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GEODESIC UNIQUENESS A N D DERIVATIVES
OF BERS PROJECTION

Hui Guo

In this paper, we discover a sufficient and necessary condition under which
two geodesic segments joining the basepoint and another point in an infinite-
dimensional Teichmuller space are the same.

1. INTRODUCTION

A metric space is said to be a straight geodesic space in the sense of Busemann
([1]) if for any two (distinct) points in it there is a unique geodesic segment joining them
and such a segment can be uniquely extended to a straight line. Here by "straight line"
we mean the image of an isometric imbedding of the real line R into the given metric
space with respect to the Euclidean metric and the metric of the given metric space
respectively. Similarly, by "geodesic segment" we mean the image of a closed interval
of K.

It is well known that a finite-dimensional Teichmuller space is a straight geodesic
space in the sense of Busemann ([5]). A very natural and basic problem is whether or
not an infinite-dimensional Teichmuller space is a straight geodesic space in the sense
of Busemann.

Let [fi] (^ [0]) be a point in a Teichmuller space T(T). When T(T) is finite-
dimensional, the extremal Beltrami differential in [fj] is unique, say fi0; then n0 must
be a Teichmuller differential and the path [tfio] (0 ^ t ^ 1) is the unique geodesic
segment joining [0] and [fi\. However, when T(F) is infinite-dimensional, [n] can
contain more than one extremal Beltrami differentials. The first example of such a
point in the universal Teichmuller space was given by Strebel, known as the Strebel's
chimney ([12]).

In order to determine whether or not an infinite-dimensional Teichmuller space is
a straight geodesic space in the sense of Busemann, one can investigate the following
basic question proposed by Gardiner ([3]).
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GARDINER'S PROBLEM. Suppose T(T) is an infinite-dimensional Teichmiiller space
and [/z] e T(T) contains two extremal Beltrami differentials ii\ and \i2 • Are the paths

cm : [0,1] -> T(T), t ^ [tin]

and
a2 : [0,1] -> r ( r ) , t -*• [*/Ja]

the same?
It is well known that the images of both ot\ and c*2 are geodesic segments joining

[0] and [/z] because of extremality of Hi and /J2 ([10]). With respect to Gardiner's
problem, Li ([8]) has first given an example for ai jt a2 in the universal Teichmiiller
space, where a-i ^ a2 means the two paths (or geodesic segments) ai and a2 are
not the same. Later, Tanigawa ([13]) and Li ([9]) respectively gave some examples for
Oil ¥" a2 in an infinite-dimensional Teichmiiller space, which gave a negative answer
to Gardiner's problem. These results lead to the fact that any infinite-dimensional
Teichmiiller space is not a straight geodesic space in the sense of Busemann. Further,
one would like to ask when ct\ ^ a2 and when c*i = a2. In fact, Tanigawa ([13]), Li
([9]) and Shen ([11]) have given some sufficient conditions for a\ ^ a2 in an infinite-
dimensional Teichmiiller space. The "best (or weakest)" one is the following:

THEOREM A. ([9]) Let T(T) be an infinite-dimensional Teichmiiller space and
fii, (J.2 be two extremal Beltrami differentials in a point [fi] ofT(T). If \i\-\i2 gN(F),
then [tfj,\] (0 ^ t ^ 1) and [tfi2] (0 ^ t ^ 1) are two different geodesic segments joining
[0] and [fi\ in T(T), where N(T) is the Ahlfors N-class ofT.

In this paper, we discover a sufficient and necessary condition for cti ^ ct2 in an
infinite-dimensional Teichmiiller space. That is the following main theorem:

THEOREM 1. Let T(T) be an infinite-dimensional Teichmiiller space and ^i, fj,2
be two extremal Beltrami differentials in a point [fi] of T(T). Then [tfii] (0 < t ^ 1)
and [tfj.2] (0 ^ t < 1) are the same geodesic segments joining [0] and [n] in T(T) if and
only if

