
/. Functional Programming 4 (1): 89-112, January 1994 © 1994 Cambridge University Press 89

How powerful are folding/unfolding
transformations ?
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Abstract

This paper discusses the transformation power of Burstall and Darlington's folding/unfolding
system, i.e. what kind of programs can be derived from a given one. A necessary condition of
derivability is proved. The notion of inherent complexity of recursive functions in introduced.
A bound on efficiency gain by folding/unfolding transformations is obtained for all reasonable
computation models. The well-known partial correctness and incompleteness of the system are
corollaries of the result. Examples of underivability are given, e.g. binary searching cannot be
derived from linear searching, merge sorting cannot be derived from insert sorting.

Capsule review

This paper is devoted to the proof of a theorem which says, in effect, that a transformation in
Burstall and Darlington's unfold-fold system can reduce the depth of recursion in a recursive
program by at most a constant multiple. Using this result, the author derives several
corollaries. One is that there are two programs, Px and P2, computing the same function but
P2 cannot be derived from P1 in the system. Another corollary says that if P2 can be derived
from P1; then the inherent time complexity of P2 cannot be much better than that of P r

1 Introduction

Recent years have seen much attention given to the rapid growth of program
transformations (Bauer, 1979; Pepper, 1984; Meertens, 1987), which separates the
process of software development into two phases. In the first phase, programmers
write the first version (or a formal specification) of the program, concentrating on the
correctness of the program. The second phase is concerned with the efficiency of the
program. This is achieved by successive manipulations and transformations of the
program, whilst preserving correctness. One of the fundamental problems concerning
the approach is whether the transformation mechanism is powerful enough to derive
efficient programs from formal specifications. It is this subject to which the paper is
devoted.
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The transformation mechanism studied in the paper is the folding/unfolding
system of Burstall and Darlington (1977). It is chosen for its simplicity and clarity, as
well as generality. Many systems have folding/unfolding as basic rules (Feather,
1982; Darlington, 1981a, b, 1984a; Partsch and Steinbruggen, 1983). Examples of
successful transformations have shown that algorithms of exponential time and space
complexity can be transformed into algorithms of linear complexity (Burstall and
Darlington, 1977; Darlington, 1978, 1984ft; Pettorossi and Burstall, 1982). Case
studies have demonstrated that the system is suitable for various programming
purposes (see Darlington, 1985, for a survey). Several strategies and tactics have been
proposed for effective derivation of efficient programs (Pettorossi, 1984, 1989;
Nielson and Nielson, 1990), and it is widely believed that the system has no limit to
improving the efficiency of programs, although its incompleteness and partial
correctness are also well-known (Knott, 1985; Yongqian, 1987). But, as will be
proved in the paper, there is an upper bound on the efficiency gain that can be
obtained by folding and unfolding. Such examples include linear search that cannot
be transformed into binary search, and insert sorting that cannot be transformed into
merge sorting.

The paper is organized as follows: section 2 briefly describes the notation used in
the paper and gives a formal definition of the folding/unfolding system of Burstall
and Darlington. In section 3, first we prove a necessary condition for deriving one
program from another, without the use of a ' eureka' step. We then investigate the
role of eureka in the transformations. Section 4 discusses how much efficiency can be
gained by transformations. Here we introduce the notion of the inherent complexity
of recursive programs, and prove that the order of inherent complexity of a recursive
program cannot be improved by folding/unfolding transformations. Hence, we
obtain a bound on the efficiency of programs derivable by transformations. Section
5 concludes the paper, and briefly addresses some related work.

2 Preliminaries

In this section, we define the notation used in the paper, and the folding/unfolding
transformation system.

2.1 Notation

We assume that the reader has some knowledge of the theory of complete partially
ordered sets (CPO sets) (Gunter and Scott, 1990); we will use the same system of
notation as them. In particular, the least element of a CPO set (D, <) is written as 1,
called bottom or undefined. Every ascending chain a1 ^ a2 ^ ... ^ an ^ ... in a CPO
set D has a least upper bound, written as Uf.1ai. We will frequently refer to the
following theorem about fixed points of continuous functions on CPO sets:

Kleene's Theorem (Kleene, 1951; Manna, 1974)
Let f be a continuous function on a CPO set {D, <). Then, there is a least fixed point
off, and the least fixed point off is LJ ^ / " ( .L) , where f1 is the composition of'jwith
itself n times. •
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Programs transformed by the folding/unfolding system are in the form of a set of
recursive equations:

where the expressions on the left hand sides of equations are in the form of

/ i s called a recursive function symbol, this function being defined by the equations. p(

(i = 1,...,«) are patterns, i.e. expressions constructed from variables and constants
by data constructors. The right hand sides are normal expressions which may contain
'where' clauses. Since in the transformation process, instances of an equation may be
added into the system, we do not require that the patterns in different equations,
defining the same function, are disjoint. However, we do require that the equations
are consistent, in the sense that if there is more than one equation applicable to an
input, then there is a common upper bound for the values obtained from the
applications of the equations to the input. Moreover, the least upper bound of the
values considered to be the value of the function applied to the input.

