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Abstract. Using a closure model for the evolution of magnetic corre
lations, we uncover an interesting plausible saturated state of the small-
scale fluctuation dynamo (SSD) and a novel anology between quantum 
mechanical tunnelling and the generation of large-scale fields. Large scale 
fields develop via the a-effect, but as magnetic helicity can only change 
on a resistive timescale, the time it takes to organize the field into large 
scales increases with magnetic Reynolds number. This is very similar to 
the results which obtain from simulations using the full MHD equations. 

1. Fluctuating field dynamics 

The dynamics of the fluctuating magnetic field B, is governed by the induc
tion equation. The velocity is assumed to be the sum of a Gaussian ran
dom, delta-correlated in time v^, and an ambipolar diffusion type component 
VD = a[(V x B) x B)]. (Here a = r/(47rp), r is some response time, and p is 
the fluid density). Assuming that the magnetic field is also Gaussian random, 
Subramanian (1997, 1999; S99) derived closure equations for the longitudinal 
correlation function M(r,t) and the correlation function for magnetic helicity 
density, N(r,t). The random vy has a longitudinal correlation function T(r) 
and a correlation function for the kinetic helicity density, C(r). Defining the 
operators D(f) = (1/r4) {d(r4f)/dr), and £>(/) = {df/dr), we then have, 

M = 2D(r]TDM) + 2GM + AaH; N = -2rrrH + oM, (1) 

where H = —DDN is the correlation function of the current helicity and G — 
-DDT is the effective induction. Also a = ao( r )+4a#(0 , t) and rft = 77+770(7")+ 
2aM(0, t) are functions resembling the usual a-effect and the total magnetic 
diffusivity. Here a0(r) = -2[C(0) - C{r)] and 770(7-) = T(0) - T{r), and 77 is the 
microscopic diffusivity. Note that at large scales r —> 00, a —> a^ = —2C(0) + 
4aH(0,t) and T]T -> tyx) = n + T(0) + 2aM(0,t). The a-effect suppression is 
similar to the a-suppression formula first found by Pouquet et al. (1976); T\T is 
however enhanced by the growing field energy, as in ambipolar diffusion. 

1.1. Small-scale dynamo saturation 

The SSD problem, with C(r) = 0, a = 0 has solutions with H(r, i) = 0, and was 
first solved by Kazantsev (1968). A transformation of the form ^ ( r ) exp(2rt) = 
r2-y/rjrM(r, t), maps the problem of getting T > 0 modes into a bound state 
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problem in time-independent quantum mechanics (QM). For turbulent motions 
on a scale L, with a velocity v, bound states obtain provided the magnetic 
Reynolds number (MRN) Rm = VL/TJ > Rc « 60, and imply M growing at 
rate ~ v/L. Further, the bound-state eigenfunction describes a field which is 
strongly concentrated within the diffusive scale, r = r^ ~ L( i? m ) - 1 / 2 , and curved 
on the scale L. For a ^ 0, r? is simply replaced by an effective, time dependent 
diffusion TJD = V + 2aM(0, t). So as the field (and M) grows, the effective MRN 
Ro(t) — vLjj]r,(i) is driven to the critical value Rc. The final saturated state is 
obtained when i?£>(is) = vL/{r] + 2aMiJ{Q,ts)) = Rc ~ 60. So at saturation, the 
average energy density EB(ts) = (3ML{0,ts)/8n) = (3/2)(PV2/2)(L/VT)(1/RC). 

For r ~ L/v, EB is a small fraction ~ R~x <C 1, of the equipartition value. If 
we interpret the saturated field configuration in terms of flux ropes with peak 
field Bp, thickness r^, and curved on scale L, then EB ~ (B2/8Tr)Lr^/L3. Using 
r2

d/L
2 « R^1, and T ~ L/v, we then have B2/8n ~ pv2/2, where, remarkably, 

the Rg1 dependence has disappeared. So the SSD could saturate with the 
small-scale field of equipartition strength, being concentrated into flux ropes 

— 1/2 
of thickness LRC , and curved on scale L. 

1.2. Large scale dynamo as a tunnelling problem 

For helical turbulence with C(0) ^ 0, new generation terms arise at r ^> L, 
due to the a-effect, in the form M = .... + 4aooi? and N — ... + a^M. These 
lead to the growth of large-scale correlations on a scale D, with a growth rate 
~ ctoo/D — rjoo/D2, as in the large-scale a2-dynamo. A special wavenumber, 
fcp(t) = aoo{t)IVooit), is also picked out for any quasi-stationary state. For 
such states, which obtain when one neglects slow resistive evolution (see below), 
(dN/dt) « 0, implying H « {a/2r)T)M. And if we define * = r 2

v ^ M , the 
equation (dM/dt) sa 0, can again be mapped to a QM potential problem, for 
the zero-energy eigen-state. However the modified potential now tends to a 
negative definite constant value of —Q^/T/QO at large r and so allows tunnelling 
(of the bound state) (see S99). In fact for r » I , one has an analytic solution 
M(r) a T~3/2J%i2(kvr), exactly as one would get if the large scale field, BQ, was 
random and force-free with V x Bo = fcpBo-

2. Helicity constraint and resistively limited growth 

The closure equations have also been solved numerically by Brandenburg and 
Subramanian (2000) (BS2K), adopting forms for T{r) and C{r) to match closely 
with the direct simulation of Brandenburg (2000, hereafter B2000) (Run 5). One 
sees an initial exponential growth of the magnetic field, which terminates when 
its energy becomes comparable to the kinetic energy. Note that our closure equa
tions satisfy the helicity constraint iV(0) = — 2r]H(0). The numerical solutions 
show that, after some time ts, the current helicity (J • B) oc H(0,t), is driven 
to a constant value which however is such that |ci!oo| remains finite. A constant 
H(0, t) implies that the magnetic helicity (A • B) oc Af(0, i) grows linearly at 
a rate proportional to 77. During this phase the magnetic field correlations can 
extend to larger and larger scales. The corresponding magnetic energy spectra, 
Eu(k, t) = (I/71-) /0°° M(r, i) (kr)3 ji(kr) dk are shown in Figure 1. 
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Figure 1. Evolution of magnetic < 
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The resulting magnetic field is strongly helical (cf. Section 1.2) and the 
magnetic helicity spectra (not shown) satisfy \HM\ ^ (2/k)E-^i. The develop
ment of a helicity wave travelling towards smaller and smaller k, as seen in Figure 
1, is in agreement with the closure model of Pouquet et al. (1976). We have also 
checked that to a very good approximation the wavenumber of the peak is given 
by fcpeak(i) ~ kp(t), as expected from Section 1.2, and it decreases with time be
cause aoo tends to a finite limit and r]oo increases. Further, since the large scale 
field is helical, and since most of the magnetic energy is by now (after t = ts) 
in the large scales, the magnetic energy is proportional to (B2) ~ fcp(A • B) , 
and can therefore only continue to grow at a resistively limited rate. These 
results are analogous to the full MHD case (B2000); the helicity constraint is 
independent of the nature of the feedback! In conclusion, our closure model with 
ambipolar diffusion type non-linearity provides a useful model, enabling progress 
to be made in understanding nonlinear dynamos. One now needs to think of 
ways to relax the helicity constraint (cf. Blackman and Field (2000), Kleeorin 
et al. (2000)), so that large-scale magnetic fields can grow rapidly enough. 
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