Mi - M2 6 N(T)

and

N*(l), k= 1 ,2 , . . . ,

k k

where H is the Hilbert transformation, N(T) is the Ahlfors N-class of T and N*(l)

is the Ahlfors quasi-N-class of {id} •

COROLLARY. Let T ( l ) be the universal Teichmiiller space and \i\, n2 be two

extremal Beltrami differentials in a point [n] of T ( l ) . Then [tfj.i] (0 ^ t ^ 1) and
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[t^2\ (0 ^ t ^ 1) are the same geodesic segments joining [0] and [fi] in T( l ) if and only

if

Mi - M2 e N(l)

and

fM1H(fi1H(--.(fM1H(fM1)))) - fx2H(^H(y(fjL2H(fx2)))) € AT'(l), * = 1,2,... ,

fc fc

where JV(1) is the Ahlfors N-class of {id}-

2. PRELIMINARIES

Let w(z) e L%(C), where p > 2 and

= {10(2) € XP(C) : w(z) has compact support}.

We define a linear operator T on LQ(C):

Tw(z) = - i

It is evident that Tu;(z) is holomorphic in C\D and

Tw(z) = Of r—rj, when 2; —> 00,

where D is the support of w(z) (see [7]).
Let w(z) € Co°(C). We introduce another linear operator H on CQ°(C), which is

called the Hilbert transformation:

The Hilbert transformation can be extended as a bounded linear operator of I^(C) into
itself, where 1 < p < +00 (see [6] or [7]). We denote by Ap the norm of the operator
H, that is,

A p = sup {||ffu>(z)|| _ / H * ) | | p } , 1 < P < + 0 0 .

Then Ap is continuous with respect to p and A2 = 1 (see [6] or [7]).
Let 5 be a Riemann surface which has a universal covering A, where A is the

open unit disc. Then the Riemann surface S can be represented as A/F, where F is a
torsion free Fuchsian group acting on A. If 5 = A, then F is trivial, that is, F = {id}.
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We denote by Belt (F) the Banach space of all the Beltrami differentials of F with finite
L°°-norm:

Belt(F) = j /z € L°°(A) : V7 € r,fi(j(z))'y'(z)/'y'(z) = n(z) almost everywhere in A | .

Denote by B(T) the open unit ball of Belt(F) and by /** : A —* A the quasiconformal
mapping with the Beltrami coefficient fj, and keeping — 1, i and 1 fixed. We introduce
a kind of equivalence relationship in B(T). We say that /xi is equivalent to ^2 if and
only if

where dA is the boundary of A . Then the Teichmiiller space of 5 (or F), denoted by
T(S) (or T(F)) , is defined as the set of all the equivalence class of the elements in B(T).
When F is of the second kind or infinitely generated, T(F) is infinite-dimensional.
When F is trivial, the corresponding Teichmiiller space, denoted by T(l), is called the
universal Teichmiiller space.

A Beltrami differential fj. € B(F) is said to be extremal if and only if

IHloo < HPIloo, VM€[/i],

where [fj] is the equivalence class of fi. It is well known that \i € B(T) is extremal if
and only if it satisfies the Hamilton-Krushkal condition:

sup / / fi<f>dxdy— Halloo!

where SQD(T) is the unit sphere of the Banach space of all the holomorphic quadratic
differentials of F with finite i 1 -norm.

The Teichmiiller metric for T(F) is defined in terms of the extremal Beltrami
differentials. For any given two points [/xi] and [/x2] in T(F), the Teichmiiller distance
between them is

])
 l

where /x is an extremal Beltrami differential in the equivalence class of the Beltrami
coefficient of f^1 o (Z*12)" . It is well known that the Teichmiiller metric is complete
and coincides with the Kobayashi metric.

The Ahlfors N-class of F is defined as follows:

N(T) =l»e Belt (F) : fj ^dxdy = 0, V0 € QD(T)\,
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[5] Geodesic uniqueness 149

where QD(T) is the Banach space of all the holomorphic quadratic differentials of F
with finite i^-norm, that is,

QD(T) = Icp G -L^A/r) : <j> is holomorphic in A;

v7 e r,0(7(«))(V(«))3 = fa) in A } .

Especially, when F is trivial, that is, F = {id},

JV(1) = |/x G Belt(l) : f f ^dxdy = 0, V<£ e QD(l) j ,

where
= {0 <= L^A) : (/> is holomorphic in A}.