Given a set K of constants, V of variables, F of recursive function symbols, and C
of constructors, the expressions are recursively defined as follows:

(i) a constant ceK is an expression;
(ii) a variable is an expression;
(iii) a function symbol is an expression;
(iv) if eue2 are expressions, then so is the application of e1 to e2, written as e1e2;
(v) if ex,e2,...,en are expressions, and C is a n-ary constructor, then C{ex,e2,...,

en) is an expression;
(vi) if e and d are expressions, then (e where <u, v,..., w> = d) is an expression;

where u,v,...,w are local variables defined by d.

Without loss of generality, we assume that where clauses do not contain recursive
definitions. So u,v,...,w must not occur in d. The primitive functions (i.e. higher
order constants and constructors) are assumed to be continuous.

An expression may be viewed as a finite ordered tree, the leaves of which are
labelled with variables or constants, and the internal nodes of which are labelled with
'application', 'where clause', or a constructor name. An occurrence within an
expression may be represented as a sequence of positive integers, describing the path
from the outermost' root' symbol to the head of the subexpression at that position.
Let e be an expression. The following notation will be used in the sequel:

e | p—the subexpression of e at occurrence p.
[xl->-e1,...,xn^-en]—the substitution which maps the variablext to the expression
et, i=\,...,n.
a[x -> e]—the substitution a' which agrees with a except that <J'{X) = e.
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ea—the expression obtained by the application of the substitution a to the
expression e, i.e. the expression e with free occurrences of xt replaced by the
expression a(x(), i = 1,2,...,«.
e[d\p]—the expression e with the subexpression at occurrence p replaced by d.
eifiJv • • • Jn)—ifiJz, • • • JJ is t h e s e t of function symbols occurring in e.
EWvfv • • • >fn)—

tne system E of equations contains recursive function symbols / 1 ;

The semantics of the recursive equations are denned to be the least fixed point of the
functional defined by the equations. Let E be a set of equations defining recursive
functions/, g, ...,h. When E is considered as a functional, the result of the application
of E to functions a,b,...,c, written as E(a,b,...,c), is the function defined by the set

of equations: {L<=(R[f^a,g^b,...,h-*c])\L<=RinE}

Without loss of generality, we assume that functionals are continuous (Schmidt,
1988). Then, the semantics of a set of recursive equations is the least fixed point of the
functional, i.e. the function f*,g*,...,h* so that

(f*,g*,...,h*) = E(f*,g*,...,h*)

and for all functions/ ' ,g' , . . . ,h ' ,

(/ ', g',..., h') = E(f, g',..., h') =>/* «S / ' , g* < g', ...,h* ^ h'

By KJeene's Theorem, we have

(f*,g*,...,h*)= U E"(±,±,...,±)

where X is the function which always gives the value undefined.
Since the programming language used here is functional, we will not distinguish the

term ' program' from ' function' in the paper. And if no confusion arises, we do not
distinguish a system of recursive equations from the functional defined by the
equations. For the sake of convenience, subsequently,/will be used to denote ( / j , /^
... , / n) , E(f) to denote E{fi, • • • ,/„), and so on.

2.2 The folding I unfolding system

Let E be a set of equations. The folding/unfolding system consists of the following
six rules.

(1) Instantiation
Let L <= R be an equation in the system E of equations. By applying a substitution
to both sides of the equation, we obtain an instance of the equation. The application
of the instantiation rule adds an instance of an equation to the system. Formally, let
a = {x1 ->• ex,..., xn -> en) be a substitution, we define the instantiation rule as a binary
relation — I ->• on systems of equations as follows

where E; x = E\J {x}.
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(2) Unfolding
Let L<= R and U <= V be equations in E. Suppose that a subexpression of V is an
instance of L. By replacing the subexpression (i.e. the instance of L) with the
corresponding instance of R, we obtain an expression W. The application of the
unfolding rule adds the equation U<= Wmto the system of equations. Formally, we
define the rule as a relation - U ^ that

E-U-+E; (U <= V[Ro\p]), if V\ p = La.

(3) Folding
Let L<= R and U <= V be equations in the system E. By applying a folding rule, we
add the equation U<=W into E, where W is the expression V, with a subexpression
which is an instance of R replaced with the corresponding instance of L. Formally,
we define that

E-T^E; (U<= V[Lo\p]\ if V\ p = Ra.

(4) Abstraction
The abstraction rule can be applied to the right hand side R of an equation L <= R in
E. Some new local variables are introduced by adding a where clause. Then, the
equation is added into the system of equations. Formally, we have

E -A->- E; (L <=/?')

where

R' = CR[«i\Pi. • • •. «*\P*» *>i\P*+i> • • •. f«-*\PB] wAere (w1; . . . , uk) = (R \ p 1 ( . . . , / ? | pk)),

u( 4= uJ5 if / =1= y, i,j= 1,2,...,k,

vie{u1,...,uk}Jora\li= 1,2, . . . , n-k,

and

= R\ pt, if u, = up i = 1 ,2 , . . . ,« — k,j = 1,2, ... ,fc.

(5) Application of law
A law is an assertion of the equivalence of pairs of expressions. Laws are written in
the form P = Q, where P, Q are expressions. For example, x+y = y+x is a law about
the primitive function + . Laws must be distinguished from the equations which
define functions. By a law we mean that the equality holds for all of its instances. In
other words, lP — Q is a law' means Pu = Qo for all substitutions o, but this is not
necessarily true for equations.

