ≤
∫ y

0 F((y − u, x − u])F ((u, x]) du

F((y, x]) ≤ 2m+ + ε. (10)

If T = ∞ then Lemma 4 and Lemma 5 hold for x = ∞. The property in the next lemma is
an analogue of a property of S�.

Lemma 6. If F ∈ Sτ ∗
� for some finite interval � = (0, T ], then F ∈ Sτ ∗

� for any � =
(0, nT ], n ∈ N.

It is known (see [3]) that S� ⊂ S for any positive T . Lemma 7 shows that the inclusion
Sτ ∗

� ⊂ S∗ also holds.

Lemma 7. If F ∈ Sτ ∗
� for some finite interval � = (0, T ], then F ∈ S∗.

It is also known (see [14]) that S∗ ⊂ S. Lemma 8 shows that the inclusion Sτ ∗
� ⊂ S� also

holds.

Lemma 8. If F ∈ Sτ ∗
� for some finite interval � = (0, T ], then F ∈ S�.

The following lemma is a generalization of [14, Theorem 2.1(b)] to the case of an arbitrary
positive T .

Lemma 9. Let F, G ∈ L� and assume that there exist M1, M2 ∈ (0, ∞) such that M1 ≤
G(x + �)/F(x + �) ≤ M2 for all sufficiently large x. Then F ∈ Sτ ∗

� if and only if G ∈ Sτ ∗
�.

Remark 4. One might wonder whether the class Sτ ∗
� is equal to another class generalizing S∗.

We say that a distribution F belongs to the class S∗
� if F ∈ L�, m+ < ∞, and

∫ x/2

0
F(x − y + �)F(y) dy ∼ m+F(x + �) as x → ∞.

The definition of this class almost coincides with that of Sτ ∗
�. Lemma 1 immediately implies

that S∗
� ⊂ Sτ ∗

�. The authors do not know whether or not the converse inclusion holds, but we
have some reasons to believe that S∗

� = Sτ ∗
�. The results of this section all hold for S∗

� as well.
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3. Proof of Theorem 1

We first give several definitions. Let M = supn≥0 Sn and π(B) = P{M ∈ B}. An important
role in this work is played by the taboo renewal function defined as follows:

Hx(B) ≡
∞∑

n=0

P{τ > n, Mn ≤ x, Sn ∈ B}. (11)

Clearly, Hx(B) is monotone increasing in x and H∞(B) = E(τ )π(B); see, e.g. [2, ChapterVIII,
Theorems 2.2 and 2.3] for the latter equality. Our main tool is the following theorem, which
will be proved in Section 4.

Theorem 2. Let F ∈ Sτ ∗
�. Let b > 0 be any number if F is a nonlattice distribution, and let

b = nh, n ∈ N, if F is a lattice distribution with step size h. For any ε > 0, there exists a
y0 > 0 such that, for x and y with y ∈ (y0, x − y0),

(1 − ε) E(τ )
b

m
F((y, x]) ≤ Hx((y, y + b]) ≤ (1 + ε) E(τ )

b

m
F((y, x]).

For the lower bound to hold it is sufficient to assume that F ∈ L�.

Let µ(x) = min{n ≥ 1 : Sn > x} be the time the random walk first exceeds the level x. Our
starting point is the following asymptotic representation.

Lemma 10. Let A > 0 be any constant. Then, uniformly in a ∈ [0, A],
P{Mτ ∈ x + �}

= (1 + o(1)) P{Sµ(x−a) + M̃ ∈ x + �, µ(x − a) ≤ τ } (12)

= (1 + o(1))

∫ x−a

0
Hx−a(dy) P{M̃ + ξ ∈ x − y + �, ξ ∈ (x − y − a, x − y + T ]},

(13)

where M̃
d= M is independent of {ξn}n≥1.

Proof. For any a > 0,

P{Mτ ∈ x + �}
= P

{
µ(x − a) ≤ τ, max{i : µ(x−a)≤i≤τ } Si ∈ x + �

}

= P
{
µ(x − a) ≤ τ, Sµ(x−a) ∈ (x − a, x + T ], max{i : µ(x−a)≤i≤τ } Si ∈ x + �

}

=
∫ x+T

x−a

P
{
µ(x − a) ≤ τ, Sµ(x−a) ∈ dz, max{i : µ(x−a)≤i≤τ }(Si − Sµ(x−a)) ∈ x − z + �

}
.

Making use of the Markov property, we can represent the latter equality as

P{Mτ ∈ x + �} =
∫ x+T

x−a

P{µ(x − a) ≤ τ, Sµ(x−a) ∈ dz} P{M̃τ̃−z
∈ x − z + �},

where τ̃−z = inf{n ≥ 1 : S̃n ≤ −z}, M̃n = max0≤i≤n S̃i , and S̃n is a random walk independent
of {ξn}∞n=1. It is not difficult to see that, uniformly in u ∈ [−T , A],

P{M̃τ̃−z
∈ u + �} → P{M̃ ∈ u + �}, z → ∞.

https://doi.org/10.1239/aap/1175266476 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1175266476


Local asymptotics of the cycle maximum 227

Therefore, uniformly in a ∈ [0, A],

P{Mτ ∈ x + �} = (1 + o(1))

∫ x+T

x−a

P{µ(x − a) ≤ τ, Sµ(x−a) ∈ dz} P{M̃ ∈ x − z + �}
= (1 + o(1)) P{M̃ + Sµ(x−a) ∈ x + �, µ(x − a) ≤ τ }, x → ∞.