Let 1 < p < +00. The Ahlfors iVp-class of {id} is defined as follows:

n<t>dxdy = 0,

where

The Ahlfors quasi-iV-class of {id} is defined as follows:

N*{\) = L € Belt' (1) : JJ fijdxdy = 0, V^ € QD'(1)|,

where

Belf(l)= f)
l<p<+oo

QD'{1) = \J
Kqr<+oo

It is evident that AT(1) C JV*(1).
Let X and Y be two Banach spaces and F an operator from U to Y, where C/

is an open set of X. F is said to be Gateaux differentiable at XQ 6 £/ if there is an
operator dF(x0; •) from X to V such that

\\F(x0 + th) - F(x0) - t • dF{x0; h)\\ = o{t)
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when \t\ -» 0+ and xo+th € U. In this case, dF(x0; h) is called the Gateaux derivative
of F at xo along the direction h and clearly

dF(xo;h)= lim *(«» +«*)-*•(«„) .
|t|-K>+ t

F is said to be Gateaux differentiable on U if F is Gateaux differentiable at each point
xeU.

The Gateaux differentiability and Gateaux derivatives d"F(xo;h\, ... , hn) of
higher order (n ^ 2) can be defined successively. For example, a Gateaux differen-
tiable operator F from U to Y is said to be twice Gateaux differentiable at x0 if
dF(x; hi) from U to Y is Gateaux differentiable at x0 for any fixed h\ 6 X. In this
case, d2F(xo;hi,h2) is called the twice Gateaux derivative at xo along the directions
h\ and h2- Clearly,

d*F(xo;hi,h2)= lim
| t | K > t

F is said to be twice Gateaux differentiable on U if F is twice Gateaux differentiable

at each point x € U.

3. LEMMAS

Suppose that n G Lg°(C), where

Z/g°(C) = {M(^) e L°°(C) : /i(.z) has compact support}.

We defined inductively

(1) <Pi=V, <Pn = (J.H{<pn_i), n = 2 , 3 , . . . ,

where H is the Hilbert transformation.

LEMMA 1. (Representation Theorem) Let f be a quasiconformal mapping of

the plane with Beltrami coefficient fj, € ^(C) and satisfying the normalisation condi-

tion: lim (f(z) - z) = 0. Then
2—K3O

+OO

/ ( z H z + ̂ T^Cz), V*eC,
« = 1

where tp* is defined by (1). The series is absolutely and uniformly convergent in the

plane.

PROOF: See [6] or [7]. D
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LEMMA 2 . (Uniqueness Theorem) Let f and g be two quaskonformal map-

pings of a domain D into C whose Beltrami coefficients agree almost everywhere in D.

Then f o g~l is a con formal mapping.

P R O O F : See [6] or [7]. D

LEMMA 3 . Let fi G L%>(C) and \\fi\\oo < 1. Let z >-t f(z,t) be the quaskon-

formal mapping of the plane with Beltrami coefficient tu. (|t| < l/||/x||oo) &nd with the

property: lim (f(z,t) — z) — 0. Then, for any fixed z ^ oo, the function t H-> f(z,t)
z—^oo

is holomorphic in the disc {t G C : \t\ < 1/||A*||OO} •
Abo, for any fixed z outside the support of p, the derivatives of the analytic

function z >-¥ f{z,t) depend holomorphically on t in the disc {t € C : \t\ < 1/||A*||OO} •
PROOF: See [6] or [7]. D

Let / be meromorphic and locally injective in a domain D. We define the
Schwarzian derivative of the function / as follows:

"Y

It is easy to see that 5/ is holomorphic in D.
Let ft G B(T) and A* = {z G C : \z\ > l } . We denote by /^ the quaskonformal

mapping of the plane whose Beltrami coefficient equals fi in A and zero in A* and
which keeps - 1 , i and 1 fixed. Then /^ |A* is a univalent function. Set $(/z) = Sf^A,,
where Sf^A. is the Schwarzian derivative of f^A* • This describes a mapping $ of
B(F) into HQD(T*) : /i >-> $(/*), called Bers projection, where HQD(T*) is the
Banach space of all the holomorphic quadratic differentials of F* with finite hyperbolic
sup-norm:

= s u p ( H 2 - l ) > ( 2 ) | / 4 ,

that is,

HQD(r*) = {<j>(z) : 4>(z) is holomorphic in A*;V7 G T*,

) a = 4>(z) in A*; U\\h < +oo}.