By applying a law P = Q to the right hand side R of the equation L <= R, we replace
a subexpression of R which is an instance of P with the corresponding instance of Q.
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The resulting equation is then added into the system. Formally, we define the rule as
follows.

E-L^E; (L<=R[Qa\p]), if/?|p = Pa.
P-Q.P

For the sake of convenience, we will omit some or all of the subscripts and
superscripts of the rules provided no confusion arises.

(6) Selection of a subset
The transformation processes are the successive applications of the above rules to the
system of equations. A subset of the equations are selected as the result. Therefore,
the selection of a subset of the equations should also be considered as a rule.
Formally, we define that

E-S-+F,
In the original proposal of Burstall and Darlington (1977) there is another rule called
definition. It allows the introduction of new equations during the process of
transformation. We avoid the definition rule by considering separately those
programs that can be derived from E U H and those that can be derived from just E,
where H are new equations. Obviously, any program which can be derived by adding
an equation H into consideration during the process of transformation, can also be
derived from the program together with the additional equation H without use of the
definition rule. The definition rule is much more practical because various techniques
can be applied to generate the right equations during transformation. However, it is
obvious that without restrictions on what kind of equations can be added, the
transformation system would have no limit to its power and would certainly be
incorrect. Unfortunately, such restrictions are not given explicitly in the original
proposal or elsewhere. This will be explored in the next section.

Now, define the relation -»• on programs as the union of the above relations, i.e.

Notice that, the relation -> is reflexive because the relation — S -> is reflexive.
A program E can be transformed into a program F by folding/unfolding, written

as E— *->F, if and only if, there is a finite sequence EltE2,...,Ek,k^- 1, of systems
of equations so that

E = E1^E2^...-^Ek = F.
Therefore, — *-»• is the transitive closure of-*.

3 A necessary condition of transformability

3.1 Fundamental theorem

Since the semantics of a system of recursive equations is the least fixed point of the
functional defined by the equations, the transformation rules can be considered as
operators on functionals. Therefore, we investigate the properties of the operators by
studying their effects on the corresponding functional. This leads to the following
lemmas about the properties of the operators. The proofs of the lemmas are given in
the appendix because they are straightforward but tedious.
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Lemma 1 (Selection of a subset)
Let E(f)-S^F(f). Then,

(i) for all functions g,F(g) < E(g);
(ii) for all n= 1,2,..., F"(±) ^ E"(±). D

Lemma 2 (Instantiation)
Let E(f) - 1 -^ F(J). Then

(i) For all functions g, E(g) = F(g);
(ii) For all n= 1,2,..., En(±) = Fn(±). •

Lemma 3 (Unfolding)
Let E(f) - U -> F(f). Then for all n = 1,2,..., F " ( l ) ^ £ 2 n ( l ) . Q

Lemma 4 (Folding)
Let E(f)-F-»F(/). 77ze« for all n= 1,2,3,,...,Fn(±) ^ En(±).

Lemma 5 (Abstraction)
Let E(f)-A->F(f). Then we have

(i) For all functions g, F(g) = E(g);
(ii) For all n= 1,2,..., Fn(±) = £""

Lemma 6 (Application of law)
Let E(f)-Ij^F(f). Then we have

(i) For all functions g, F(g) = E(g);
(ii) For all n= 1,2,..., Fn(±) = En(±). •

From the above lemmas, we can obtain the following necessary condition on the
transformability of the folding/unfolding system:

Theorem 1 (Fundamental Theorem)
If E—*->F, then there is a constant K~^\ so that for every n = 1,2,...,F"(J.) ^
EKn(±).

Proof (sketch)

By induction on the length of transformations, using Lemmas 1-6. •

The theorem can be used to prove underivability between programs. For example,

Example 1. From the program

we cannot derive the program

• k « + i ) < = o .

https://doi.org/10.1017/S0956796800000964 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000964


96 . Z/iu

Proof
For every / = 1,2,..., we have

= 0
= 0

A2)<=0

Obviously, for all s, t = 1,2,..., we have

F'(-L) S* E\l), but FXL) + E'(±).

Thus, for all s, t = 1,2,..., .F((±) > Es(±), i.e. there is no constant K
all i = 1,2 F\±)

1 so that for
. By theorem 1, F cannot be derived from E. Q

Notice that the two functions denned in Example 1 are equivalent one to another
under eager evaluation. Whether they are equivalent under lazy evaluation depends
on whether or not the constructor ' + 1 ' is strict. Normally, constructors in lazy
functional programming languages, such as Miranda and Haskell, are non-strict. In
this case, the two functions are not equivalent, because under the definition of E,

But under the definition of F,

However, if the constructor + 1 is strict, we can prove that they are equivalent under
both eager and lazy evaluation. A simpler example of two functions equivalent under
eager evaluation but inequivalent under lazy evaluation can be obtained by replacing
the definition of F with the following equation:

F: M^O.
The same proof given above can be applied to the underivability of F' from E. The
following is a counter-example of transformability of equivalent functions under lazy
evaluation:

Example 2. Consider the following two functions:

Similar to Example 1, we can prove that there is no constant K so that for all i = 1,
2,...,F\1) «$ EK\L). Therefore, F cannot be derived from E by Theorem 1. By
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induction on n, we can prove that both of the least fixed points of F and E compute
the following function:

An) = t i
( -1

and no matter whether they are evaluated eagerly or lazily, we have

That is, they are equivalent under eager and lazy evaluation. •

The following is an example of underivability of higher order functions:

Example 3. Consider the following two higher order functions which are equivalent
under eager evaluation:

f map/nil <= nil
Map{

l y ( : :x\) <= (fx): :map/xl
f map/nil <= nil

Tree } map/[x:: nil) <= (fx):: nil

[.-.ix^.-.xl)) <= (mapfu) || (map/V) where (u,v) = split (x1::(x2::xl))

Where || is list concatenation, split is the primitive function on list which splits a list
into two lists of equal length:

split <x1,x2,...,xn> = «x1,x!!,...,xs>,Os+1, . . . ,*„» where^ = [n/2]

Now, let / be id, the identity function, then we have:

l , if k > n.

*i»*2. •••,**>. iffc^2";
l l , tfk>2".

Therefore, there is no constant K ̂  1 so that for all n = 1,2,...,

Treen(l)id < Map*"(±) id

That is, there is no constant K Js 1 such that for all n = 1,2,...,

Tree"(l) ^ Map*n(±)

By Theorem 1, Tree cannot be derived from Map by folding/unfolding. •

3.2 'Eureka'

The use of'eureka' in folding/unfolding transformations is of particular importance.
Little transformation can be done without the help of eureka. The following is an
example:

4 FPR 4
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Example 4. (Burstall and Darlington, 1977)
The program

E: fl <=\

with the help of the eureka

can be transformed into

f{n + 2)<=u + v WHERE (u,v) = gn

g(n+\)<=(v,u + v) WHERE <w,u> = gn. D

Now, let us consider when eureka is helpful. Given two systems of equations E and
F, if the condition of Theorem 1 does not hold for them, we cannot derive F from E.
The question is whether we can derive it by adding some eureka. More formally, is
there any set H of equations, such that F is derivable from E and HI However, this
question is meaningful only if there is some restriction on the equations which can be
added. Otherwise, every program F can be derived from a given one by just adding
the equations of F into the system of equations, and then applying the subset selection
rule. This causes a serious problem of incorrectness and is obviously undesirable.

Intuitively, the use of eureka means introduction of auxiliary functions. Therefore,
the additional equations should meet the following two conditions. Firstly, they
should not include additional equations for the definition of the existing functions,
otherwise the equations should be considered as a redefinition of the program instead
of a 'eureka'. Secondly, they should not include additional equations for the
definition of the primitive functions occurring in the program, otherwise they would
change the meaning of the program. These conditions lead to the following
syntactical restriction of eureka: a system H of equations is a eureka of E, if the
recursive function symbols denned by H do not occur in E. Formally,

Definition 1
Let E be a system of equations, f = {fx,... ,/„} be the function symbols in E. A set of
equations H which contains function symbols h = {ht,.. .,hm} is said to be a eureka of
E,if

(i) f does not occur on any left hand side of H,
(ii) h—f does not occur in E, where h—f is set difference.

Subsequently, without loss of generality, we will write H(J,g)forf\j g containing all the
function symbols in H, andff] g = 0 .

Since eureka are auxiliary functions, when we discuss whether a system E of
equations can be transformed into another system F of equations with the help of
eureka, we must deal with the possibility that they xise different sets of recursive
function symbols. Among the recursive function symbols defined by a system of
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equations, we will always take the first one as the main function subsequently. Thus,
we need the following corollary of Theorem 1:

Corollary 1
IfE— *->• F, then there is a constant K^-\ such that for all i = 1,2,...,

1, where(xl,x2,...,xn){s = xs, l^s^n

Proof
By Theorem 1, we have that for all i = 1,2,...,

F'(±) «S EK\1)

Let F\L) = (/i J t , . . . ,/„) and EKi(±) = (g1,g,,...,gn). By the definition of the partial
ordering on product CPO sets, we have

( / i > / 2 > • • • > / » ) < f e i > & » • • • > £ « ) = > . / ; < £ < > f o r a l l i = l , 2 , . . . , w

Therefore, F(JL) il=/1^g1 = EK\L) 11. Q

Lemma 7
Let E{f) be a system of equations and H(f,g) be a eureka ofE. Then, for all n = 1,2,
3,. . . , we have

where F(J, g) = E{f) U H(f, g),x,y are expressions obtained by applications ofE and H
to 1. •

Theorem 2 (Eureka)
Let E(f) and F(J') be two sets of equations. If there is a eureka H such that F can be
derived from E\J H, then there is a constant K ̂  1 such that for every n = 1,2,...,

Proof
Suppose that H(f,g) is a set of equations such that Fcan be derived from E\J H, the
recursive function symbols/do not occur in the left hand sides of the equations in H,
and g is the recursive function symbols introduced by H. Let G{f,g) = E(f) U H(f,g).
Then by Corollary 1, there is a constant K ̂  1 such that for every n = 1,2,...,

Fn(±)il^GKn(l)il (1)

By Lemma 7, we have for all n = 1,2,...,

G"(l) = (E"(l),E'(x,y)) (2)

where x,y are expressions constructed from L by E and H. Hence, for all
n = 1,2,...,

G"(±H 1 = £"(±H 1 (3)
Then, (1) and (3) imply that for all n= 1,2,....