Our next step is to prove (13). By the total probability formula, for any measurable B ⊂
(x, ∞), we have

P{µ(x) ≤ τ, Sµ(x) ∈ B} =
∞∑

n=1

P{τ ≥ n, Mn−1 ≤ x, Sn ∈ B, µ(x) = n}

=
∫ x

0

∞∑
n=1

P{τ ≥ n, Mn−1 ≤ x, Sn−1 ∈ dy}F(B − y)

=
∫ x

0
Hx(dy)F (B − y).

After substituting this expression into (12), we obtain (13).

Since the asymptotic equivalence in (13) holds uniformly in any interval [0, A], it is possible
to pick a function h(x) ↑ ∞ with h(x) < x/2 such that (13) holds uniformly in a ∈ [0, h(x)].
In addition, since F ∈ L�, we can pick this function h(x) to satisfy

sup
y≤2h(x)

∣∣∣∣F(x − y + �)

F(x + �)
− 1

∣∣∣∣ → 0. (14)

Lemma 11. Let F ∈ L�. For the function h(x) defined above and any function a(x) ↑ ∞,

∫ h(x)

0
Ha(x)(dy) P{M̃ + ξ ∈ x − y + �, ξ ∈ (x − y − h(x), x − y + T ]}

∼ E(τ )F (x + �).

Lemma 12. Let F ∈ Sτ ∗
�. For the function h(x) defined above,

∫ x−h(x)

h(x)

Hx−h(x)(dy) P{M̃ + ξ ∈ x − y + �, ξ ∈ (x − y − h(x), x − y + T ]}
= o(F (x + �)). (15)

Proof of Theorem 1. If F ∈ Sτ ∗
� then a combination of Lemma 10 with A = h(x),

Lemma 11 with a(x) = x − h(x), and Lemma 12 proves part (i) of Theorem 1.
To prove part (ii), assume that F ∈ L� and that the asymptotics in (3) holds. Then, from

Lemma 10 with a = 0 and Lemma 11 with a(x) = x, it follows that

∫ x

h(x)

Hx(dy) P{M̃ + ξ ∈ x − y + �, ξ ∈ x − y + �} = o(F (x + �)).
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Using the fact that F ∈ L� and Theorem 2, we have

∫ x

h(x)

Hx(dy) P{M̃ + ξ ∈ x − y + �, ξ ∈ x − y + �}

≥ P{M = 0}
∫ x/2

h(x)

Hx(dy)F (x − y + �)

≥ (1 − o(1)) P{M = 0}E(τ )

m

∫ x/2

h(x)

dyF((y, x])F (x − y + �).

Therefore, ∫ x/2

h(x)

dyF((y, x])F (x − y + �) = o(F (x + �)),

which, according to Lemma 1, implies that F ∈ Sτ ∗
�.

Lemma 11 describes the typical behaviour of the random walk resulting in the rare event
{Mτ ∈ x + �}. For a(x) = h(x), it shows that typically the random walk spends some
time sufficiently close to 0 (in the interval (0, h(x)]), then makes a single jump to some point
z ∈ (x − h(x), x + T ], and then, with probability π(x − z + �), reaches interval x + �

from point z and immediately goes down to −∞. Note that the single big jump to the interval
(x, x + T ] is only a part of this event.

Proof of Lemma 11. First we prove the upper bound. Clearly, for any set B,

Ha(x)(B) ≤ H∞(B) = E(τ )π(B).

Thus,

∫ h(x)

0
Ha(x)(dy) P{M̃ + ξ ∈ x − y + �, ξ ∈ (x − y − h(x), x − y + T ]}

≤ E(τ )

∫ h(x)

0
π(dy) P{M̃ + ξ ∈ x − y + �, ξ ∈ (x − y − h(x), x − y + T ]}

≤ E(τ )

∫ h(x)

0
π(dy) P{M̃ + ξ ∈ x − y + �, M̃ ≤ h(x) + T }

= E(τ )

∫ h(x)

0
π(dy)

∫ h(x)+T

0
π(dz)F (x − y − z + �)

∼ E(τ )F (x + �),

where the asymptotic equivalence follows from (14). This gives us the upper bound. To prove
the lower bound, note that for any fixed A, uniformly in u ∈ [0, A],

Ha(x)([0, u]) →
∞∑

n=0

P{τ > n, Sn ∈ [0, u]} = E(τ )π([0, u]), x → ∞.
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This convergence holds uniformly even on the interval [0, g(x)], for some g(x) ↑ ∞.
Therefore,

∫ h(x)

0
Ha(x)(dy) P{M̃ + ξ ∈ x − y + �, ξ ∈ (x − y − h(x), x − y + T ]}

≥ (1 − o(1)) E(τ )

∫ g(x)

0
π(dy) P{M̃ + ξ ∈ x − y + �,

ξ ∈ (x − y − h(x), x − y + T ]}

≥ (1 − o(1)) E(τ )

∫ g(x)

0
π(dy) P{M̃ + ξ ∈ x − y + �, M̃ ≤ h(x)}

∼ E(τ )F (x + �).

This gives us the lower bound.

