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Abstract

Polynomial identities for the generators of a simple basic classical Lie superalgebra are
derived in arbitrary representations generated by a maximal (or minimal) weight vector.
The infinitesimal characters occurring in the tensor product of two finite dimensional
irreducible representations are also determined.

1. Introduction

Characteristic identities satisfied by the generators of a semi-simple Lie algebra
have previously been obtained both in finite [1,12] and infinite [11, 19] dimen-
sional representations. Such polynomial identities have been shown to be a
powerful tool for the analysis of finite dimensional representations and in
particular are useful for projecting out shift components of tensor operators
[1,6,12]. This latter application has recently been extended to infinite dimen-
sional representations of a semi-simple Lie algebra [10]. Characteristic identity
techniques are also useful for the explicit determination of the Wigner coefficients
of a semi-simple Lie algebra [6,7]. More recently such techniques have been
applied to the many electron problems of atomic physics and quantum chemistry
[8,9].

In this paper we determine the polynomial identities satisfied by the generators
of a general simple (basic classical) Lie superalgebra. Much of the necessary
formal mathematical machinery for investigating Lie superalgebras has now been
developed primarily by Kac [16,18] and Scheunert et. al. [20,23,24]. Lie superal-
gebras initially arose in physical applications in the context of elementary particle
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(2 ] Identities for simple Lie superalgebras 311

physics and Fermi-Bose supersymmetry [5,21,22,25]. A review of the various
physical applications of Lie superalgebras is given in the paper by Corwin,
Ne'eman and Sternberg [2].

This paper is motivated by the work of Jarvis and Green [14] who have
determined the vector polynomial identities, in finite dimensional irreducible
representations, for the general linear and ortho-symplectic Lie superalgebras. It
is our aim here to generalize these results to obtain all tensor identities for a
general basic classical Lie superalgebra. Our main reason for restricting ourselves
to basic classical Lie superalgebras is that their root systems have been completely
classified by Kac [18] and they possess a universal Casimir element in direct
analogy with the normal semi-simple Lie algebra case. However, it is clearly
evident that the approach of this paper extends to more general (simple) Lie
superalgebras. We remark in this connection that Jarvis and Murray [15] have
investigated characteristic identities satisfied by the "strange" Lie superalgebras
P(n) and Q(n). These latter Lie superalgebras are simple, although not basic
classical, and it is clear that our methods will extend to these algebras.

From the point of view of applications we remark that the polynomial
identities derived in this paper are useful for the construction of projection
operators which project out generalized shift components of super tensor opera-
tors along the lines suggested in [10]. Such methods are useful for an explicit
determination of matrix elements of tensor operators which includes the im-
portant problem of obtaining the matrix elements of the Lie superalgebra
generators in irreducible representations.

The paper is set up as follows. Our notation and basic conventions are
established in Section 2. In Section 3 we derive the characteristic identities,
satisfied by the generators of a basic classical Lie super-algebra on arbitrary
representations (finite or infinite dimensional) generated by a maximal weight
vector. As a by-product we determine the infinitesimal characters occurring in the
tensor product of two irreducible representations. To clarify the connection with
our results and those of Jarvis and Green [14] we consider in Section 4 the adjoint
tensor identities. We conclude, in Section 5, by investigating various generaliza-
tions. We remark that although we shall only consider the characteristic identities
for representations generated by a highest weight vector it is clear that our results
also hold for representations generated by a lowest weight vector.

2. Notation and fundamentals

Our notation follows mainly that of Humphreys [13] and Kac [18]. We assume
that

L = Ln ffi L,
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312 M. D.Gould [3|

is a basic classical Lie superalgebra with even (resp. odd) part Lo (resp. Lt): that
is L is either a simple Lie algebra or one of the classical Lie superalgebras in the
following list

A(m,n), B(m,n),C(n), D(m,n), 2>(2,l;a), F(4), G(3). (2.1)

We call x e L a n even (resp. odd) element of L if x e Lo (resp. Lx) in which
case x is said to be homogeneous of degree 0 (resp. 1). We denote the degree of a
homogeneous element x e L by (x): we shall always assume, unless otherwise
stated, that x e i i s homogeneous. Now let

U = Uo © Ux

denote the universal enveloping algebra of L which constitutes a Z2-graded
associative Noetherian algebra with even (resp. odd) part Uo (resp. Ux). Without
loss of generality we assume that L is imbedded in U in which case the graded
bracket operation in L may be written