F"(±H1 ^£Kn(±Hl. •
Notice that Theorem 2 is a necessary condition of derivability but not sufficient.

Therefore, it is possible that we cannot derive a program even if the condition is
4-2
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satisfied. In these cases, eureka may be helpful. But, if the condition is not satisfied,
we cannot derive the program no matter what eureka is added.

Subsequently, by saying 'F can be transformed into £" we mean that there is a
eureka //such that F;H—*->E; and by saying 'Fcannot be transformed into £", we
mean that there is no eureka H such that F;H—*^E.

3.3 Some corollaries of the fundamental theorems

To conclude this section, we look at some corollaries of the theorems. Firstly, from
Examples 1-3 we have the following incompleteness theorem for the foldin-
g/unfolding system:

Corollary 2 (Incompleteness theorem)
There are two programs f and g such that f = g, but there is no eureka u of f such that
with the help of u,f— *-*• g.

Proof
The equivalence of recursive functions may have different meanings according to the
evaluation strategy. But the incompleteness theorem holds for both of the eager and
lazy evaluation strategies. Example 1 gives a counter example for equivalence under
eager evaluation. Example 2 gives a counter example for equivalence under lazy
evaluation. •

Theorem 2 also implies the partial correctness of the folding/unfolding system.

Corollary 3 (Partial correctness theorem)
If a program g can be derived from the program f then g ^f.

Proof
Let E and F be systems of equations, / and g be the least fixed points of E and F,
respectively. Assume that F is derived from E by folding/unfolding. Then by
Theorem 2, there is a constant K > 1 such that for every n = 1,2,...,

Fn{±){\ < £ K " ( ± ) j l .
Therefore,

g= U {Fn(l)il} (Kleene's theorem)
n - l

«S U {EKn(±)l\} (Theorem 2)
n - l

= U {£"(!) 11}
n - l

= / . (Kleene's theorem) Q

An interesting corollary of the partial correctness theorem is that the fold-
ing/unfolding transformations preserve the strictness of functions.
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Corollary 4
Let f be transformed into g by folding/unfolding. Iff is a strict function (i.e.f[l) = ±),
then g is also a strict function.

Proof
By the partial correctness theorem, g ^ / . Therefore, for all x we have

In particular, g(±) «SX±) = 1

That is, g is strict. •

Using the partial correctness theorem and Corollary 4, Example 1 can be proved
very simply because under lazy evaluation f{L +1) = 1 by definition E, whilst
f(L +1) = 0 by definition F. But, Corollaries 3 and 4 cannot distinguish the two
functions in Example 2.

4 A bound on efficiency improvement

A lot of work has been done to improve program efficiency and synthesize efficient
algorithms by folding/unfolding (Darlington, 1978, 19846; Pettrossi and Burstall,
1982). Example 4 is a typical example. It is pointed out that the time and space
complexity of the function E in Example 4 are exponential while the function F is
linear. However, these complexity measures are in the model of sequential
computation. In a parallel computation model, the time complexities of the two
programs are all linear. Therefore, in different computation models, the efficiency
gained by transformation may be different.

In this section, we are going to apply the results obtained in the previous sections
to obtain a model independent bound on the efficiency gain by folding/unfolding.
Firstly, we will introduce a notion of inherent complexity of recursive functions,
which is independent of the computation model. Then, we will discuss the effect of
folding/unfolding transformations on the inherent complexity. Finally, we will
discuss the relationship between time complexity and inherent complexity. The notion
of reasonable models is introduced, and it is proved that inherent complexity is
always less than or equal to the time complexity in reasonable models. Therefore, a
bound of efficiency gain by transformations is obtained for all reasonable models.

4.1 Description of context

Under lazy evaluation, the time complexity of a function also depends on the context
the function is called. To give a general treatment of computational complexity we
must take context into account. A formulation of the context provided by Wadler and
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Hughes (1987) uses projections on domains. A projection is a continuous function a
so that

ocoa = a; and a ^ id.

In other words, given an object u, a projection removes information from the object,
(a u < «), but once this information has been removed further application has no
effect, (oc(aw) = aw). The information removed represents information not needed by
the context. Thus, a projection describes what information is sufficient. To describe
what information is necessary, Wadler and Hughes introduce a new domain element
<J , called 'abort'. The interpretation of au = <J is that context a requires a value
more defined than u. To make this work, we must have <J < 1 and all functions are
naturally extended to be strict in <J. Therefore, the domain of a function / in the
context a is defined to be the set of objects x so that/(;c) is sufficiently defined in the
context. Formally, we have

For the sake of convenience, we will omit the superscript if it is the projection STR,

, i f «= <J , o r w = 1 ;

u, otherwise.

4.2 The notion of inherent complexity

Let |. | be the size of input data (i.e. a function |. |: D -> N), where D is the input
domain, N = {1,2,3,...}. The inherent complexity of a recursive function is defined
as follows:

Definition 2

The function ICa:N-+N is called an inherent complexity of the recursive function
/ . ^ E(f) w.r.t. | . | in the context a, where ICa(n) is defined as follows:

ICJji) = max{deptha(x) | \x\ = n),

where deptha(x) = min{f|xeDoma(£'1(l)N|, 1)}, maxA"= oo, if Xis infinite or cx>eX.