Proof of Lemma 12. By Proposition 1 (see the appendix) and F ∈ L�, for some constant
C1 > 0 and for x and y with y ∈ (h(x), x − h(x)), we have

P{M̃ + ξ ∈ x − y + �, ξ ∈ (x − y − h(x), x − y + T ]}

≤
∫ h(x)+T

0
π(dz)F (x − y − z + �)

≤ C1

(∫ h(x)+T

0
dzF ((z, x − y])F (x − y − z + �)

+ F(x − y)

∫ h(x)+T

0
dzF (x − y − z + �)

)

=: C1(P1 + P2).

It follows from (8) that, for some constant C2 and for x and y with y ∈ (h(x), x − h(x)),

P1 ≤ C2F(x − y + �).

Furthermore,

P2 ≤ T F(x − y)F ((x − y − h(x) − T , x − y + T ]).
We can start to estimate (15). Since Hx(B) is monotonically increasing in x,

∫ x−h(x)

h(x)

Hx−h(x)(dy)P1 ≤ C1C2

∫ x−h(x)

h(x)

Hx(dy)F (x − y + �).

By Theorem 2 and F ∈ L�, the right-hand side is bounded from above as follows:

∫ x−h(x)

h(x)

Hx(dy)F (x − y + �) = O(1)

∫ x−h(x)

h(x)

dyF((y, x])F (x − y + �) = o(F (x + �)).

Here the final equality follows from (6).
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Furthermore, Theorem 2 and F ∈ L� imply that

∫ x−h(x)

h(x)

Hx(dy)P2

≤ T

∫ x−h(x)

h(x)

Hx(dy)F (x − y)F ((x − y − h(x) − T , x − y + T ])

≤ O(1)F (h(x))

∫ x−h(x)

h(x)

dyF((y, x])F ((x − h(x) − 2T − y, x + T − y])

= O(1)F (h(x))F ((x − h(x) − 2T , x + T ]),

where the equality follows from (10). Then

F(h(x))F ((x − h(x) − 2T , x + T ]) ≤ F(h(x))

[h(x)/T ]+2∑
n=−1

F(x − nT + �)

∼ F(h(x))h(x)F (x + �)

T

= o(F (x + �)),

since F(x)x → 0 if
∫ ∞

0 F(u) du < ∞. Here [·] denotes the integer-part function.

4. Proof of Theorem 2

In this section we prove Theorem 2, which gives the key estimates for the renewal function
Hx((y, y + b]). We start with the lower bound.

Lemma 13. Let F ∈ L�. Let b > 0 be any number if F is a nonlattice distribution, and let
b = nh, n ∈ N, if F is a lattice distribution with step size h. Then, for any ε > 0, there exists
a y0 > 0 such that, for x and y with y ∈ (y0, x − y0),

Hx((y, y + b]) ≥ (1 − ε) E(τ )
b

m
F((y, x]).

Proof. Let δ > 0 be such that (1 − δ)4 = 1 − ε. Let y1 be a constant to be defined later.
Let �b = (0, b]. Recall that µ(y1) = inf{n ≥ 1 : Sn > y1}. For x > y + 2y1, by the Markov
property we have

Hx((y, y + b]) ≥
∞∑
i=0

P{µ(y1) ≤ τ, Sµ(y1) ∈ (y + y1, x − y1],
Mµ(y1)+i ≤ x, Sµ(y1)+i ∈ y + �b, τ > µ(y1) + i}

=
∫ x−y1

y+y1

P{µ(y1) ≤ τ, Sµ(y1) ∈ du}

×
∞∑
i=0

P{Mi ≤ x − u, Si ∈ y − u + �b, τ−u > i},
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where τ−u = min{n ≥ 1 : Sn < −u}. Represent the infinite sum in the following form:

∞∑
i=0

P{Mi ≤ x − u, Si ∈ x − u + �b, τ−u > i}

= E1 − E2

:=
∞∑
i=0

P{Mi ≤ x − u, Si ∈ y − u + �b}

−
∞∑
i=0

P{Mi ≤ x − u, Si ∈ y − u + �b, τ−u ≤ i}.

By the renewal theorem for random walks on the real line, for sufficiently large y1 we have

E2 ≤
∞∑
i=0

P{Si ∈ y − u + �b, τ−u ≤ i}

=
∫ −u

−∞
P{Sτ−u ∈ dz}

∞∑
i=0

P{Si ∈ y − u − z + �b}

≤ sup
v>y

∞∑
i=0

P{Si ∈ v + �b}

≤ sup
v>2y1

∞∑
i=0

P{Si ∈ v + �b}

≤ δ
b

3m
.

Furthermore,

E1 =
∞∑
i=0

P{Si ∈ y − u + �b} −
∞∑
i=0

P{Mi > x − u, Si ∈ y − u + �b}

=: E11 − E12.

By the Markov property and the renewal theorem, for some C > 0 we have

E12 ≤
∫ ∞

x−u

P{Sµ(x−u) ∈ dz}
∞∑
i=0

P{Si ∈ y − u − z + �b} ≤ C P{µ(x − u) < ∞} ≤ δ
b

3m
.

The latter inequality holds for sufficiently large y1, since x − u > y1 and P{µ(y1) < ∞} → 0
as y1 → ∞. Again by the renewal theorem, for sufficiently large y1 we have

E11 ≥ inf
u∈(y+y1,x−y1)

∞∑
i=0

P{Si ∈ y − u + �b} ≥ inf
v<−y1

∞∑
i=0

P{Si ∈ v + �b} ≥
(

1 − δ

3

)
b

m
.
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Fix a positive integer N . We can write

Hx((y, y + b]) ≥ (1 − δ)
b

m
P{µ(y1) ≤ τ, Sµ(y1) ∈ (y + y1, x − y1]}

≥ (1 − δ)
b

m

N∑
n=0

∫ y1

0
P{τ > n, Mn ≤ y1, Sn ∈ dt}

∫ x−t−y1

y−t+y1

F(dz)

≥ (1 − δ)
b

m

N∑
n=0

P{τ > n, Mn ≤ y1} inf
0<t<y1

F((y − t + y1, x − t − y1]).

