ON A QUESTION OF REMESLENNIKOV

JAMES McCOOL*

Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 1A1 e-mail: mccool@math.toronto.edu

(Received 18 June, 1999)

Abstract. We give an example of an element r of a free group F, and an element s of minimal length in the normal closure of r in F, such that s is not conjugate to $r^{\pm 1}$ or to $[r^{\pm 1}, f]$, for any element f of F.

1991 Mathematics Subject Classification. 20E05, 20F05.

1. Introduction. The question referred to in the title is Question **F16** of the list 'Open problems in combinatorial group theory' of Baumslag, Myasnikov and Shpilrain [1], and it reads as follows.

Let R be the normal closure of an element r in a free group F with the natural length function, and suppose that s is a (non-identity) element of minimal length in R. Is it true that s is conjugate to one of the following elements: $r, r^{-1}, [r, f]$, or $[r^{-1}, f]$, for some element f?

In [1] it is noted that this question was motivated by a well known result of Magnus (see e.g. [2]): if elements r and s of a free group F have the same normal closure, then s is conjugate to $r^{\pm 1}$. We would add that no general result classifying elements of (relatively) small length in the normal closure of a single element of a free group is known, and that such a result would be of great interest in the theory of one-relator groups.

The question is known to have a positive answer in a number of cases. Thus, for example, if r satisfies a suitable small cancellation condition (see Chapter V of [2]), then it is easily seen (e.g. by using a theorem of Greendlinger; see Theorem 4.5 of Chapter V of [2]) that any element of minimal length in R is conjugate to $r^{\pm 1}$, while in the free group F_2 with basis $\{a, b\}$, if $r = a^t b^2$ and $t \ge 5$, it can be easily shown, using arguments similar to those given below, that the elements of minimal length in R are conjugates of $[a^{\pm 1}, b^2]$, and these are the same as conjugates of $[r^{\pm 1}, a^{-1}r]$.

Let r be the element of F_2 given by $r = ba^tb^2a^t$, where $t \ge 3$, and let $s = [b^3, a]$. We shall provide a negative answer to Remeslennikov's question by showing that s is of minimal length in R, and that s is not conjugate to $r^{\pm 1}$ or $[r^{\pm 1}, f]$, for any f in F_2 .

2. The proof. Let G be the free product with amalgamation of two infinite cycles given by the presentation $\langle x, a \mid x^3 = a^{-t} \rangle$. We have

$$G = \langle x, a, b \mid x^3 = a^{-t}, b = x^2 \rangle = \langle x, a, b \mid b = x^2, x^{-1}b^2 = a^{-t} \rangle$$

= $\langle a, b \mid b = b^2 a^t b^2 a^t \rangle = \langle a, b \mid b a^t b^2 a^t = 1 \rangle.$

^{*}Research supported by a grant from NSERC Canada.

We note that $s \in R$ (since $b^3 = x^6$ is central in G), s is cyclically reduced, and s is not conjugate to $r^{\pm 1}$. We now check that s is not conjugate to any element $[r^{\pm 1}, f]$ of F_2 . If it were conjugate to such a commutator, say to $[r^{-1}, f] = r^{-1}frf^{-1}$, then we have $frf^{-1} = f_1r_1f_1^{-1}$ say, where r_1 is a cyclic permutation of r, and no cancellation occurs in $f_1r_1f_1^{-1}$. We have s is conjugate to $f_1^{-1}r^{-1}f_1r_1$, and we see that f_1 must be cancelled completely by r^{-1} , since otherwise $f_1^{-1}r^{-1}f_1r_1$, when reduced, would be cyclically reduced, but would have length greater than the length of r, and so could not be conjugate to s. Thus some cyclic permutation s_1 of s is the product $r_2^{-1}r_1$, for certain cyclic permutations r_1 , r_2 of r. We distinguish seven types of cyclic permutations of r, namely:

$$ba^tb^2a^t$$
, $a^tb^2a^tb$, $a^{l_2}b^2a^tba^{l_1}$, $b^2a^tba^t$, ba^tba^tb , $a^tba^tb^2$, $a^{m_2}ba^tb^2a^{m_1}$,

where $l_1 + l_2 = m_1 + m_2 = t$ and l_1, l_2, m_1, m_2 are positive. It is now easy to check that no product $r_2^{-1}r_1$ (or $r_1r_2^{-1}$) has length as small as 8, except in the case t = 3, and in case t = 3 the only such products of length as small as 8 are cyclic permutations of $[b, a^t]$. Thus s is not conjugate to any element of the form $[r^{\pm 1}, f]$.

It remains to show that no non-identity element w of R could have length less than 8. Suppose that such a w exists. We may assume that w is of the form $b^{l_1}a^{m_1}...b^{l_k}a^{m_k}$, where the l_i , m_i are non-zero, and $|l_1|+|m_1|+...+|l_k|+|m_k|<8$. We have w=1 in G. Replacing b by x^2 , we see, since G is a free product with amalgamation, that either some l_i is a multiple of 3, or some m_i is a multiple of t. Suppose that the former occurs. There is no loss of generality in supposing that l_1 is a positive multiple of 3 (replacing w by a cyclic permutation of $w^{\pm 1}$ if necessary). If $l_1 > 3$, then w must be $b^6a^{\pm 1}$; but $b^6a^{\pm 1} \neq 1$ in G. Thus we have $l_1 = 3$, and $w = b^3a^{m_1}b^{l_2}a^{m_2}$, where each l_i and m_i must have absolute value no more than 2; replacing b by x^2 we see that such a w is not the identity in G. Thus we have obtained a contradiction if some l_i is a multiple of 3. It is likewise easy to obtain a contradiction under the assumption that some m_i is a multiple of t. This proves our claim that t is of minimal length in t.

REFERENCES

- 1. G. Baumslag, A. G. Myasnikov and V. Shpilrain, *Open problems in combinatorial group theory*, World-wide-web: http://zebra.sci.ccny.cuny.edu/web/
- **2.** R. C. Lyndon and P. E. Schupp, *Combinatorial group theory*, Ergebnisse der Mathematik, Band 189 (Springer-Verlag, 1977).