[x, y] = xy- ( - 1 ) ( * ) O V , x,yeL

where xy is shorthand notation for x <8> y (enveloping algebra product).
A bilinear form (,) on a Lie superalgebra L is called invariant if it satisfies the

following three conditions:

(i) (x,y) = (-lf)M(y,X)

(ii) (x,y) = 0, (x)*(y)
(iii) ([x,y],w)=(x,[y,W]). (2.2)

Following Kac [18] a basic classical Lie superalgebra L is defined by the
conditions that (a) L is a simple Lie superalgebra [23], (b) the Lie algebra Lo is
reductive [3,23] and (c) there exists a non-degenerate invariant bilinear form (,)
on L.

Throughout this paper we let (,) denote a fixed non-degenerate invariant
bilinear form on L. In view of Schur's lemma [20,24], we note that all invariant
bilinear forms on L must be a scalar multiple of the form (,). In particular the
Killing form [20,23] of L is a scalar multiple (possibly zero) of (,).

Now let H be a fixed Cartan subalgebra (C.S.A.) of the even part Lo, herein
referred to as the C.S.A. of L. We let $ = $0 U 3>x denote the set of roots of L
relative to H with 3>0 (resp. $x) the set of even (resp. odd) roots. For « e $ w e
let La c L denote the corresponding root space of L: we have [18] dimLa = 1
for L * A{\, 1).

Let Bo be the Borel subalgebra of Lo generated by the C.S.A. H and the
positive root space vectors xa e L0(a > 0) and let

B = Bo © B1
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[41 Identities for simple Lie superalgebras 313

be a fixed Borel subalgebra of L. We obtain the following decomposition of L:

L = N~® H®N+, B = H<BN+ (2.3)

where N~ and N+ are nilpotent subalgebras of L and [H,N±]QN±.
A root a G $ is called positive (resp. negative) if La c N+ (resp. N~). We

denote the set of positive roots of L by $ + and we let ®Q (resp. 4»x
+) denote the

subset of even (resp. odd) positive roots. We similarly define the negative root
systems $~= -O+, $Q = -<&Q and $f = - $ ^ : we have [18] 3> = <£+U O~,
$0 = O0

+ U $^ and $x = $j+ U <Sf{. We let 50 (resp. 8J denote the half-sum of
the even (resp. odd) positive roots and we set

8 = So - Su

herein referred to as the graded half-sum of positive roots. Finally, we let >
denote the partial ordering induced on the C.S.A. dual H* by the positive roots:
that is X > n if and only if \ — fi is a positive Z-linear combination of positive
roots (X,/*e H*).

Following Kac [18] the invariant bilinear form (,) when restricted to H is
non-degenerate and hence induces a symmetric non-degenerate bilinear form on
H* defined by

( M , X ) = ( \ , M ) = ( A X , * J ; A, /xetf* (2.4)

where hx is uniquely determined by

(hx,h) = \(h), h<=H. (2.5)

A more detailed discussion of Lie superalgebras and their root systems (including
a list of root systems for all the basic classical Lie superalgebras) is given in Kac
[18].

Now let V be a f/-module: throughout we assume that all {/-modules are
graded. We let VXQ F ( \ e H*) denote the subspace spanned by vectors of
weight X; viz.

Vx = {v G V\hv = \{h)v,Vh e H).

In such a case the weight \ is said to occur with multiplicity dimFA in V. We
note, since the Cartan generators are even, that if v e Vx then the even and odd
parts of v also belong to Vx. A vector v0 e Vx is called a maximal weight vector
of weight \ if

N+v0 = 0.

Following Humphreys [13] let us agree to call a [/-module (finite or infinite
dimensional) cyclically generated by a maximal weight vector of weight X e H* a
standard cyclic module of highest weight \. In such a case we may always regard
the highest weight vector as homogeneous (even or odd). In view of the P.B.W.
theorem for Lie superalgebras [24] it is easily demonstrated that a standard cyclic
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module V = Uv0 is indecomposable and that the normal form of Schur's lemma
applies: i.e. if T e EndF is an L-invariant [20] then T reduces to a scalar
multiple of the identity on V. It is important to note that, unlike normal simple
Lie algebras, finite dimensional standard cyclic modules may exist which are not
irreducible.

Now let Z denote the centre of the universal enveloping algebra U; i.e.

Z = ( Z G U\zu = uz,Vu<= U).