By now taking N and y1 to be sufficiently large, we can estimate the sum from below:

N∑
n=0

P{τ > n, Mn ≤ y1} ≥ (1 − δ)

N∑
n=0

P{τ > n} ≥ (1 − δ)2 E(τ ).

Finally, by Lemma 4, we can choose a y0 > y1 such that

inf
0<t<y1

F((y − t + y1, x − t − y1]) ≥ F((y + y1, x − 2y1]) ≥ (1 − δ)F ((y, x]).

The upper bound, as usual, is more difficult to analyse. Let P{M = 0} = p and q = 1 − p.
It is known that E(τ ) = 1/p; see, e.g. [2, Chapter VIII, Theorem 2.3]. We will use a different
representation for Hx(B). For any measurable set B, by duality of random walks (see [10,
Section XII.2]),

Hx(B) = 1{0∈B} +
∞∑

n=1

P{S1 > 0, S2 > 0, . . . , Sn > 0, Mn ≤ x, Sn ∈ B}

= 1{0∈B} +
∞∑

n=1

P
{
Sn > Mn−1, Sn − min

i=0,...,n−1
Si ≤ x, Sn ∈ B

}
. (16)

Let ν0, ν1, ν2, . . . be the sequence of (strictly) increasing ladder epochs:

ν0 = 0, ν1 = inf{n ≥ 1 : Sn > 0} ≤ ∞, . . . ,

νk = inf{n ≥ 1 : Sn > Sνk−1} ≤ ∞, . . . .

Then (16) can be written as

Hx(B) =
∞∑

k=0

G(k)
x (B) :=

∞∑
k=0

P
{
Sνk

∈ B, Sνk
≤ x + min

i=0,...,νk

Si

}
.

Here G
(0)
x (B) = 1{0∈B}. Thus, P{ν1 < ∞} = P{M > 0} = q < 1 and, therefore,

G(k)
x ((0, ∞)) ≤ qk, k ≥ 1. (17)
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To estimate Hx((y, y + b]) from above, we will recursively construct estimates for
G

(k)
x ((y, y + b]). Let

Gx(B) = P{−Sν1−1 ≤ x, Sν1 ∈ B}.
Note that, for any x, Gx((0, ∞)) ≤ q < 1. For k = 1, we have

G(1)
x ((y, y + b]) ≤ P{Sν1 ∈ (y, y + b], −Sν1−1 ≤ x − Sν1}

≤ P{Sν1 ∈ (y, y + b], −Sν1−1 ≤ x − y}
= Gx−y(y + �). (18)

Again let �b = (0, b]. For k > 1, by the Markov property we have

G(k)
x (y + �b)

= P
{
Sνk

∈ y + �b, Sνk
≤ x + min

i=0,...,νk

Si, −Sν1−1 ≤ x − Sνk
, Sν1 < Sνk

}

≤ P
{
Sνk

∈ y + �b, Sνk
≤ x + min

i=ν1,ν1+1,...,νk

Si, −Sν1−1 ≤ x − y, Sν1 ≤ y + b
}

=
∫ y+b

0
P{−Sν1−1 ≤ x − y, Sν1 ∈ dt} P

{
Sνk

− Sν1 ∈ (y − t, y − t + b],
Sνk

− Sν1 ≤ x + min
i=ν1,ν1+1,...,νk

Si − Sν1

}

=
∫ y+b

0
Gx−y(dt)G(k−1)

x (y − t + �b). (19)

Before starting to estimate G
(k)
x , we need to prove two auxiliary lemmas.

Lemma 14. Let F ∈ L�. Let b > 0 be any number if F is a nonlattice distribution, and let
b = nh, n ∈ N, if F is a lattice distribution with step size h. For any ε > 0, there exists some
z0 such that, for any x and z with x > z > z0,

Gx((z, z + b]) ≤ (1 + ε)
p

m
bF((z, x + z]).

Also, there exists a constant H−(b) such that, for any x, z > 0,

Gx((z, z + b]) ≤ H−(b)F ((z, x + z + b]). (20)

Proof. Clearly,

Gx((z, z + b])

=
∞∑

n=1

P{S1 ≤ 0, . . . , Sn−1 ≤ 0, Sn > 0, −Sn−1 ≤ x, Sn−1 + ξn ∈ (z, z + b]}

=
∫ x+z+b

z

F (dt)

∞∑
n=1

P{S1 ≤ 0, . . . , Sn−1 ≤ 0, −Sn−1 ∈ [t − z − b, t − z)}

=
∫ x+z+b

z

F (dt)H−([t − z − b, t − z)).
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Here, for any measurable set B, H−(B) = ∑∞
k=0 G∗k− (B), where G− is the distribution function

of the decreasing ladder height; see, e.g. [2, Chapter VIII, Theorem 2.3]. Thus, (20) follows
from the subadditivity of the renewal measure, i.e. H−([t−z−b, t−z)) ≤ H−([0, b]) ≡ H−(b).
Furthermore, by the renewal theorem, H−([u − b, u)) → ∫ ∞

0 G−(dt)t = (p/m)b. Thus, for
sufficiently large z1 and x > z1,

Gx((z, z + b]) ≤ H−(b)F ((z, z + z1]) +
(

1 + ε

2

)
p

m
bF((z + z1, x + z + b]). (21)

For any δ > 0, it follows from Lemma 4 that there exists a z0 ≡ z0(δ) such that, for x and z

with x + z − z0 > z > z0,

F((z, z + z1]) ≤ δF ((z, x]), F ((z + z1, x + z + b]) ≤ (1 + δ)F ((z, x]).

