DEVELOPMENT OF A RADIO-ASTROMETRIC CATALOG BY MEANS OF VERY LONG BASELINE INTERFEROMETRY OBSERVATIONS*

J. L. Fanselow, O. J. Sovers, J. B. Thomas, F. R. Bletzacker, T. J. Kearns, E. J. Cohen, G. H. Purcell, Jr., D. H. Rogstad, L. J. Skjerve, L. E. Young
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91103.

Abstract

The Jet Propulsion Laboratory of the California Institute of Technology has been developing a radio-astrometric catalogue for use in the application of radio interferometry to interplanetary navigation and geodesy. The catalogue consists of approximately 100 compact extragalactic radio sources whose relative positions have formal uncertainties of the order of 0.01 . The sources cover nearly all of the celestial sphere above -40° declination. By using the optical counterparts of many of these radio sources, we have tied this radio reference frame to the FK 4 optical system with a global accuracy of approximately 0.!. This paper describes the status of this work.

INTRODUCTION

Development of a radio-astrometric catalog is an essential element in the application of radio interferometry to both spacecraft navigation and geodesy. For this reason, the Jet Propulsion Laboratory of the California Institute of Technology has been developing a catalog of precise positions for compact extragalactic radio sources. Our goal has been a catalog of approximately 100 sources, uniformly distributed over the celestial sphere. In order to support the navigation of the Voyager mission, an accuracy in these positions of approximately 0 Y01 is required in 1980. Further, it is required that this catalog have negligible (0 "1) mean offset in right ascension relative to the FK4 system, since all interplanetary navigation to date has been based on that system.
*This paper presents the results of one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under Contract No. NAS 7-100, sponsored by the National Aeronautics and Space Administration.

INSTRUMENTATION AND DATA REDUCTION
The observations on which the results of this paper are based were obtained over the period from 1971 to March 1980．Throughout the nine years of this development，the interferometry instrumentation has been steadily improved，so that the nine most recent measurements employ dual frequency observations at $S-$ and $X-$ band（ 13 and 3.6 cm wavelengths，respectively），hydrogen maser frequency standards，and a 4 Mbs data acquisition system．The data were obtained during observing sessions of 8 to 24 hours in duration， utilizing antennas of the Deep Space Network．These DSN facilities provided an 8400 km baseline from Califonia to Spain，and a $10,600 \mathrm{~km}$ baseline from Califonia to Australia．A total of 44 such observing sessions are included in the results presented here．Altogether the observations include 3941 independent measurements，of which 1844 are measurements of delay and 2097 are of delay rate．

For convenience in processing this large amount of data，we have separated the data into two time sequences，with each sequence containing about half the data．Sequence 非 contains all data obtained prior to January l，1979，while sequence 非2 is all data collected after that date．In the last step of this processing，we fit all observations of a given sequence with an analytic model，using a conventional least squares technique to adjust selected parameters of that model．In sequence \＃l we solved for the values of 431 parameters，including 136 parameters for source positions．In sequence $⿰ ⿰ 三 丨 ⿰ 丨 三 一 2,148$ of the 273 solve－for parameters pertained to source positions．The list of sources observed in sequence \＃2 was not identical to that observed in sequence \＃1，as we were attempting to expand the number of sources in our catalog．However，in sequence 非2 we have reobserved 33 of the sources from sequence \＃l so as to provide overlap between the two parts of the catalog．In each sequence，the sources observed were fairly well distributed over the entire celestial sphere．

The delay model used in processing consisted of geometric，clock， ionospheric and tropospheric components．In the geometric component， the adjusted parameters included baseline，source position，UT1 and polar motion．Precession，nutation，solid earth tides and gravitational bending were all modeled but no associated parameters were adjusted．One of the major deficiencies in our model was the use of the standard nutation series，which has known errors as large as approximately 0．02 in magnitude．We also had to＂patch in＂an improved precession rate in order to fit the data．Both of these deficiencies will be corrected in the near future as we incorporate better Earth models．With regard to the clock model，we typically had to assign only one epoch offset and one rate offset to each baseline for each observing session．On occasion，however，we had to introduce discontinuities in epoch and rate within a session．In the case of the
ionosphere, a simple diurnal model was used whenever we were observing at only one radio frequency. For those observations involving dual frequencies, the effect of the ionosphere, as well as all other charged particle contributions to the measurements, were removed by exploiting the dispersive character of a plasma at these frequencies. All of the data in sequence 非 2 were obtained on the basis of this dual frequency technique. For the troposphere, a monthly-mean model was used as a priori, but the zenith troposphere delay was adjusted for each station under the constraint of that a priori.

