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SUBLINEAR BODY FORCE WITHOUT DEFINITENESS

CONDITIONS ON THE ELASTICITIES
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1. Introduction

In this paper, we study the boundary-initial value problem for a linear elastic body in
a bounded domain, when the body force depends on the displacement vector u in a
sublinear way.

Recently, much attention has been given to nonlinear body forces not only to study
the fundamental solutions of the equations governing linear elastodynamics, see e.g.
Kecs [3], but also to derive global non existence results in abstract problems with direct
applications to nonlinear heat diffusion or to the nonlinear wave equation, see e.g. Ball
[1], Levine and Payne [10].

In this context, Slemrod [13] has shown how such forced systems may be regarded as
distributed control problems.

The boundary-initial value problem is therefore

-jgf ~ (aiJkkWuti h)j= /,(u), (x, t) e Q x (0, T)

«<(M) = 0 ,(x,t)erx[0,T)

^ (1.1)

In these equations, Q is the three-dimensional elastic body bounded by a smooth surface
F, [0, T) is the maximal interval of existence, w, are the cartesian components of the
displacement vector about a reference configuration; aiJkh(x) are the elasticities which we
suppose to satisfy the major symmetry condition namely aijkh = akhij, f{ is the body
force and ul

0, v
l
0 are prescribed functions; standard indicial notation is employed for

spatial derivatives.
Let G(u) be the potential associated with f such that ([7]):

i ^ (L2)
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It is convenient to let also | | | | , <,> denote the norm and the inner product on (L2(f2))3

and to let A(-, •) denote the (symmetric) bilinear form generated by aijkh, i.e.

A(u,\) = $aijkhuiJvkthdx. (1.3)
Si

For a sufficiently regular solution (and we assume that such a solution exists, at least
locally), we may easily establish the following energy equation, appropriate to (1.1):

E(t) =j\\u'\\2 +i4(u, u) - G(u) = £(0) (1.4)

where

In [7], the writers showed that, for A positive definite, £ (0 )^0 and functions f, G
satisfying the "sublinear" restriction

|2? (1.5)

where <x,y,n are real constants such that a > l , 0 < y < l , n>Q, the solution to (1.1)
decays to zero in a finite time.

Such behaviour is typical of sublinear equations, see e.g. Payne [12] and so we here
turn our attention to the case of sublinear f, but without any requirement of sign
definitess on the elasticities aijkh.

We find that, for aiJkh indefinite, it is possible to exhibit specific conditions on the
initial data which insure the solution will grow and lower bounds are determined for the
appropriate growth results.

Since the linear problem is also unstable for indefinite aiJkh (see [5]), it is perhaps not
surprising that we again find unbounded behaviour. However, we are able to accurately
assess the effect of the sublinear term f on the growth rate as compared with the linear
results of Knops and Payne [5].

Finally, we observe that many writers have studied linear elastodynamics when the
strain energy is not positive definite bounded below, that is when the elasticities do not
satisfy the inequality A(u,u)^/c||u||2,fe>0, much interest having been in determining the
growth behaviour of solutions, see e.g. [4,6,7,9,11].

Galdi and Rionero [2] have also modified logarithmic convexity arguments to
establish (Holder) continuous data dependence in linear elastodynamics on exterior
unbounded domains, again without any definitess assumption on the elasticities.

We add that, although we restrict ourselves to strong solutions to (1.1), it is easy to
generalize the ideas of this note to weak solutions or to certain abstract differential
equations in Hilbert spaces as considered in [5,7].

2. Growth results

We put:
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(2.1)

and then consider the class of sublinear non linearities satisfying the restriction

2G(u)-<u, />^F? (2.2)

for some real \i, y, with fi>0, 0<y<l.

Remark 1. Note that (2.2) is compatible with (1.5) in many situations; for example,
when f=u|u | p~1 ,0<p<l, it is possible to find an appropriate choice of the constants so
that both (1.5) and (2.2) are satisfied. It is perhaps noteworthy to observe that, if (1.5)
and (2.2) hold simultaneously and A(u, u) is positive definite bounded below, then it is
easy to show that ||u||2 remains bounded. This result follows directly from the energy
equation by using the mentioned conditions and by an application of Holder's
inequality.

We now establish the following theorem:

Theorem. Let u be a classical solution to (1.1) with f and G satisfying the relation
(2.2). Then, we have:

(a) / / £(0)^0 and F (0 )>2[Ml-y) ] 1 / 2 ^ ( 1 + y)/2(0), F(t) is bounded below by an
increasing exponential function for all t>0.

