ORTHOGONAL DIAGONAL LATIN SQUARES OF ORDER FOURTEEN

L. $\mathbf{Z H U}$
(Received 28 July 1982)
Communicated by W. D. Wallis

Abstract

Orthogonal diagonal latin squares of order $n, O D L S(n)$, are orthogonal latin squares of order n with transversals on both the main diagonal and the back diagonal of each square. It has been proven that $O D L S(n)$ exist for all n except $n=2,3,6,10,14,15,18$ and 26 , in which the first three are impossible. In this note an example of $O D L S(14)$ is given.

1980 Mathematics subject classification (Amer. Math. Soc.): 05 B 15.
Orthogonal diagonal latin squares of order $n, \operatorname{ODLS}(n)$, are orthogonal latin squares of order n with transversals on both the main diagonal and the back diagonal of each square. The following open question is asked by J. Denes and A. D. Keedwell [1]: Do there exist orthogonal diagonal latin squares of order n distinct from the impossible orders 2, 3 and 6 ? Recently several authors [2], [3], [4], [5] have proved that $O D L S(n)$ exist for all n except $n=2,3,6,10,14,15,18$ and 26, in which the first three are impossible. In this note an example of $O D L S(14)$ is given.

First we construct the orthogonal latin squares of order 14 as follows. The first latin square $L_{1}=\left(a_{i j}\right)$ has

$$
\begin{gathered}
\left(a_{0,0}, a_{0,1}, \ldots, a_{0,9}\right)=(0,3, A, 4,7,9,5, C, B, D), \\
\left(a_{0,10}, a_{0,11}, a_{0,12}, a_{0,13}\right)=(1,8,2,6), \\
\left(a_{10,0}, a_{11,0}, a_{12,0}, a_{13,0}\right)=(6,8,5,7),
\end{gathered}
$$

[^0]and a latin square Q_{1} of order 4 based on $\{A, B, C, D\}$ in its lower right corner. The other elements are determined by the following rules:
(i) when $0 \leqslant i, j \leqslant 9, a_{i j}=a_{i-1, j-1}+1$, where all calculations (including those performed on indices) are performed modulo 10 on the residues $0,1,2, \ldots, 9$, and $x+1=x$ for the "infinite" element $x \in\{A, B, C, D\}$;
(ii) when $1 \leqslant r \leqslant 9,10 \leqslant j \leqslant 13, a_{r, j}=a_{0, j}+r$, the calculations being reduced by modulo 10 ;
(iii) when $1 \leqslant r \leqslant 9,10 \leqslant i \leqslant 13, a_{i, r}=a_{i, 0}+r$, the calculations being reduced by modulo 10 .

The second latin square $L_{2}=\left(b_{i j}\right)$ has

$$
\begin{gathered}
\left(b_{0,0}, b_{0,1}, \ldots, b_{0,9}\right)=(0, C, 9, D, A, 4, B, 1,3,2) \\
\left(b_{0,10}, b_{0,11}, b_{0,12}, b_{0,13}\right)=(5,6,8,7) \\
\left(b_{10,0}, b_{11,0}, b_{12,0}, b_{13,0}\right)=(8,1,2,6)
\end{gathered}
$$