Then, by taking δ sufficiently small we immediately obtain our assertion from (21).

Lemma 15. Let F ∈ Sτ ∗
� and let b > 0 be a constant. For any ε > 0 there exists a y0 > 0

such that, for x and y with y ∈ (y0, x − y0),

∫ y−y0

0
Gx−y(dt)F ((y − t, x + b]) ≤ q(1 + ε)F ((y, x]). (22)

Proof. Since F ∈ Sτ ∗
�, by Lemmas 4 and 5 there exists a constant x1 > 0 such that, for x

and y with y ∈ (x1, x − x1),

sup
y>x1−1, y<x−x1+1

F((y − 2, x + b + 2])
F ((y, x]) ≤ 2, (23)

∫ y−x1+1

x1−1
F((y − t, x − t])F ((t, x]) dt ≤ q

ε

4H−(1)
. (24)

Furthermore, by Lemma 4 there exists a y0 > x1 such that, for x and y with y ∈ (y0, x − y0),

F((y − x1, x + b]) ≤
(

1 + ε

2

)
F((y, x]). (25)

Splitting integral (22) into two yields

∫ y−x1

0
Gx−y(dt)F ((y − t, x + T ])

= I1 + I2

:=
∫ x1

0
Gx−y(dt)F ((y − t, x + T ]) +

∫ y−x1

x1

Gx−y(dt)F ((y − t, x + T ]).

First, it follows from (25) that, for x and y with y ∈ (y0, x − y0),

I1 ≤ F((y − x1, x + b])
∫ x1

0
Gx−y(dt) ≤ qF((y − x1, x + T ]) ≤ q

(
1 + ε

2

)
F((y, x]).
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Second, by Lemma 14,

I2 ≤
[y−x1]∑
n=[x1]

Gx−y((n, n + 1])F ((y − n − 1, x + b])

≤ H−(1)

[y−x1]∑
n=[x1]

F((n, n + x − y + 1])F ((y − n − 1, x + b]) du

≤ H−(1)

∫ y−x1+1

x1−1
F((u − 1, u + x − y + 2])F ((y − u − 2, x + b]) du

= H−(1)

∫ y−x1+1

x1−1
F((y − t − 1, x − t + 2])F ((t − 2, x + b]) dt.

By now applying (23) and (24), we obtain

I2 ≤ 2H−(1)

∫ y−x1+1

x1−1
F((y − t, x − t])F ((t, x]) dt ≤ q

ε

2
F((y, x]).

Lemma 16. Let F ∈ Sτ ∗
�. For any ε > 0, there exists an increasing sequence {yk > 0} such

that, for x and y with y ∈ (yk, x − yk),

G(k)
x ((y, y + b]) ≤ (1 + ε)kkpqk−1 b

m
F((y, x]). (26)

Proof. We will give a proof by induction. For k = 1, by Lemma 14 and (18) there exists
some y1 such that, for x and y with y ∈ (y1, x − y1),

G(1)
x ((y, y + b]) ≤ Gx−y((y, y + b]) ≤ (1 + ε)

pb

m
F((y, x]).

We now suppose that we have proved our assertion for some k − 1, and prove it for k. By (19),
for x and y with y ∈ (yk−1, x − yk−1),

G(k)
x (y + �b)

≤
∫ y+b

0
Gx−y(dt)G(k−1)

x (y − t + �b)

=
∫ y−yk−1

0
Gx−y(dt)G(k−1)

x (y − t + �b) +
∫ y+b

y−yk−1

Gx−y(dt)G(k−1)
x (y − t + �b)

=: P1 + P2.

By the induction hypothesis and Lemma 15, for some sufficiently large yk ≥ 3yk−1 and x and
y with y ∈ (yk, x − yk),

P1 =
∫ y−yk−1

0
Gx−y(dt)G(k−1)

x (y − t + �b)

≤ (1 + ε)k−1(k − 1)pqk−2 b

m

∫ y−yk−1

0
Gx−y(dt)F ((y − t, x])

≤ (1 + ε)k(k − 1)pqk−1 b

m
F((y, x]).
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By integrating P2 by parts and applying Lemma 14 for x and y with y ∈ (yk, x −yk), we obtain

P2 =
∫ yk−1+b

0
dG(k−1)

x (z)Gx−y(y − z + �b)

≤ pb

m
(1 + ε)

∫ yk−1+b

0
dG(k−1)

x (z)F ((y − z, x − z + b])

≤ pb

m
(1 + ε)qk−1 sup

0≤z≤yk−1+b

F ((y − z, x − z + b])

≤ pb

m
(1 + ε)2qk−1F((y, x]),

where G
(k−1)
x (z) ≡ G

(k−1)
x ((0, z]). The final inequality follows from Lemma 4, since we can

increase yk again if necessary.