Here F* is the torsion free Fuchsian group acting on A* which is induced by F, that
is,

r = {7|A- : 7 € F}.

The mapping $ induces a mapping $ of T(F) into HQD(T*) : [n] •-> $(M) . called
Bers imbedding.
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LEMMA 4 . (Bers Imbedding) The mapping $ is a homeomorphism of T(T)

onto a bounded domain of HQD(T*).

PROOF: See [6] or [7]. D

LEMMA 5 . (Nehari) Each univalent function f on A* satisfies the inequality

WSfh < \,

especially it holds for the univalent function /M |A* induced by \i e S(F).

PROOF: See [6] or [7]. " D

LEMMA 6 .

(A) Let n € Belt (r) and a{z) = Tfi(z) for z e A*. Then the following
properties are equivalent:

(Al) M€iV(r);
(A2) There is an integer k J? 0 such that the derivative of order k of a(z)

= 0, tee A*;

(A3) For any integer m ^ 0, the derivative of order m of a(z)

a^(z) = 0, tee A*.

(B) Let /i e Belt* (1) and a(z) = Tfi(z) for z E A*. Then the following

properties are equivalent:
(Bl) M eJV( l ) ;
(B2) There is an integer k ^ 0 such that the derivative of order k of a(z)

= 0, tee A*;

(B3) For any integer m ^ 0, the derivative of order m of a(z)

a^(z)=0, tee A*.

PROOF: (A). It is evident that property (A3) implies property (A2).

Suppose that property (A2) holds. By definition and a straightforward computa-

tion, for any z 6 A*,
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Hence
+OO

n=0

where

By supposition and holomorphy of a(z) in A*, we have bn = 0, n = 0 ,1 , . . . , that is,

(2) ^ niQCdtdri = 0, n = 0 ,1 , . . . .

By Runge's approximation theorem, (2) are equivalent to the property

Jf tiOnOd£dTi = 0,

for all holomorphic and L1 -integrable functions / in A (see [2]).
On the other hand, we have

ff
JJA f^

= jf
(3)

where D is the fundamental domain of T and 0 / is the Poincare theta series of / ,
that is,

So for all holomorphic and L1-integrable functions / in A, we have

(4) / / MC)e/(CRd77 = 0.
J JA/r

It is a well-known fact that for every <j> € QD(T), there is a holomorphic and
L1 -integrable function / such that 0 / = (f> (see [6] or [4]). Hence from (4) we obtain

ff n^dxdy^O, \/4>£QD{T),
J JA/r
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that is, (A2) implies (Al).

Suppose that property (Al) holds. Similarly, by definition and a straightforward
computation, we know that for any integer m ^ 0 and z e A*,

+ OO

n=0

where

7T J JA

Let 0 n be the Poincare theta series of f(z) = zn. Then by a computation similar
to (3) we have

ff MOCdtdr, = ff /i(C)en(C)dCdr,.
JJA JJA/r

It is well known that 9 / S QD(T) for every holomorphic and £1-integrable function
/ in A, especially for f(z) = z". Hence by supposition, we know

bn = 0, n = 0 , 1 , . . . ,

that is, (Al) implies (A3).

(B). Its proof is completely similar to the proof of (A). But now F = {id} and
the Runge's approximation theorem is used to all the L9-integrable (1 < q < +oo) and
holomorphic functions defined in A (see [2]). D

4. DERIVATIVES OF BERS PROJECTION

It is well known that Bers projection is Frechet differentiable and has Gateaux

derivatives of high order. In order to be complete, an interesting expression for the

Gateaux derivatives of order n of Bers projection at the origin is given here.

For any fi G B(T), we denote by /,, the quasiconformal mapping of the plane whose

Beltrami coefficient equals ^ in A and zero in A* and which satisfies the normalisation

condition: lim {Jp{z) — z) = 0 . Then /^ is conformal in A*. We define a mapping of

B{T) into HQD{T*)

where Sr , is the Schwarzian derivative of /UU* •
/ I A *
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LEMMA 7 . For any \i € B(T), *(/x) = $(/x) in HQD(T*).