and a latin square Q_{2} orthogonal to Q_{1} in its lower right corner. The other elements are determined by the same rules. It is easy to see that L_{1} and L_{2} are orthogonal latin squares of order 14. If we take Q_{1} and Q_{2} to be orthogonal diagonal latin squares of order 4 , we obtain the squares L_{1} and L_{2} shown in Table 1.

```
03A4795CBD1826
D14A5806CB2937
BD25A6917C3048
CBD36A70284159
9CBD47A8135260
40CBD58A926371
351CBD69A07482
1462CBD70A8593
A2573CBD819604
2A3684CBD90715
6789012345ACDB
8901234567DBAC
5678901234BDCA
7890123456CABD
    L।
\(0 C 9 D A 4 B 1325687\)
\(0 C 9 D A 4 B 1325687\)
\(31 C 0 D A 5 B 246798\)
\(31 C 0 D A 5 B 246798\)
\(542 C 1 D A 6 B 37809\)
\(542 C 1 D A 6 B 37809\)
\(4653 C 2 D A 7 B 8910\)
\(4653 C 2 D A 7 B 8910\)
B5764C3DA89021
B5764C3DA89021
\(9 B 6875 C 4 D A 0132\)
\(9 B 6875 C 4 D A 0132\)
A0B7986C5D1243
A0B7986C5D1243
DA1B8097C62354
DA1B8097C62354
\(7 D A 2 B 9108 C 3465\)
\(7 D A 2 B 9108 C 3465\)
C8DA3B02194576
C8DA3B02194576
\(8901234567 A D B C\)
\(8901234567 A D B C\)
\(1234567890 C B D A\)
\(1234567890 C B D A\)
\(2345678901 D A C B\)
\(2345678901 D A C B\)
\(6789012345 B C A D\)
\(6789012345 B C A D\)
    \(L_{2}\)
```

 \(L_{2}\)
    ```

TABLE 1

It is seen that these squares have a common transversal down the diagonal. Another common transversal is cells \((0,5),(1,6),(2,7),(3,8)\) and \((4,9)\) and their transposes, together with the back diagonal of the subsquares \(Q_{1}\) and \(Q_{2}\). If rows and columns are permuted simultaneously, the diagonal is preserved, and it is possible to move the other transversal onto the back diagonal. Thus we get an example of orthogonal diagonal latin squares of order 14, illustrated in Table 2.
\begin{tabular}{ll}
\(03 A 471826 D B C 59\) & \(0 C 9 D A 5687231 B 4\) \\
\(D 14 A 5937 B C 608\) & \(31 C 0 D 679842 B 5 A\) \\
\(B D 25 A 3048 C 7196\) & \(542 C 178093 B 6 A D\) \\
\(C B D 36459807 A\) & \(4653 C 910 B 7 A D 2\) \\
\(9 C B D 4560318 A 7\) & \(B 57649018 A D 3 C\) \\
\(67890 A C D B 5321\) & \(89012 A D B C 76543\) \\
\(89012 D B A C 76543\) & \(12345 C B D A 0976\) \\
\(56789 B D C A 4210\) & \(23456 D A C B 10987\) \\
\(78901 C A B D 65432\) & \(67890 B C A D 54321\) \\
\(2 A 36807159 D B C 4\) & \(C 8 D A 345769120 B\) \\
\(A 2573960418 D B C\) & \(7 D A 2 B 3465 C 8019\) \\
\(1462 C 8593 A 07 D B\) & \(D A 1 B 823546 C 790\) \\
\(351 C B 74820 A 96 D\) & \(A 0 B 791243 D 5 C 68\) \\
\(40 C B D 637129 A 85\) & \(9 B 6870132 A D 4 C 5\)
\end{tabular}

TABLE 2

\section*{References}
[1] J. Denes and A. D. Keedwell, Latin squares and their applications (Academic Press, New York, 1974).
[2] K. Heinrich and A. J. W. Hilton, 'Doubly diagonal orthogonal latin squares', to appear.
[3] W. D. Wallis and L. Zhu, 'Existence of orthogonal diagonal latin squares', Ars Combinatoria 12 (1981), 51-68.
[4] W. D. Wallis and L. Zhu, 'Some new orthogonal diagonal latin squares', J. Austral. Math. Soc. Ser. \(A\), to appear.
[5] W. D. Wallis and L. Zhu, 'Four pairwise orthogonal diagonal latin squares of order 12', Utilitas Math. 21 C (1982), 205-207.

Department of Mathematics
Kiangsu Teachers College
Soochow
China```


[^0]:    The author would like to thank Professor W. D. Wallis for his help during the preparation of this note. © 1984 Australian Mathematical Society $0263-6115 / 84 \$ A 2.00+0.00$