It follows, from the remarks above, that if V — Uv0 is standard cyclic with
highest weight X e H * then the elements of the centre Z take constant values on
V (and this eigenvalue depends only on the highest weight X). We denote the
eigenvalue of z e Z on V by Xx(z) ^ d caU X\ t n e infinitesimal character of V:
it determines an algebra homomorphism

More generally we say that a [/-module V admits the infinitesimal character X\,
X G H*, if the central elements z G. Z take the constant value Xx(z) onV.

An important example of a central element is the universal Casimir element
which may be constructed for basic classical Lie superalgebras in direct analogy
with the normal Lie algebra case. To this end let {xv...,xn} (n = dimL) be a
(homogeneous) basis for L and let {x1, x2,..., x"} be the corresponding left dual
basis with respect to the invariant bilinear form (,) on L; viz.

Then the operator

CL=t *,*' (2-6)
1 = 1

is easily seen to be a central element (see Appendix A) called the universal
Casimir element. The eigenvalue of CL on a maximal weight state of weight X is
easily seen to be given by (see Appendix A)

X x ( C L ) = (X,X + 2S) (2.7)

which is in direct analogy with Racah's well known formula for normal Lie
algebras.

In conclusion we note that every finite dimensional irreducible {/-module
contains a (unique) maximal weight vector and hence is standard cyclic. As for
Lie algebras a finite dimensional irreducible [/-module is uniquely characterized
by its highest weight [18]: we denote the finite dimensional irreducible [/-module
with highest weight X by V(\). It is important to note, however, that the finite
dimensional irreducible [/-module V(X) is not uniquely characterized by its
infinitesimal character X\- That is there may exist finite dimensional irreducible
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[/-modules F(X), V(n) with X * /i but X\ = XM- Kac [18] calls F(X) <y/7/ca/ if it
is uniquely characterized, among the finite dimensional irreducible [/-modules, by
its infinitesimal character Xv Such finite dimensional irreducible (/-modules
necessarily split in all finite dimensional (/-modules [17,18]. Typical modules, for
a basic classical Lie super-algebra, have been characterized (in terms of their
highest weights) by Kac [18]. Typical modules for the orthosymplectic Lie
superalgebras have also been investigated, using Young diagram techniques, by
Farmer and Jarvis [4].

3. Polynomial identities

Throughout we shall let

V(\)=V0(\)®V1(\)

be a fixed (but arbitrary) finite dimensional irreducible (/-module with highest
weight X. Let (X1 ; . . . , Xk] be the set of distinct weights in F(X) occurring with
multiplicities n1,...,nk respectively.

Now U may be imbedded in (/ ® (/by the diagonal homomorphism [24]

d:U->U®U

defined for x e L by

dx = x ® l + \ ® x

which we extend to an algebra homomorphism to all of U. In general du for
arbitrary u e U is a more complicated expression which may be written

du = £ ur ® vr, ur, vr e (/. (3.1)
r

Now let Y be the algebra

y = [EndF(X)] ® U

and let TTX be the representation afforded by V(\). Following refs [11, 19] we
consider the map

3: (/-> Y
defined for x e L by

H*) = *x(*) ® 1 + 1 ® ̂  (3.2)

which we extend to an algebra homomorphism to all of (/. More generally if
u e U with du as in (3.1) we have
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In view of the canonical isomorphism

Y = Hom(V(\),V(\)® U)

we may regard elements of Y as acting on F(X) according to

(p® u)(v) = ( - 1 ) " V ® u

for all v e Va(\), u e Up (<*,/} = 0,1) and p e EndF(X), which we extend
linearly to all of Y. By this means we may regard the elements of Y as
constituting d X d matrices [d = dimF(A)] with entries from U. To be more
explicit let {vl,v2,--.,vd} be a fixed homogeneous basis for V(X) and let (_/)
denote the degree of index j(= l,...,d); i.e. (j) = 0 (resp. 1) according to
whether Vj e ^0(^) tresP- ^i(^)]- Then for y e Y we may write

d

yvj = £ v, ® yIJt y,j e U
i = i

where [ ,̂7] constitutes & d X d matrix. For example given homogeneous x e L
we see from (3.2) that the matrix corresponding to 3(JC) e Y is given by

a ( * ) 0 - ( - i ) w w V + «>(*),,. (3.3)
More generally if « e {/ with rfw as in (3.1) we have

where ( ur) denotes the degree of the universal enveloping algebra element vr.
Throughout the remainder of this paper we let z e Z be a fixed (but arbitrary)

element of Z. We let Az e Y denote the operator

^ = - * [ 3 ( z ) - w x ( 2 ) « l - l ® z ] . (3.4)