One of our goals is to provide a catalog with the smallest possible rotation in right ascension relative to the FK4 system. Thus, we employed the following two-step process in the final reduction of our data:
(1) A preliminary multiparameter adjustment was performed. In this adjustment the right ascensions of those sources that had suitably measured optical counterparts were statistically constrained to the FK4 system on the basis of the apriori errors in the right ascensions of these counterparts. This procedure is mathematically equivalent to adding to our observations a set of measurements of right ascension specific to the subset of sources with optical counterparts. This parameter adjustment step resulted in an uncertainty in right ascension alignment given approximately by:

$$
\sigma_{a} \approx\left(\sum_{i=1}^{N} \frac{1}{\sigma_{1}^{2}}\right)^{-\frac{1}{2}}
$$

where σ_{i} is the uncertainty in right ascension of the i th optical counterpart, and where the summation is over the N optical counterparts.
(2) A final multiparameter adjustment was then made. In this step all constraints on the source positions were removed except for the constraint on the right ascension of a "mean reference" source. The reference source was tightly ($0!0000002$) constrained to the right ascension obtained for that particular source in the previous estimation step. The selection of this source was relatively arbitrary, although it appears that a source at about 30° declination was best for the particular baselines involved in these experiments.

This procedure produces a global minimization of the right ascension offset between the FK4 system and the radio reference system．Currently，we believe the accuracy of this alignment is approximately 0．1．Another advantage of this procedure is that the intrinsic precision（i．e．relative position error）is directly printed out in the final fit as the right ascension error of each source．At this point in the analysis of the data，we have executed this procedure only for sequence \＃l of the data，and have chosen NRAO 140 as the＂mean reference＂source．In the subsequent processing of the data in sequence $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 2，we adopted this reference position without resorting to another preliminary fit．However，for the final analysis of this data，the procedure outlined above eventually will be performed for the entire data set as a single unit．

RESULTS

The position catalog we have obtained has been designated JPL 1980－1 and is listed in Table I．In presenting this catalog，we have excluded all sources that were observed fewer than 3 times．One source was observed 67 times，though more typically each source was observed 10－40 times．The source positions are given in 1950.0 solar－ system－barycentric coordinates while the position errors are the formal uncertainties obtained by adjusting chi－square for the fit residuals to l．0．For convenience，we have listed the＂elliptical aberration＂terms that must be added to our results to obtain the coordinates conventionally used in optical catalogues．In all， 109 sources are listed，with most of the positions having formal uncertainties less than 0＂01．One check on the quality of the data is to compare common source positions between the two sequences of data． When the 33 common sources were compared，almost all of the differences were less than about 0＂03，with the larger differences resulting primarily from inadequate observations in one of the two sequences．As a test of the formal uncertainties，these position differences were compared with the errors obtained from the formal uncertainties．We found that an additional error of about 0！01 had to be root－sum－squared with the formal uncertainties in order to make the total errors statistically consistent with the position differences．

SUMMARY AND PLANS FOR THE FUTURE

Radio－astrometric positions have been obtained for 109 extra－ galatic radio sources．The formal uncertainties in these positions fall primarily in the range $0.003-0.102$ while the accuracy is presently estimated to be approximately 0．01－0．02．This work is part of an ongoing effort to develop an astrometric catalog of extragalactic radio sources distributed over the entire celestial sphere with positional accuracies of 0 ＂01 or better．Improvements in the hardware and modeling scheduled for 1981 should allow us to improve the accuracy of the current catalog to the level of 0．003－0．005 within the next year or two．

COORDINATES)