(b) / / £(0)>0 and F(0)>B, where B = [8£(0)F(0) + 4/iF1+1'(0)/(l-y)]1/2, then the
conclusion of the preceding statement holds.

(c) / / £(0) > 0 and F'(0) = B, F(t) is bounded below by a polynomial of order greater
than 2.

Proof. The proof employs logarithmic convexity arguments in the vein of Knops and
Payne [5]. By computation:

F = 2<u,u'> (2.3)

F" = 2<u, u"> + 2||u'||2 = 2||u'||2 + 2<u, f> - 2A(u, u) (2.4)

as can be readily seen from (1.1). Substitute now in (2.4) for A(u,u) using (1.4) to find
that:

F ' = 4||u'||2 + 2<u,f>-4G(u)-4£(0) (2.5)

Hence, from (2.3) and (2.5), we may form the expression:

FF"-(F')2 =4||u||2||u'||2 + 2F<u,f>-4FG(u)-4F£(0)

-4<u, u'>2 ̂  2F[<u, f> - 2G(u)] - 4F£(0) (2.6)

where the term 4||u||2||u'||2 — 4<u,u')2 has been discarded. Next, F'(0)>0 and so either

(i) F'(t)>0Vt>0
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or

(ii) 3 (a smallest) rj<oo, such that F'(?/) = 0.

Suppose the second case. Then, on [0, >/), we employ (2.2) in (2.6) to derive:

^ 1 . (2.7)

Let us now turn our attention to the initial conditions of part (a). Thus, we may discard
the first term on the right of (2.7), multiply by F'/F and then integrate to find:

6 [0, rf), (2.8)
\ r /

where

Taking into account the initial conditions of (a), X2 > 0 and so, by continuity, F'(ri) =/= 0,
which is a contradiction. Hence F'(r)>OVt and, by the same reasoning as above, (2.8)
holds Vt and so:

F'^XF (2.10)

which leads to the conclusions of part (a) of the theorem.
To establish part (b), we retain all of (2.7). By the same contradiction argument as

above, we argue F'(t)>0 on [0,^) and then multiply (2.7) by F'/F to obtain after
integration:

Thanks to the assumptions of part (b), the right hand side of (2.11) is positive, which
implies F'(t)>0,Vt, hence we again deduce an inequality equivalent to (2.10).

Finally to prove also part (c), we begin by observing that (2.11) reduces to the form:

^ F ^ . (2.12)

Employing once more reductio ad absurdum, since F'(i) > 0 on [0, q), certainly F(t}) > 0
and so, from (2.12) F'(rj)j=O. Therefore (2.12) holds for each £>0 and this inequality
may be manipulated to yield:

which completes the proof of the theorem.

https://doi.org/10.1017/S001309150002232X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150002232X


GROWTH ESTIMATES IN LINEAR ELASTICITY 227

Remark 2. It is worth making some observations on the conclusions of Remark 1
and the results of the Theorem.

Firstly, note that the proof of Remark 1 was carried out for a class of strong
solutions u satisfying more restrictive hypotheses than the ones necessary to establish
the Theorem; any strong solution of this class can be expected to be smoother than the
ones we require to exist to prove our Theorem, hence the Theorem should hold also for
the solutions of the first class, which yields a contradiction.

However no contradiction exists as we can easily show that the solutions of the first
class are not compatible with the particular choice of the initial conditions under which
the Theorem is true, as follows.

Appendix. Let us begin by examining initial data such that £(0)^0. When the
conditions (1.5) and (2.2) hold simultaneously, we restrict attention to functions G(u)
satisfying the inequality:

(A.I)

By virtue of the positive defmitess of the elasticities and by (A.I), (1.4) gives:

£ (A.2)

Consider next F(0) = ||u(0)||2. An application of Schwarz's inequality leads to:

F(0)g2||u(0)||||n'(0)||. (A.3)

Suppose now that the solutions u satisfying (A.I) and (A.2) satisfy also the initial
conditions stated to prove part (a) of the Theorem.

We have:

^ ^ (A.4)

hence, we arrive at the inequality:

||u'(0)||2>^y||u(0)||2*. (A.5)

This inequality is compatible with (A.2) only if a<l— y, which is not possible as we
have considered <x> 1.

Consider next £(0)>0 and assume the initial conditions of part (b). From (1.4), for
the solutions verifying (A.I) at t = 0, we obtain:

^ (A.6)
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By the same reasoning as above, the second choice of initial data yields:

2£(0)+—^— F{0y<2E(0)+-F(0y (A.7)
(i— y) <*

which leads to the same contradiction argument as in the first case. Analogously, it is
possible to prove that the classical solutions considered in Remark 1, violate also the
initial conditions of part (c).
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