Lemma 17. Let F ∈ Sτ ∗
�. For any ε > 0, there exist y0 > 0 and C > 0 such that, for x and

y with y ∈ (y0, x − y0), and for any k ≥ 1,

G(k)
x ((y, y + b]) ≤ Cqk(1 + ε)kF ((y, x]). (27)

Proof. The proof is quite similar to the proof of the exponential bound for local subexponen-
tial distributions (see [3, Proposition 4]). Let y0 be such that Lemma 15 holds with ε replaced
by ε/2, and let

Ak := sup
{x,y : y0<y<x−y0}

G
(k)
x (y + �b)

F ((y, x]) .

It follows from Lemma 14 that A1 is finite. For any k > 1 and y > y0, by (19) we have

G(k)
x (y + �b)

≤
∫ y+b

0
Gx−y(dt)G(k−1)

x (y − t + �b)

=
∫ y−y0

0
Gx−y(dt)G(k−1)

x (y − t + �b) +
∫ y+b

y−y0

Gx−y(dt)G(k−1)
x (y − t + �b)

=: P1 + P2.

By the definition of Ak−1 and Lemma 15, for y < x − y0 we have

P1 =
∫ y−y0

0
Gx−y(dt)G(k−1)

x (y − t + �b)

≤ Ak−1

∫ y−y0

0
Gx−y(dt)F ((y − t, x])

≤ Ak−1q

(
1 + ε

2

)
F((y, x]).
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Integrating P2 by parts and applying Lemma 14 yields

P2 =
∫ y0+b

0
dG(k−1)

x (z)Gx−y(y − z + �b)

≤ H−(b)

∫ y0+b

0
dG(k−1)

x (z)F ((y − z, x − z + b])
≤ H−(b)qk−1 sup

0≤z≤y0+b

F ((y − z, x − z + b]).

Then, by (17), for y > 2y0 we have

P2 ≤ qk−1 sup
0≤z<y0+T

F ((y − z, x − z + T ]) ≤ qk−1L1F((y, x]),

where

L1 := sup
y<x−y0, y>2y0, 0≤z<y0+T

F ((y − z, x − z + T ])
F ((y, x]) < ∞.

If y0 < y ≤ 2y0 then, by (17),

P2

F((y, x]) ≤ qk−1

infy0<y≤2y0, x>y−y0 F((y, x]) ≤ qk−1

infy0<y≤2y0 F((y, y + T ]) =: L2.

Let R = H−(b)L1 + L2. Then, for any y > y0,

Ak ≤ q

(
1 + ε

2

)
Ak−1 + qk−1R.

Therefore, by induction, for any k we have

Ak ≤ A1q
k−1

(
1 + ε

2

)k−1

+ R

k−2∑
l=0

qk−1−lql

(
1 + ε

2

)l

≤ max(A1, R)kqk−1
(

1 + ε

2

)k−1

.

Thus, the assertion of the lemma holds with

C = max(A1, R) sup
k≥1

k(1 + ε/2)k−1

q(1 + ε)k
< ∞.

Proof of Theorem 2. The lower bound was proved in Lemma 13. To prove the upper bound,
fix a δ > 0. By Lemma 17, there exist some C ≡ C(δ) and ỹ0 such that exponential bound (27)
holds for x and y with y ∈ (ỹ0, x − ỹ0). Let {yk} be the sequence constructed in Lemma 16,
for this δ. Without loss of generality, we may assume that yk ≥ ỹ0 for all k. Fix some n ∈ N.
Then, for x and y with y ∈ (yn, x − yn),

Hx((y, y + b]) =
n∑

k=0

G(k)
x ((y, y + b]) +

∞∑
k=n+1

G(k)
x ((y, y + b])

≤ F((y, x])
( n∑

k=1

(1 + δ)kkpqk−1 b

m
+ C

∞∑
k=n+1

qk(1 + δ)k
)

≤ F((y, x])
(

pb

m

1 + δ

(1 − q − qδ)2 + C
qn+1(1 + δ)n+1

1 − q − qδ

)
.
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Let δ and n be such that

1 + δ

(1 − q − qδ)2 ≤ 1 + ε/2

(1 − q)2 , C
qn+1(1 + δ)n+1

1 − q − qδ
≤ pb

m

ε/2

(1 − q)2 .

Then we can let y0 = yn and, for x and y with y ∈ (y0, x − y0), have

Hx((y, y + b]) ≤ (1 + ε)
b

m

p

(1 − q)2 F((y, x]) = (1 + ε)
b

m
E(τ )F ((y, x]),

since q = 1 − p and E(τ ) = 1/p.

5. Example

Example 1. The aim of this example is to show that for any F ∈ L� there exists a stopping
time such that

lim sup
P{Mσ ∈ x + �}

F(x + �)
> E(σ ). (28)

This implies that the asymptotics P{Mσ > x} ∼ E(σ )F (x + �) does not hold.
For each positive integer n, let xn = n2 and

A = (−∞, 0] ∪
∞⋃

n=0

(xn, xn + n].

Define the stopping time σ = inf{n ≥ 1 : Sn ∈ A}. It is clear that σ ≤ τ and, therefore, that
E(σ ) < ∞. Note that, for n > T ,

{Mσ ∈ xn + �} = {Sσ ∈ xn + �},
since if the random walk reaches an interval xn + � it immediately stops.