PROOF: By definition, f^ and /^ have the same Beltrami coefficients in C. Then

by Lemma 2, /^ o ( / ^ ) - 1 is a conformal mapping in C, that is, /M o ( / ^ ) - 1 is a Mobius

transformation. Let h = f^o ( / M ) - 1 . Then / ^ | A * = h o / ^ | A * • Thus

But 5/j = 0 because /i is a Mobius transformation. Hence

that is, Lemma 7 follows. D

Let ii € B(F) be fixed. By Lemma 3, for any fixed z in A*, ft^{z) and its
derivatives with respect to z all are holomorphic with respect to t in the disc A ,̂
= {t e C : \t\ < l/ | | /i | |oo}. Then for any fixed z in A*, ^(tu)(z) is holomorphic with
respect to t in the disc AM. Thus by Lemma 7 we obtain that for any fixed z in A*,
$(tfj.)(z) is holomorphic with respect to t in the disc AM.

THEOREM 2 . Let fj, € J3(r) be fixed. Then for any positive integer n and any

c S C, |c| < 1, we have

where dfc$(0; /x,. . . , /x), k = 1,2,..: , n, is the Gateaux derivatives of order k of Bers

k

projection $ at the origin along the direction fi and S is a positive constant only

depending on H^Hoo-
PROOF: By Cauchy's formula, for any fixed z € A*, we have

where ft — {w £ C : |w| = 1 + 5} and S is a positive constant such that 1 + 5

< min{2, 1/||MI|OO} • Then by a straightforward computation, we know that for any

fixed z 6 A*,

d»fai)(«) .. fc! f *{wMz)
(6) — ^ -2riJ{t)

k+1 '
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(7)

Now we shall show by induction that for any fixed z € A*,

<l

At first, by (5), (6) and Lemma 5 we have

- r
II r2 f

[tu - (t + T)] (U; - tf

6r2

when \T\ —> 0+ and |r| < (l + 8 — \t\)/2. So by the definition of Gateaux derivatives,
we know that for any fixed z e A*,

Suppose that (7) holds for k = n. Then by this assumption, (6) and Lemma 5, we
can also obtain

- r •

when |r| —> 0+, that is, for any fixed z € A*,

\ \t\<l

n + l

Then (7) follows.
Especially, by (7) and (6) we have

https://doi.org/10.1017/S0004972700033608 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700033608


[13] Geodesic uniqueness 157

Hence for any fixed z G A* and any c € C, |c| < 1,

c

1 1
— c w

— C
,in+l

\dw\

<^-J\*(wn)(z)\\dw\.

Then by Lemma 5, we obtain that for any positive integer n and any c G C, |c| < 1,

n! llh

D
THEOREM 3 . Let n e B(T) be fixed and ipn,n = 1,2,... , be defined as in (1).

Suppose an(z) = Tipn(z), z € A*, n = 1,2,... . Then for any z G A*,

where Pk(xi,x2, • • • , %3k-3), k = 2 , 3 , . . . , are polynomials of order k of x\, x2, • • • ,

%3k-3, &nd independent of fi.

PROOF: By Lemma 1, for any i e C , \t\ < l/\\fi\\oo, we have

n = l

oo

and the series £Z an(^) 1S absolutely and uniformly convergent in C. Then for any
n—l

z 6 A* and any t G C, \t\ < 1,

n = l

n = l
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Thus by a straightforward computation, we have

dz
n=l

where

h(z) =a'l(z),
b2(z) =a'2'(z) - a'{{z)a\{z),

bn(z) =aZ(z)-Pn(a'1(z),all(z),...

and P n (x i , x 2 , . . . , x2n-2), n = 2 , 3 , . . . , are polynomials of order n of x\, rr2, . . . ,
-2, which are independent of /A. Hence for any z € A* and any t € C, |i | < 1,

n=l

where

b1(z)=a'C(z),

b2(z) =a2"(z) -

^(z) =<'(z) -P^aiW.ayCzJ.aHz),... .aUiW.^-iW.^L^

and P n (^i i ^2, • • • , £3n-3), n = 2 , 3 , . . . , are polynomials of order n of x i , x2, . . . ,
^3r>-3. which are independent of /x. Thus by (8) in the proof of Theorem 2 and Lemma
7, we can obtain that for any fixed z e A*,

= —& |t=0

= bk{z)-k\, k=l,2,....