We choose this form since when z = CL we obtain

^ Q = - i [9(Q.) - »x(Q) ® 1 - 1 ® C j (3.5)

which, in view of (2.6), may be alternatively written

where (a) denotes the degree of index a( = 1,...,«). For simplicity we denote the
matrix of (3.5) and (3.6) simply by AL. In view of equ. (3.3) we clearly have

[ ^ ] i y = - E ( - l ) W W » x ( * . ) . / * ' . (3-7)
a

which is a matrix with entries from L.
In the special case that irx corresponds to the contragredient vector representa-

tion, the matrix of (3.7) reduces to the matrix considered by Jarvis and Green [14]
for the Lie superalgebras gl(n, m) and osp(n, m). In such a case it can be shown
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[14] that, on a finite dimensional irreducible representation of gl(n,m) or
osp(n, m), the matrix of (3.7) satisfies a polynomial identity of degree (n + m). It
is our aim here to extend this result to the more general case where ITX is any
finite dimensional irreducible representation for a basic classical Lie superalgebra
L and z e Z is arbitrary. Our main result is

THEOREM 1. Let V = Uv0 be a standard cyclic module (finite or infinite
dimensional) with highest weight ju e H*. Then on V the matrix Az satisfies the
polynomial identity

nU.- / , . , (*»)) -0 , (3.8)
1 = 1

where fzi denotes the polynomial function

/ " I , . . . , * . (3-9)

Throughout we assume that V = Uv0 is a standard cyclic module where v0 is a
highest weight vector of weight ju e H*, and we let w denote the representation
afforded by V. We proceed by determining the possible infinitesimal characters
which occur in the tensor product space V(\) ® V. We require first the following
elementary result:

LEMMA 1. Let v\ denote the minimal weight vector of V(X). Then V(\) <8> V is
cyclically generated by the vector û _® u0; i.e.

V{\) ® V= U(vx_® v0).

PROOF. Set W = t/(«* ® v0) and define

Clearly V is a i/- submodule of V since for v e K' and homogeneous x G i

( - l ) a ( ; t \ v ® xu = x(w ® y) - ( w ) ® v G JT

(for all w G Ka(X)), which implies xv e K' for all x e L. To prove the lemma it
suffices to show V = V and for this it suffices to demonstrate, by the cyclic
nature of v0 e V, that v0 e F' .

We have, by the P.B.W. theorem [notation as in (2.3)]

V(\) = Uv\= U(B)U(N-)vx_= U{B)vx_,
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where U(B) [resp. U(N~)] denotes the universal enveloping algebra of B (resp.
N~). Thus we obtain

U(B)(vx_® o0) = [U(B)v\] ®vo= V(X) ® oo,

which shows that V(X) ® v0 c W and hence v0 e F ' as required. Q.E.D.

We now assume that the distinct weights Xx, \2,...,Xk are ordered in
non-decreasing order with respect to the partial ordering > induced by the
positive roots; i.e. if X, > Xj then i > j . We denote the weight space of V(X)
consisting of vectors of weight X, by F,(X) [w, = dimF,(X)] and we set

s,= © v,{x),
j - i

S,= S,9v0.
By our construction each space S, (and hence St) is stable under the action of B

and we have the following descending chain of U(B) modules:
V(X) ® v0 = Sx D 52 3 • • • Sk ^ Sk+l = (0).

Applying U to the left of this chain we obtain the descending chain of {/-mod-
ules:

Wl 3 W2 2 • • • Wk D Wk+l = (0), (3.10)
where W, = US,. We observe, from Lemma 1, that

W1 = U(V(X) O v0) = V(X) ® F.