If there are constants Cu C2 > 0 and natural number n0 so that for all n> n0 that

we say that ICa(n) is of order g(n), written as ICa(n) = O(g(n)).

Intuitively, j f eDom a (£ ' ( l ) | 1) means that when the value/(x) is needed in the
context a, the rth approximation El{L) \. 1 of/, the least fixed point Ex(J.) \. 1, is able
to produce an approximate result for the use under context a. The depth,/*) is the
minimum of such approximations. Then the inherent complexity ICa(n) is the least m
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such that the wth approximation is sufficient for all input x of size n. Since the mih
approximation of the least fixed point corresponds to the depth of recursive calls
being limited to be less than or equal to m, roughly speaking, the inherent complexity
of a recursive function is the depth of recursive calls. Subsequently, we will call the
number

min{/|xeDomc,(£'((-L)|l)}

the depth of recursion of f[x) with respect to the context a, written as depth/iB(jc).

Example 5
Let \n\ = n. Let the context be STR.

(1) The inherent complexity of the function E in example 1 w.r.t. |. | is IC(n) = n,
because for every / = 1,2,...,

min{t | (eDom(£*(!))} = /.

But, the inherent complexity of the function F is 0(1).
(2) The function E in Example 2 is of linear inherent complexity, but the inherent

complexity of the function F is O(log2«).
(3) The inherent complexities of the two functions in Example 4 are linear, i.e. of

the order 0{ri).
(4) Define the function iota as follows:

fiotaO<=<0>

jiota (n + 1) <= (n + 1):: (iota ri)

Let |<x1 ;x2 , . . . ,xn}\ = n. Define the projection take-k to be the function

take_k(xl,x2,...,xm) = \
l< j , if m < k.

The inherent complexity of iota in the context takeJk is constant, i.e. 0{k). However,
the inherent complexity of iota in the context take-all is 0{ri), where

((x1,xi,...,xm'> if*,* 1 , for all i = 1,2, ...,m;
take-.all <x x x ) i

(
1; x2,..., xm) = i

«J, otherwise. •

The following theorem shows that folding/unfolding transformations cannot
improve the order of inherent complexity of recursive functions:

Theorem 3
Let a be a given context. Assume that the program F is derived from E by
folding/unfolding transformation, and that their inherent complexities arej{n) andg{n)
in the context a, respectively. Then, there is a constant C > 0 so that

An) > C*g(n).
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Proof
Let deptha(x) = min {/1 xeDoma(£ '( l ) 11)},

depth^x) = min{;|.xeDoma(/r((±H !)}•
By Theorem 3, there is a constant K~^\, such that for every t = 1,2,...,

By the monotonicity of projections, we have

Hence, by the definition of Dom, we have that for every x,

x e Dom^F'Cl) j 1) ^xeDoma(E
Kt(±) 11),

i.e. dep ths ) ^ (l/K) deptha(x).

By the definition of inherent complexity, we have

f{ri) = max{depth;(x) | |x| = n)

= (\/K)g(n). D

4.3 Reasonable computation models and a bound of efficiency gain

A computation model is said to be reasonable if the amount of time needed in
computing a recursive function is always greater than or equal to the maximal depth
of recursion in the execution. More formally, let/be a recursive function, depth^ a(x)
be the depth of recursion of execution f[x) under context a, and Tf a(x) be the time
needed to compute f{x) in a computation model under context a. Then,

Definition 3
A computation model is said to be reasonable, if, for all functions f and data x, and
context a

depth,, a(x) ^ TfJx)

Obviously, a sufficient condition for a computation model being reasonable is that
each function call consumes at least one time unit, no matter whether the function call
is in parallel with the evaluation of other expressions of the same program. Therefore,
parallel computation, sequential computation, string reduction and graph reduction
are all reasonable, if function calls and reductions are time consuming.

Lemma 8
Let a be any given context. In reasonable models, the following inequality holds for the
inherent complexity ICJji) and time complexity Ta{n) of recursive programs in the
context a
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Proof
By the definitions. •

Now we can get a bound on efficiency gain by transformations for all reasonable
models.

Theorem 4 (Bound on efficiency gain)
Let a be any given context, and O(g(n)) be the order of the inherent complexity of a
recursive program E in the context a. Then the order of the time complexity in the
context a of the program derivable from E by folding / unfolding transformations will not
be less than O(g(n)).

Proof
Let F be a program derived from E by folding/unfolding transformations, ICE(ri) be
the inherent complexity of E, ICF{n) and T{n) be the inherent complexity and time
complexity of F, respectively. Then, by Lemma 8, T(n) ^ ICF{n). By Theorem 3, there
is a constant C > 0 such that ICF(n) > C*ICE(n) = O(g(n)). •

Notice that if in a computation model the units of space needed in computing a
recursive function are always greater than or equal to the maximal depth of recursion
in the execution, than a similar result can be obtained for the space complexity of the
recursive program. However, on reduction machines it is possible that recursive calls
do not consume any space resource. For example, by string rewriting, the space
needed to compute f[n) given in Example 1 does not depend on the depth of recursion.