This completes the proof of Theorem 3. D
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5. PROOF OF THEOREM 1

Let

and
an(z) = T<pn(z), an = T$n{z), z € A*, n = 1,2,... .

Then by Theorem 2, for any positive integer n and any c € C, |c| < 1, we have the
following inequalities:

(9)

(10)

- $(0) - d$(0; /x2) • c £f*$(0;/x2,-.- ,M2) • ̂ T | | ^ 7 |c | n + 1 ,

where <5 is a positive constant only depending on ||/xi||oo = H/̂ Hoo-

Suppose that two geodesic segments [t^i] (0 < t ^ 1) and [t/i2] (0 ^ t < 1) are
the same. They are both geodesic segments joining [0] and [n], and

], [0]) (0 ^ t ^ 1) because of extremality of /zi and \ii ([10]). Then

[tm] = [tn], o < * < l.

So by Lemma 4, we know that

*(t/ii) = *(t/x2) (0 ^ t < 1) in HQD{T*).

Setting n = 1 in (9) and (10), by the triangle inequality of norms we have

+ 2 x ^ |c | 2

Let c -> 0. Hence

that is,

2)(2), Vz 6 A ' .
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By induction, from (9) and (10) we can similarly deduce that

ia,.^. ,/x2)(z), Vz € A ' , n = 2 , 3 , . . . .

Thus by Theorem 3, we know that for any z £ A*,

(11) a'{'{z) = a'i\z),

and

(12) <'(z)-Pn(a
/
1(z)Ja;'(z),ai"W,...,<_iW,<-1W.On-iW)

^a^'(z)-Pn(a'1(z),a'{(zW{'(z),... . a ^ i O O , C i W . C - i C O ) . n = 2 ,3 , . . . ,

where Pn(#i , z2, • . . , a?3n-3), n = 2 , 3 , . . . , are polynomials of order n of x\, x2, . . . ,

#3n-3 > and independent of p\ and /i2 .

Next we shall prove by induction that for any integer n,

(13) a n (z )=5 n (z ) , toe A*.

At first, by (11) we know that (13) holds for n = 1.

Suppose that (13) holds for n < k. Then by the equivalence of (A2) and (A3) and
the equivalence of (B2) and (B3) in Lemma 6, from (12) we can obtain that (13) also
holds for n — k + 1. Hence by induction, (13) holds for any integer n, that is,

(14) T(<pn - (pn)(z) = 0, V « 6 A ' | n = l,2

Furthermore, by the equivalence of (Al) and (A2) and the equivalence of (Bl)
and (B2) in Lemma 6 and noting that tp\ - ipi e Belt (F) and ipn - <pn 6 Belt* (1), n
= 2 , 3 , . . . , from (14) we have

and

Conversely, suppose that tp\ — ip\ € N(T) and <pn — <pn € N*(l),n = 2 , 3 , . . . .
Then by the equivalence of (Al) and (A2) and the equivalence of (Bl) and (B2) in
Lemma 6 and noting tha t <pi — (pi £ Belt(F) and tpn — ipn € Belt* (1), n = 2 , 3 . . . . .
we know that

- Vn)(z) = 0, Vz€ A*, n = l , 2 , . . . ,

tha t is,

an{z) = an(z), V z e A ' , n = l , 2 , . . . .
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Thus by Theorem 3, the equivalence of (A2) and (A3) and the equivalence of (B2) and

(B3) in Lemma 6. we deduce that

c i "$ (0 ;^ i , . . . ,m)(z) = <T$(0;^2,--- ,^){z), Vz € A*, n = 1,2,. . . .

n n

Hence by means of (9), (10) and the triangle inequality of norms, we obtain that

H 3 i
3T v ^ / ^ l ) \ ^/^2 / l l i . ^ ~c I I

o

= -s\c\n+\ n = l , 2 , . . . .

Let n -> -foo. Then we have

$(c/ii) — $(c^i2) ~ 0) Vc, 0 < c < 1,

that is, Vc, 0 < c < 1.

So by Lemma 4, we know that for any c, 0 ^ c ^ 1,

[cm] = [c/x2] in T{T).

Hence, two geodesic segments [tfii] (0 ^ t $C 1) and [^2] (0 ^ i ^ 1) are the same. D
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