We have the following result (notation as above):

LEMMA 2. Each factor module M, = Wt/Wl+l(i = \,...,k) is either (0) or else
admits the infinitesimal character xM+\ • ^n particular the infinitesimal characters
occurring in F(X) ® V are of the form x^+x.O = 1, . . . ,&)•

PROOF. We note that since each weight space F,(X) is Z2-graded [i.e. v e F,(X)
implies the even and odd parts of v belong to K,(X)] the {/-modules Wt of (3.10)
are graded as required. By our construction we have

S, = V,(X) ®v0® Sl+1

and hence

Thus we may write (isomorphism theorem)

= U[V,(\) ® vo]/Wi+1 n U[Vt(X) ® B o ] . (3.11)
Now observe that [notation as in (2.3)]
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and hence

N+[V,(\) 9 v0] c Wl+1 n U[V,(\) 9 u0],
from which it follows that M, in (3.11) is either (0) or else a sum (not necessarily
direct) of standard cyclic modules of highest weight ja + A,. Indeed if { wv..., wr)
(r = /i,.) denotes a homogeneous basis for Vt(X) ® v0 we have

M, & t Uwj, (3.12)

where vvy denotes the left coset

Clearly each module Uwj, if non zero, is standard cyclic since N+Wj = (0). It
follows in particular that if M, ¥= (0) then Mi necessarily admits the infinitesimal
character x^+x,- Q.E.D.

COROLLARY (notation as above). Suppose V = Uv0 is a finite dimensional
standard cyclic module and /x + A, is a typical dominant weight. Then the irreducible
module V(fi + A,) occurs in V(\) ® Vwith multiplicity less than or equal to «,.

PROOF. In such a case we note that the standard cyclic modules occurring in the
decomposition (3.12) are either (0) or else irreducible [18]. In particular M, is a
direct sum of at most «, summands F(/x + A,) and splits in F(A) ® V. We note
also, by the definition of typical module, that F(/x + A,) cannot occur in My for
j ¥= i. This completes the proof. Q.E.D.

We are now in a position to set up the last step in the proof of Theorem 1.
From (3.4) we see that, acting on the [/-module V, the matrix Az may be written

Az = -\W® v(z) - irx(z) 9 1 - 1 9 v(z)].
It follows from Lemma 2 that on each factor module M, = Wt/Wi+l of the chain
(3.10) the operator Az takes the constant value

These are clearly the generalized eigenvalues of Az on the space V{\) ® V and it
follows immediately that Az satisfies the polynomial identity of (3.8). This
completes the proof of the theorem.

REMARKS. In order to clarify the two ways of viewing Az, either as an operator
on V(X) ® For else a d X d matrix over U whose entries are operators on V, we
have
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More generally if p(x) is any polynomial with invariant coefficients we have

where polynomials in the matrix Az are given recursively according to

(*?+% = UAz)lk(AT)kj = Z(AT)ik(A2)kj.
k k

Thus we have p(Az) = 0 on V(\) ® V if and only if p(Az)tj = 0 on V(i, j =
\,...,d). Hence the identity of (3.8) is equivalent to the following d2 identities
which must hold on V:

k

J I M , - / , » ] , , = <>; P,q=\,...,d.

As a special case of Theorem 1 we note that, acting on a standard cyclic
module of highest weight fi, the matrix AL of (3.7) satisfies the polynomial
identity

El [AL - \(\, A + 2S) + HA,, A, + 2(M + 8))] = 0 (3.13)
1 = 1

where we have used the result [c.f. (3.9)]

fcL,.M = HA, A + 28) - MA,-, A, + 2(M + 8))

which follows immediately from (2.7). The identities of (3.13) include the identi-
ties of Jarvis and Green [14] as a special case. Identities of the more general type
(3.8) have been previously discussed by Jarvis and Murray [15]. In this latter work
it was pointed out (on the basis of some unpublished work of the present author)
that the matrix Az satisfies a polynomial identity whose factors could be put in
1-1 correspondence with the weights (including multiplicities) of F(A). In particu-
lar the matrix Az satisfies a polynomial identity of degree d = dimF(\). Theo-
rem 1 explicity demonstrates the stronger result that the factors of the characteris-
tic identity satisfied by the matrix Az may be put in 1-1 correspondence with the
distinct weights in V(\).

4. The adjoint matrix

We note that associated with the matrix Az is its adjoint Az which is obtained
by following exactly the same procedure as before but with ITX replaced by its
dual ir£. It can be shown that
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1121 Identities for simple Lie superalgebras 321

where 6 denotes the principal anti-automorphism of £/[24] and z = 6(z). Thus
for example the adjoint of the matrix A L of (3.7) is given by

In the case that wx corresponds to the fundamental vector representation of the
Lie superalgebras gl(n,m) or osp(n, m) this is the matrix considered by Jarvis
and Green [14].