4.4 Some examples
Example 6 (Search algorithms)
The following is a linear search algorithm:

' linear_search(«, a) <=f{\,n, a)

J[i, i, a) <= if (A[i\ = = a) then 1 else 0

f(i, i + k, a) <= if (A [i] = = a) then i else J{i+\,i+k,a)

It cannot be transformed into the binary search algorithm given below, because the
former is of linear inherent complexity while the latter is of the order O(log2 n), where
n is the number of elements in the table to be searched

' binary_search(«,a) <=J{\,n,a)

f[i, i, a) <= if A[i\ = = a then ;' else 0

fii, i+ &, a) <= if (A[i+k/2) = = a) then / + fc/2

else if (A[i+k/2] < a) thenf{i+k/2 + l,i+k,a)

elsef{i,i+k/2-l,a)

where we assume that A[i\ ^A[i+\\, for all / = 1,2,...,«. Here, to avoid syntactic
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insert_sorting:

merge_sorting:

reasons for untransformability, we make the two functions have the same
functionality. •

Example 7 (Sorting algorithms)
This example will show underivability between sorting algorithms.

(1) Consider the following two sorting programs:

' sort(nil) <= nil

sort(x:: x 1) <= insert(x, sort(x 1))

insert(x, nil) <= <*>

msQvX{x,y::y\)<=\{x > y theny::insert(x,yl) else x::{y::y\)

sort nil <= nil

sort x::x\ <= merge (sort u, sort v) where <w,v} = split (xr.xl)

merge(nil, y)<=(,y}

merge(x, nil) <= <x>

m<ZTge(x::x\,y::y\)<=if x > ytheny::merge(x::xl,yl)

else x::merge(;cl,.y::.yl)

If we consider the functions insert and merge as primitives, the inherent complexity
of insert sorting is 0{n), but the inherent complexity of merge sorting is 0(log2n). By
Theorem 3, we cannot transform insert sorting into merge sorting.

Now the question is whether we can transform insert sorting into merge sorting if
insert and merge are not considered as primitive functions? The answer is no. There
is no call to the function sort in the definitions of insert and merge, so we can consider
the definitions of insert and merge as laws about primitives. If there were a
transformation with the definitions of insert and merge, by replacing each use of the
definitions in the transformation with an application of a law rule, we could have
obtained a transformation without the definitions of insert and merge.

(2) The following bubble sorting algorithm
for i = n to 1 do

fory = 0 to i— 1 do
if A[j] > A[j+ 1] then (A[j], A[j+ !]••= (A[j+ 1], A[j\) endif.

can be translated into the following equations:

bubble_sort:
for(« + 1, / + 1, A) <= for(/, 0, A)

for(j+k+l,j,A)<= fort/+k + 1J +1, exchangeC/', A))

where exchange is considered as a primitive function which computes the if-statement
in the loop body.

The inherent complexity of bubble sorting is O(n2), where n = ||,4|| is the length of
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the list A to be sorted. Therefore, from the system of equations, we cannot derive any
sorting algorithm which has time complexity less than O(n2).

However, the same bubble sorting algorithm denned by the following equations is
of linear inherent complexity:

sort nil <= nil

sort (x::xl)<=m::sort (delete (m,x::x\Y) wherem = rain(x::x\)
bubble_sort':<

min (x:: nil) •«= x

rrdn (x:: (y ::y I)) <= (if x > z then zelsex) where z = min(y::yl).

where delete is a primitive function which deletes an element from a list.
Notice that the function

Min (A) = head(bubble_sort(^))

is of O(n2) inherent complexity. Therefore, by Theorem 4, we can neither transform
it into a linear time complexity program, nor evaluate the program in linear time
complexity under lazy or eager evaluation. But,

Min 04) = head(bubble_sort'00)

has a linear inherent complexity. In fact, it cannot only be transformed into a
program of linear time complexity, but can also be evaluated in linear time
complexity under lazy evaluation (Wadler, 1988). •

5 Conclusion

It is well-known that the folding/unfolding system is partially correct but incomplete
(Burstall and Darlington, 1977). Formal proofs of the partial correctness can be
found in Knott (1985) and Yongqian et al. (1987). From their proofs, we cannot get
the results of this paper. However, the partial correctness and incompleteness are
corollaries of our results.

Example 1 of this paper comes from Burstall and Darlington (1977), in which the
following counter example of completeness is given. The function

cannot be transformed into
/(«)<= 0

by folding/unfolding. The reason of underivability given by Burstall and Darlington
is that the pattern n cannot be derived from n + 1 and 0. No formal proof is given, and
whether there exist some eureka making the transformation possible is also not
answered. Here, we changed the definition of the second function so that their
argument does not apply to our example, but it is still not transformable as formally
proved in the paper. And by Theorem 2, we know that there is no eureka which can
make the transformation possible. Moreover, by Theorem 4 of the paper, any
program derivable from the first program has a linear time complexity.
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The necessary conditions of derivability obtained in the paper is strong enough for
practical use, especially the result about the bound on efficiency gain. It is so tight that
many pairs of algorithms can be distinguished. Moreover, it is possible to determine
the transformability without knowing the details of the program it has to be
transformed to. For example, from the bubble sorting program in the Example 7, it
is impossible to derive any sorting algorithm whose order of time complexity is less
than O(n2), hence quick sorting is underivable since its time complexity is O(nlog2«).
The result is also very general in that it is true for all reasonable computation models.
As far as we know, there is no similar work on such conditions of derivability,
especially the power of eureka and the bound on efficiency gain.
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Appendix: Proofs of lemmas
Proof of Lemma 1 (sketch)

