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Abstract. We give an example of an element r of a free group F, and an ele-
ment s of minimal length in the normal closure of r in F, such that s is not conjugate
to r*! or to [r*!, £, for any element f of F.
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1. Introduction. The question referred to in the title is Question F16 of the list
‘Open problems in combinatorial group theory’ of Baumslag, Myasnikov and
Shpilrain [1], and it reads as follows.

Let R be the normal closure of an element r in a free group F with the natural
length function, and suppose that s is a (non-identity) element of minimal length in R.
Is it true that s is conjugate to one of the following elements: r,r=,[r, f], or [r™', f1,
for some element f?

In [1] it is noted that this question was motivated by a well known result of
Magnus (see e.g. [2]): if elements r and s of a free group F have the same normal
closure, then s is conjugate to r*!. We would add that no general result classifying
elements of (relatively) small length in the normal closure of a single element of a
free group is known, and that such a result would be of great interest in the theory
of one-relator groups.

The question is known to have a positive answer in a number of cases. Thus, for
example, if r satisfies a suitable small cancellation condition (see Chapter V of [2]),
then it is easily seen (e.g. by using a theorem of Greendlinger; see Theorem 4.5 of
Chapter V of [2]) that any element of minimal length in R is conjugate to r*!, while
in the free group F, with basis {a, b}, if r = a'b> and ¢ > 5, it can be easily shown,
using arguments similar to those given below, that the elements of minimal length in
R are conjugates of [a*!, b?], and these are the same as conjugates of [r*!, a~'7].

Let r be the element of F, given by r = ba'h*a’, where ¢ > 3, and let s = [b°, a].
We shall provide a negative answer to Remeslennikov’s question by showing that s is
of minimal length in R, and that s is not conjugate to r*! or [r!, f], for any fin F>.

2. The proof. Let G be the free product with amalgamation of two infinite
cycles given by the presentation (x, a | x> = a~'). We have

G=(xab| X =a'"b=x=(x,a,b|b=x*x"0=a")

=(a,b|b=>bdb*d) = (ab|bdb*d =1).
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We note that s € R (since b* = x% is central in G), s is cyclically reduced, and s is
not conjugate to r*!. We now check that s is not conjugate to any element [r*!, £'] of
F,. If it were conjugate to such a commutator, say to [r~!, /] =r"'fif~!, then we
have fif~! = fir1 f7'! say, where r; is a cyclic permutation of r, and no cancellation
occurs in firy f7!. We have s is conjugate to f7!r~1fir), and we see that f; must be
cancelled completely by r~!, since otherwise f;!r~!fir;, when reduced, would be
cyclically reduced, but would have length greater than the length of r, and so could
not be conjugate to s. Thus some cyclic permutation s; of s is the product 5 'ry, for
certain cyclic permutations ri, r, of r. We distinguish seven types of cyclic permuta-
tions of r, namely:

ba'b*d', d'b*d'b, a>b*d'bd", b*d'bd', ba'ba'b, a'bd' b, d™bd' brd™,

where /y + 5 =my +my =t and 1y, L, m;, m, are positive. It is now easy to check
that no product 75 'ry (or rir5') has length as small as 8, except in the case 7 = 3, and
in case ¢t = 3 the only such products of length as small as 8 are cyclic permutations of
[b, a']. Thus s is not conjugate to any element of the form [r*!, f].

It remains to show that no non-identity element w of R could have length less
than 8. Suppose that such a w exists. We may assume that w is of the form
bha™ .. .ba™, where the I, m; are non-zero, and |/;| + |my| + ... + || + |my| < 8.
We have w=1 in G. Replacing b by x?, we see, since G is a free product with
amalgamation, that either some /; is a multiple of 3, or some m; is a multiple of .
Suppose that the former occurs. There is no loss of generality in supposing that /; is
a positive multiple of 3 (replacing w by a cyclic permutation of w*! if necessary ). If
Iy >3, then w must be b°%a*'; but %t #£1 in G. Thus we have /; =3, and
w = b3a™b2a™, where each I; and m; must have absolute value no more than 2;
replacing b by x> we see that such a w is not the identity in G. Thus we have obtained
a contradiction if some /; is a multiple of 3. It is likewise easy to obtain a contra-
diction under the assumption that some m; is a multiple of 7. This proves our claim
that s is of minimal length in R.
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