It follows immediately from Theorem 1 that, on a standard cyclic module with
highest weight /x e H*, the matrix A z satisfies the polynomial identity

O , ) 0 (4.1)
1 = 1

where [X* the highest weight of V(\)*]

/,.,(/») = -*[x,-x.(*) - Xx-(O " X,(*)] (4-2)
where we have used the result that the weights occurring in V(\)* are the
negative of those occurring in V(\). We note that

Xx«(*) = Xx(*). * = *(*)•
Hence, in the special case that z = CL, we have CL = CL from which it follows
that Xx(CL) = X\*(Q.)-1° s u c n a c a s e t n e polynomial functions of (4.2) reduce to

4 » = H*. A + 25) - i(X,,2(M + 5) - A,). _
Hence, as a special case of (4.1) we see that the adjoint matrix AL satisfies the
polynomial identity

I I [AL - KA, A + 26) + HA,,2(M + 5) - X,)} = 0
/=i

on a standard cyclic module of highest weight \i e H*.
Note that, as well aj an adjoint, the matrix A z also possesses a double and

triple adjoint A z and A z respectively. We have

where y denotes the grading automorphism on t/[24]. The matrix Az (resp. Az)
satisfies the same polynomial identity as the matrix Az (resp. Az).

5. Generalizations

In the previous sections polynomial identities were derived, in arbitrary repre-
sentations generated by a maximal (or minimal) weight vector, for the matrices of
(3.4). Throughout it was assumed that TTX was a finite dimensional irreducible
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representation with highest weight X. However, in applications one frequently has
to deal with indecomposable finite dimensional representations. Accordingly we
conclude in this section by generalizing our previous results to the case where wx

is a finite dimensional indecomposable (not necessarily irreducible) representa-
tion.

We remark that a finite dimensional module over a basic classical Lie superal-
gebra L necessarily decomposes into a unique (up to isomorphism and ordering)
direct sum of indecomposable submodules. Moreover every finite dimensional
indecomposable L-module V is necessarily primary: that is V admits a composi-
tion series whose factors all necessarily admit the same infinitesimal character, \\
say. We call Xx t n e characteristic of the indecomposable module V. Note that if
Ix c Z is the kernel of the infinitesimal character Xx (viz- ^ x = { z e ^ I X x ( z ) =

0}) then 7X constitutes a maximal two-sided ideal in Z of co-dimension 1 (c.f. ref.
[10,19]). Thus if V is indecomposable and finite dimensional with characteristic
Xx. then there exists m e Z+ such that I™V = (0). The smallest such positive
integer is called the characteristic length of the L-module V.

Hence, throughout the remainder of this paper, we assume that V(\) is a finite
dimensional indecomposable L-module with characteristic Xx anc* w e let "x be
the representation afforded by V(X). Following our previous notation we set

Az = -\W) ~ *x(*) ® 1 - 1 ® A (5-1)

where z £. Z, with 3: U -* Y as before. We let {\t At} denote the set of
distinct weights in V{\) which we assume, as before, are in non-decreasing order
with respect to the partial ordering > induced by the positive roots. It is our aim
here to show that Theorem 1 holds also for the more general matrices of (5.1).

We follow exactly the same construction as before and consider the descending
chain of {/-modules (3.10). It is easily seen that our previous method of proof
goes over, unchanged, to the more general case we are considering provided we
can demonstrate the result

> V= W1 (5.2)

where

To this end consider the subspace of V defined by

K ' = { » £ V\V{\)®vQ Wx).

To prove (5.2) it clearly suffices to demonstrate that V = V. Using the same
method of proof as that used in Lemma 1, it is easily seen that V is a (graded)
submodule of V which, by our construction, necessarily contains the vector «;0.
The cyclicity of the vector v0 then forces V = V and the result is seen to follow.
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Thus we have established that the more general matrices of (5.1), corresponding
to indecomposable wx, also satisfy the polynomial identities of Theorem 1. In
particular the polynomial identities (3.13), which include the identities of Jarvis
and Green [14], also extend to indecomposable (reference) representations irx.

We remark that the polynomial identities of Theorem 1 need not be the
minimum polynomial identities satisfied by the matrices of (5.1). We therefore
conclude by obtaining the minimal polynomial identities along the lines suggested
in [10].