(i) Obvious,
(ii) By induction on n and use of (i) repeatedly. •

Proof of Lemma 2 (sketch)
(i) Notice that whenever the rule La <= Ra is applicable to an expression e, the rule

L <= R is also applicable and the results are the same. Therefore, by induction
on the length of the computation, we can prove that every computation
sequence in F(g) can be transformed into a computation sequence in E{g) which
leads to the same result by replacing the application of La <= Ra by L <= R.
Thus, we have

F(g) < E(g)

On the other hand, E is a subset of F, hence by Lemma 1, we have

E(g) *S F(g)

(ii) By induction on n and use of (i) repeatedly. •

Proof of Lemma 3
Without loss of generality, we assume that the system E of equations defines two
function symbols/and g, Fis the subset of equations in E which defines the function
symbol/, and G is the subset of equations in E which defines the function symbol g.
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Assume that E is transformed to H by applying the unfolding rule:

E-V-+H

Without loss of generality, we also assume that L <= R is in the form of

fp1...pm<=R
and U <= V is in the form of

gqx...qn<=V

By the applicability condition of the unfolding rule, we have

for some substitution a so that a ( / ) = / .
We assume that the o is the identity substitution. This does not involve loss of

generality, because if u is not the identity substitution we can apply the instantiation
rule L<=/i

E-I^E"

and obtain an equation La <= Ra in E". Then apply the unfolding rule to E"

La<=Ra

E" -IS-+H
V-=V,p

This application satisfies the assumption. And by Lemma 2,

E'(±, 1) = E"\L, 1), for all / = 1,2,....

So the proof of the Lemma can be done by proving E".
Then, by the definition of the unfolding rule, H is

Now, we prove that / / " (1 ,1) ^ E2n(±, 1) by induction on n. When n = 1, we have

H(±,±) = \

where V = V[R(±, l ) \ p , l \ p ' , for all p' * p so that V\ p' = / o r V\ p' = g].

Because L^F(±,±), 1 < G ( 1 , 1 ) , and by Lemma 1, R(±, 1) ^ F ( l , 1), the
following inequality follows from the monotonicity of functionals,
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where

V" = V[F(±, l ) \ p , for all p so that V\ p = / ,

G(l, l ) \p ' , for all p' so that V\ p' = g\.

Obviously, V" = K(F(1,1), G(±, 1)).
The satatement follows from the inequality that E(l, 1) < E\±, 1).
Assume that the inequality holds when n = k. Then when n = &+1, we have

, 1) = H(Hk(±, 1)) ^ H(E2k(l, 1)) (Hypothesis, monotonicity of # )

\gq1...qn^V[R(f,g)\pKEtt(l,l))

(E2k+\l,L);

where K' = F[/?(£2*(±, l))\p,
i ( l j ± ^ p / for a l l p ' + p s o that F| p' = / ,

- ^ l , l))\p" for all p" so that F| p" = g]

Because E2*"^!, 1) ^ £2 t (±, 1), and by Lemma 1, we have

By the monotonicity of E, this implies that

(1,1))\P for all p so that V\ p = / ,

G{E2k{L, l))\p for all p so that V\p = g]

= £2<*+1>(l, ±). (Lemma

Moreover, because E2k+\L, 1) ^ E2k+2(±, 1), we have

Proof of Lemma 4
By induction on «. Very similar to the proof Lemma 3. •

Proof of Lemma 5 (Sketch)
(i) Let E is transformed into F by applying the law P = Q to the right hand side

of an equation L<= R, i.e.
L<=R

E-Tu-+F
P-Q.p

where F = E+(L <= R[Qo\p\)
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and ( + ) R\p = Pa
Notice that by a law we mean that for all substitution o',

(•) PC = Qa'.
Therefore, for all functions (a,b,...,c)

(R[Qo\p])(a,b,...,c)

(by(*))

= (R[Pa\p])(a,b,...,c)

= R(a,b,...,c) (by

Therefore, for all functions a,b,...,c,

E(a, b,...,c) = F(a, b,...,c).

(ii) By induction on n and repeated uses of (i). •

Proof of Lemma 6.
Very similar to Lemma 5. •

Proof of Lemma 7 (By induction on n)
(a) When n = 1, we have

So, (*) holds when n — 1.
(Jb) Assume that (*) holds when n = k, then when n = k +1, we have that

Fk+1(±)

= F(F*(±)) (definition)

= (£C/), / /(/ , g)) (F%±)) (definition of F)

= (E(f), H{f, g)) {E\L), F(x, y)) (Hypothesis)

= (£(£*(!)), H(E"(±), F(x, y)) (assumptions)

= (£*+1(-L), H{x', y')) (definition)

where x' = Ek(±), and y' = F(x,y). So (*) holds when n = k+ 1.

Therefore, the equation holds for all n = 1,2, Q
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