SOURCE	1950.0 SSB POSITION								E TERMS	
	RIGHT ASCENSION			ERROR SEC	DECLINATION			ERROR	R.A. SEC	DECL. ARC SEC
	H	M	SEC		D		ARC SEC	ARC SEC		
P 0823+033	08	23	13.52100	0.00038	03	19	15.5035	0.0065	0.02073	-0.0368
B2 0827+24		27	54.37577	0.00051	24	21	07.8035	0.0068	0.02250	-0.0875
4 C 55.16	08	31	04.33624	0.00147	55	44	41.5632	0.0287	0.03617	-0.1428
4 C 71.07	08	36	21.48266	0.00066	71	04	22.6662	0.0032	0.06203	-0.1609
OJ 287	08	51	57.23118	0.00048	20	17	58.5891	0.0046	0.02063	-0.0894
OJ 499	08	59	59.95317	0.00093	47	02	57.0712	0.0139	0.02778	-0.1586
P 0859-14	08	59	54.93147	0.00100	-14	05	38.8076	0.0143	0.01950	0.0186
$4 C 39.25$	09	23	55.29490	0.00024	39	15	23.8158	0.0024	0.02258	-0.1608
A0 0952+17	09	52	11.78721	0.00092	17	57	44.7993	0.0149	0.01635	-0.1042
GC 1004+14	10	04	59.77021	0.00068	14	11	11.0960	0.0092	0.01506	-0.0920
P 1034-293	10	34	55.81427	0.00065	-29	18	26.9805	0.0084	0.01399	0.1164
OL 064.5	10	38	40.87423	0.00041	06	25	58.6886	0.0575	0.01196	-0.0610
3C 245	10	40	05.98969	0.00056	12	19	15.1695	0.0077	0.01204	-0.0904
P 1055+01	10	55	55.30470	0.00033	01	50	03.6896	0.0057	0.01039	-0.0383
P 11104-445	11	04	50.35912	0.00091	-44	32	53.0777	0.0093	0.01346	0.1971
GC 1111+14	11	11	21.30050	0.00069	14	58	47.8907	0.0085	0.00932	-0.1087
P $1116+12$	11	16	20.76764	0.00050	12	51	06.9046	0.0118	0.00876	-0.0583
P 1123+26	11	23	14.86160	0.00034	26	26	50.2673	0.0042	0.00883	-0.1683
P 1127-14	11	27	35.66118	0.00037	-14	32	54.3755	0.0057	0.00775	0.0534
GC 1128+38	11	28	12.50587	0.00074	38	31	51.9262	0.0252	0.00951	-0.2236
P 1144-379	11	44	30.85450	0.00046	-37	55	30.7109	0.0058	0.00747	0.1804
P 1148-00	11	48	10.12252	0.00065	-00	07	13.0260	0.0089	0.00554	-0.0279
P 1222+037	12	22	19.09700	0.00042	03	47	27.2259	0.0070	0.00220	-0.0510
$3 C 273$	12	26	33.24591	0.00030	02	19	43.4662	0.0045	0.00178	-0.0424
3C 274	12	28	17.56987	0.00054	12	40	01.9607	0.0072	0.00164	-0.1026
P 1244-255	12	44	06.71495	0.00056	-25	31	26.6764	0.0076	0.00004	0.1215
3C 279	12	53	35.83516	0.00080	-05	31	07.8978	0.0119	-0.00091	0.0044
B2 1308+32	13	08	07.56619	0.00030	32	36	40.5509	0.0037	-0.00279	-0.2073
0P-322	13	13	20.04572	0.00076	-35	23	09.7439	0.0087	-0.00343	0.1627
DW 1335-12	13	34	59.81113	0.00065	-12	42	09.6906	0.0091	-0.00511	0.0455
GC $1342+663$	13	42	41.06705	0.00117	66	21	13.5572	0.0054	-0.01428	-0.3145
P 1349-439	13	49	52.53598	0.00132	-43	57	54.2530	0.0127	-0.00892	0.2071
P 1354+19	13	54	42.09628	0.00035	19	33	44.1912	0.0051	-0.00730	-0.1360
GC $1418+54$		18	06.21090	0.00053	54	36	58.4161	0.0056	-0.01564	-0.2722
OQ-151		30	10.65791	0.00089	-17	48	24.2834	0.0131	-0.01065	0.0664
OR 103	15	02	00.17377	0.00030	10	41	17.9005	0.0048	-0.01310	-0.0804
P 1510-08	15	10	08.91683	0.00072	-08	54	47.5743	0.0103	-0.01369	0.0144
P 1519-273	15	19	37.25585	0.00057	-27	19	30.3141	0.0079	-0.01607	0.0969