Let h(x) ↑ ∞, with h(x) ≤ x/2 being a function such that F(x − y + �) ∼ F(x + �)

uniformly in y ≤ h(x). Fix a positive integer N . For some positive constant K > T , which
we define below, and for n > K + 1, we have

P{Mσ ∈ xn + �} ≥
N∑

i=0

P{σ > i, Mi ≤ h(xn), Si+1 ∈ xn + �}

+ P{ξ1 ∈ xn − A + �, ξ1 + ξ2 ∈ xn + �}
=: P1(xn) + P2(xn).

For the first term we have

P1(xn) =
N∑

i=0

∫ h(xn)

0
P{σ > i, Mi ≤ h(xn), Si ∈ dy, Si+1 ∈ xn + �}

≥
N∑

i=0

P{σ > i, Mi ≤ h(xn)} inf
y≤h(xn)

F (xn − y + �)

= (1 + o(1))

N∑
i=0

P{σ > i}F(xn + �), n → ∞.
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Letting N → ∞, we obtain

P1(xn) ≥ (1 − o(1)) E(σ )F (xn + �), n → ∞.

For the second term we have

P2(xn) =
∫ xn−K+T

xn−K

F(dy)F (xn − y + �)

≥ F(xn − A + �) inf
y∈xn−A+�

F(xn − y + �)

= F(xn − A + �) inf
x∈[A−T ,A)

F (z + �).

Now let K be such that C = infx∈[K−T ,K) F (z + �) > 0. Such a K always exists since
F ∈ L�. Then

P2(xn) ≥ (1 + o(1))CF(xn + �), n → ∞.

Therefore, strict inequality (28) holds.

Appendix A.

A.1. Estimate for the local probabilities π((x, x + b])
In our work we need the following proposition (see [4, Theorem 1]).

Proposition 1. Let E(ξ) = −m ∈ (−∞, 0) and let F ∈ S∗. There exist constants c1 and c2
such that, for x, b ≥ 0,

π((x, x + b]) ≤ (c1 + c2b)F (x).

Remark 5. We actually need this estimate only for a fixed value of b. Then, under the additional
assumption that F ∈ Sτ ∗

� (which is sufficient for our purposes), the estimate follows from
Theorem 2. Indeed, if we let x = ∞ in Theorem 2, then H∞((y, y + b]) ≤ CF(y) for some C

and all y. Proposition 1 then follows from the fact that H∞((y, y + b]) = E(τ )π((x, x + b]).
A.2. Proofs

Here we present the proofs of the lemmas stated in Section 2. Throughout the appendix,
h(x) denotes a function such that h(x) ↑ ∞ as x → ∞, h(x) < x/2 for all x, and (2) holds
uniformly in |t | ≤ h(x).

Proof of Lemma 1. First, for such an h(x),

∫ h(x)

0
F((y, x])F (x − y + �) ∼ m+F(x + �). (29)

Thus, equivalence (5) follows directly from the definition of Sτ ∗
�. To prove (6) we need only

show that if F ∈ Sτ ∗
� then

∫ x−h(x)

x/2
F((y, x])F (x − y + �) dy = o(F (x + �)).
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We have

0 ≤
∫ x−h(x)

x/2
F((y, x])F (x − y + �) dy

=
∫ x/2

h(x)

F ((x − y, x])(F ((y, x]) − F((y + T , x])) dy

=
∫ x/2

h(x)

F ((x − y, x])F ((y, x]) dy −
∫ x/2+T

h(x)+T

F ((x − y + T , x])F ((y, x]) dy

≤
∫ x/2

h(x)+T

F (x − y + �)F((y, x]) dy +
∫ h(x)+T

h(x)

F ((x − y, x])F ((y, x]) dy

=: I1 + I2.

By (5), I1 = o(F (x + �)). Furthermore,

I2 ≤ T F(h(x))F ((x − h(x) − T , x])

≤ T F(h(x))

[h(x)]∑
k=−1

F(x − h(x) + kT + �)

= (1 + o(1))T F (h(x))([h(x)] + 2)F (x + �)

= o(F (x + �)),

since xF(x) → 0 if E(ξ) < ∞. Equivalence (7) follows immediately from (6) and (29). To
prove (8), arguing as above yields∫ x

x/2
F(x − y + �)F((y, x]) dy

≤
∫ x/2

T

F (x − y + �)F((y, x]) dy +
∫ T

0
F((x − y, x])F ((y, x]) dy

≤ (1 + o(1))m+F(x + �) + F((x − T , x])m+
≤ 2m+(1 + o(1))F (x + �).

Proof of Lemma 2. For x > x0, we have∫ x/2

h(x)

F (x − y + �)F((y, x]) dy ≤ 1

c
F (x + �)

∫ x/2

h(x)

F (y) dy = o(F (x + �)) as x → ∞.

Then F ∈ Sτ ∗
� by Lemma 1.

Proof of Lemma 3. By Lemma 1, it is sufficient to prove that∫ x/2

h(x)

F (x − y + �)

F(x + �)
F((y, x]) dy ≤

∫ x/2

h(x)

F (x − y + �)

F(x + �)
F(y) dy → 0 as x → ∞,

for the function h(x). Consider the integrand:

F(x − y + �)

F(x + �)
F(y) = exp{Q�(x) − Q�(x − y) − Q(y)}

≤ exp

{
y(r + ε)

Q(x − y)

x − y
− Q(y)

}
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for sufficiently large x. Since the function Q(x)/x is eventually nonincreasing and y ≤ x/2,

exp

{
y(r + ε)

Q(x − y)

x − y
− Q(y)

}
≤ exp{−(1 − r − ε)Q(y)} = F

1−r−ε
(y)

and the result follows.