We have demonstrated that the infinitesimal characters occurring in the tensor
product module V(\) ® V (notation as above) are necessarily of the form
XM+x,0' = 1> • • •. k). Although the weights

Xl,X2,...,\k

are all distinct it is not necessarily true [17,18] that the infinitesimal characters

are distinct. Assume the number of distinct ones is « ( < k) and suppose the
weights are renumbered so that the infinitesimal characters x^+x( ' = l > - ' " )
are all distinct. For / = 1 , . . . , n let w, be the multiplicity of the infinitesimal
character x^+x m t n e sequence (5.3). With this notation the polynomial identity
of Theorem 1 may be written

M = 0. (5.4)
i-i

From these identities it is an easy matter to deduce [10,19] that the space
X = V(X) ® Vdecomposes into a direct sum of primary submodules

X= 0 Xs (5.5)
i-i

where (notation as above)

is the unique maximal submodule of X with characteristic x^+x,- I* follows
therefore, that if z e Z is such that the numbers xM+x,(z) 0 = 1. •••»«) are
distinct, then the minimum polynomial identity satisfied by Az on V is given by

where «,(< mt) is the characteristic length of the primary module Xt. We see
from this that a knowledge of the minimal polynomial identities is equivalent to a
knowledge of the characteristic lengths of the primary modules occurring in the
decomposition (5.5). Finally we note that projection operators which project onto
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the primary submodules Xt may be explicitly constructed using the polynomial
identities (5.4) as suggested in [10]. Such projection operators are useful for
projecting out shift components of (super) tensor operators [10].
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Appendix A: The Casimir invariant

Let {xo}a_i be a homogeneous basis for L and let (a) be the degree of index
a. We then have the metric tensor

where (,) is the fixed invariant bilinear form on L. We note that the form (,) is
even and hence gab = 0 unless (a) = (b). Thus we may write

gab = (-l)(a)8ba = ( - 0 "&><,•
Since the form (,) is non-degenerate we may introduce the inverse metric gab; i.e.

gab8bc = Scbg"" = «e
fl-

The left dual basis to {xa}"a-1 is then given by

x" = gabxb,

which satisfies

(x',xb) = Bl
Note however that

so that x" is not a right dual basis. It is our aim to show that

indeed constitutes a Casimir invariant; i.e.

xbCL- CLxb = 0; b = l,...,n.

We write the graded commutation relations in the form

lXa> Xb\ ~ *-abXc
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where the structure constants T£b satisfy

r;fc = -(-D( a ) ( 6 )r6v (At)
We also have

= (x",[xb,xd])

= rfcv ( A 2 )
which follows from the invariance of the form (,). Equations (Ax) and (A2)
together imply the symmetry relation

We have

CL
xb ~ XbCL = (XaX")xb ~ xb{x

a
x")

where [,] is the graded bracket operation on L. We thus obtain

CLxb ~ xbCL = xag"[xe,xb\ +{-\r)(b)*"[xa,xb]xc

= (gda^b-g
acr^a)xdxc

= o
as required, where we have applied the symmetry relation (A3).

To determine the eigenvalues of CL we note that CL is independent of the basis
chosen for L. We therefore choose positive root vectors xa e La(a £ $ + ) and we
let { jc"}a> 0 be the corresponding left dual vectors; ie

{xa,Xf)) = 8£, xa<EL_a. (A4)

From Kac [18] we note that if xa e La, x_a e L_a then

[^a,^-J = (x
a,

x-a)ha,
where ha is defined by

We therefore have, in particular,

[x°,xa] = (xa,xa)h_a=-ha. (As)

At this point we distinguish between even and odd roots and choose as a basis
forL

xa, x", a e $ 0
+ ,

xa,x
a, a s * ! * , (A6)

ht, / = ! , . . . , / ,
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where {/i, }J_X constitutes a basis for H. The corresponding left dual basis to (A6)
is given by

We note the following commutation relations

TJC xa] = h a e 4»̂ "

We note also that if X e H * then we have an expansion

where hx is given by equ. (2.5). It follows therefore, that for X, ft e H*, we may
write

(X,M) = (AX,*M) = I :M*,)M(A') . (A8)
1

In the basis of (A6) the universal Casimir invariant CL may be written

Applying C^ to a maximal weight state 1$ °f weight X e H* we have

xx(QK= E VXX+ I v ^ +

where we have used X^Q = 0 for a e $ + . Applying the commutation relations
(A7) and eq. (A8) we thereby obtain

= (X,X + 2S).

Finally, we remark that although the Casimir invariant CL is independent of
the basis chosen for L it is clear that CL and its eigenvalues depend (up to a
scalar) on the invariant bi-linear form ( , ) chosen for L.
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