Proof of Lemma 4. Clearly, for y0 > 3t/ε + 2T ,

F((y − t, y])
F ((y, x]) ≤ F((y − t, y])

F ((y, y + 3t/ε + 2T ])

≤
∑[t]

n=0 F(y − t + nT + �)∑[3t/ε]+1
n=0 F(y + nT + �)

≤ 4

3

∑[t]
n=0 F(y + �)∑[3t/ε]+1

n=0 F(y + �)

≤ 4

9
ε,

where the third inequality holds for sufficiently large y0 since F ∈ L�. Similarly, it can be
shown that, for sufficiently large y0, F((x, x + T ]) ≤ 5

9εF ((y, x]).
Proof of Lemma 5. Clearly

∫ y−y0

y0

F((y − u, x − u])F ((u, x]) du =
∫ y−y0

y0

F((y − u, x − u])F ((u, y]) du

+
∫ y−y0

y0

F((y − u, x − u])F ((y, x]) du

=: I1 + I2.

First, by Lemma 1, for sufficiently large y0 we have

I1 ≤
[(x−y)/T ]∑

n=0

∫ y−y0

y0

F(y + nT − u + �)F((u, y]) du

≤
[(x−y)/T ]∑

n=0

∫ y−y0

y0

F(y + nT − u + �)F((u, y + nT ]) du

≤ ε

4

[(x−y)/T ]∑
n=0

F(y + nT + �)

≤ ε

4
F((y, x + T ]).

By now applying Lemma 4, we obtain I1 ≤ (ε/2)F ((y, x]) for sufficiently large y0. Second,
since

∫ ∞
0 F(u) du < ∞, for sufficiently large y0 we have

I2 ≤ F((y, x])
∫ y−y0

y0

F(y − u) du ≤ F((y, x])
∫ ∞

y0

F(u) du ≤ ε

2
F((y, x]).
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This proves (9). To prove (10), assume that (9) holds with y0 replaced by y1 and ε replaced by
ε/2. Then

(∫ y1

0
+

∫ y

y−y1

)
F((y − u, x − u])F ((u, x]) du ≤ 2F((y − y1, x])

∫ y1

0
F(u) du

≤ 2m+F((y − y1, x]).

By Lemma 4, for sufficiently large y0, 2m+F((y − y1, x]) ≤ (2m+ + ε/2)F ((y, x]). This
gives the upper bound in (10). Similarly, for the lower bound,

(∫ y1

0
+

∫ y

y−y1

)
F((y − u, x − u])F ((u, x]) du

≥ 2F((y, x − y1])
(∫ y1

0
F(u) du − y1F(y1)

)
.

First we increase y1 to ensure that

∫ y1

0
F(u) du − y1F(y1) ≥ m+(1 − ε).

Then we choose y0 according to Lemma 4 to obtain

F((y − y1, x]) ≥ (1 − ε)F ((y, x]).

Proof of Lemma 6. By Lemma 1,

∫ x/2

h(x)

F ((y, x])F (x − y + (0, nT ]) dy =
n−1∑
k=0

∫ x/2

h(x)

F ((y, x])F (x − y + kT + �) dy

= o(1)

n−1∑
k=0

F(x + kT + �)

= o(1)F (x + (0, nT ]).

Applying Lemma 1 again, we obtain F ∈ Sτ ∗
� with � = (0, nT ].

Proof of Lemma 7. By taking x = ∞ in Lemma 5, we immediately obtain our assertion.

Proof of Lemma 8. Let ξ1 and ξ2 be independent random variables with common distribu-
tion F . Then

(F ∗ F)(x + �) = P{ξ1 + ξ2 ∈ x + �}
= 2 P{ξ1 ≤ h(x), ξ1 + ξ2 ∈ x + �}

+ P{ξ1 > h(x), ξ2 > h(x), ξ1 + ξ2 ∈ x + �}
=: 2I1(x) + I2(x).
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From the definition of h(x), it follows that I1(x) ∼ 2F(x + �). Since F ∈ L�,

I2(x) =
∫ x−h(x)+T

h(x)

F (dy)F (x − y + �)

∼ 1

T

∫ x−h(x)+T

h(x)

dyF(y + �)F(x − y + �)

≤ 1

T

∫ x−h(x)+T

h(x)

dyF((y, x])F (x − y + �)

= o(F (x + �)),

by Lemma 1. Therefore, F ∈ S�.

Proof of Lemma 9. From the assumptions of Lemma 9, we conclude that 0.5M1 ≤
G((y, x])/F ((y, x]) ≤ 2M2 for all sufficiently large y ≤ x/2. Suppose that F ∈ Sτ ∗

�.
Then G has finite expectation. Since F, G ∈ L�, there exists a function h(x) → ∞ such that
(2) and the equivalent relation for G hold uniformly in |t | ≤ h(x). Thus,

∫ x/2

h(x)

G(x − y + �)

G(x + �)
G((y, x]) dy ≤ 4

M2
2

M1

∫ x/2

h(x)

F (x − y + �)

F(x + �)
F((y, x]) dy → 0

as x → ∞.

Therefore, by Lemma 1, G ∈ Sτ ∗
�.
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