
J. Appl. Prob. 48, 892–899 (2011)
Printed in England

© Applied Probability Trust 2011

THE HARTMAN–WATSON DISTRIBUTION
REVISITED: ASYMPTOTICS FOR
PRICING ASIAN OPTIONS

STEFAN GERHOLD,∗ Vienna University of Technology

Abstract

Barrieu, Rouault and Yor (2004) determined asymptotics for the logarithm of the
distribution function of the Hartman–Watson distribution. We determine the asymptotics
of the density. This refinement can be applied to the pricing of Asian options in the
Black–Scholes model.
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1. Introduction and main result

The distribution of the integral of geometric Brownian motion has attracted a lot of interest,
in particular because it is needed to calculate the price of Asian options in the Black–Scholes
model. Yor [16] obtained the formula

P[A(ν)
t ∈ du | Wt + νt = x] =

√
2πt

u
exp

(
x2

2t
− 1 + e2x

2u

)
I0

(
ex

u

)
fex/u(t) du, (1)

where Iν denotes, as usual, the modified Bessel function of the first kind, and

A
(ν)
t =

∫ t

0
exp(2(Wh + νh)) dh,

where W is a standard Brownian motion. The present note focuses on the function fr(t) in (1),
which is the density of the Hartman–Watson distribution [7], [15]. It is defined for a positive
parameter r by the Laplace transform∫ ∞

0
e−utfr (t) dt = I√

2u(r)

I0(r)
, Re(u) > 0.

Small-time asymptotics of the conditional density (1) correspond to left-tail asymptotics of
fr(t). Numerical problems in the evaluation of (1) for small t prompted Barrieu et al. [1] to
analyze the left tail of the Hartman–Watson distribution asymptotically. Using the Gärtner–Ellis
theorem from large deviations theory, they obtained the asymptotics

Fr(t) = exp

(
− log(1/t)2

2t
+ o

(
log(1/t)2

t

))
as t → 0 (2)
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for the distribution function. However, this result is not immediately applicable to the calcula-
tion of (1). Barrieu et al. [1] wrote that ‘the standard asymptotic methods (e.g. the saddle point
method) do not seem to be suitable for this study’, and that they ‘are not able to refine these
results for the Hartman–Watson density itself’.

In fact, the saddle point method [2, Chapter 4], [14, Section II.4] is applicable to the Laplace
inversion integral

fr(t) = 1

2iπ

∫ +i∞

−i∞
eut

I√
2u(r)

I0(r)
du

for the density fr(t), but needs some care. First, replacing I√
2u(r) by an asymptotic approxi-

mation relieves us from studying potentially difficult monotonicity properties of the modified
Bessel function, and allows us to formulate the result in a way that avoids roots of equations
involving the Bessel function. Second, it turns out that elementary approximations of the
integrand’s saddle point lead to integration contours that are too far away from the saddle
to make the method work. An approach based on a contour through the exact saddle point
establishes the following asymptotics for the density fr(t). For brevity, we write

ρ = log
r

2
√

2
.

Theorem 1. For t > 0, denote by u0(t) the largest solution of the equation

t = log u

2
√

2u
− ρ√

2u
+ 1

4u
, (3)

which exists for all sufficiently small t . Then the Hartman–Watson density satisfies

fr(t) =
√

e

πI0(r)

√
u0(t)

log u0(t) − 2 − 2ρ
e−tu0(t)+√

2u0(t)

(
1 + O

(√
t log

(
1

t

)2))
(4)

=
√

e

2πI0(r)

log(1/t)1/2

t
e−tu0(t)+√

2u0(t)

(
1 + O

(
log log(1/t)

log(1/t)

))
(5)

as t → 0.

Formula (4) gives a much better approximation than (5); the simplification in (5) is of little
use, since u0(t) has to be computed anyway to evaluate (4) or (5) numerically.

To obtain a feel for the growth of the exponential in (4), we expand u0(t) by bootstrapping
(cf. [2, Section 2.4]):

u0(t) = log(1/t)2

2t2

(
1 + 2 log log(1/t)

log(1/t)
− 2ρ + log 2

log(1/t)
+ o

(
1

log(1/t)

))
. (6)

Therefore, the exponent in (4) has the expansion

−tu0(t) + √
2u0(t) = − log(1/t)2

2t
− log(1/t) log log(1/t)

t

+
(

1 + ρ + 1

2
log 2

)
log(1/t)

t
+ o

(
log(1/t)

t

)
. (7)
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This shows in particular that the formula

fr(t) = exp

(
− log(1/t)2

2t
+ o

(
log(1/t)2

t

))
, (8)

obtained from (2) by formal differentiation, is correct.
For numerical accuracy, it is certainly preferable to use (4) as it is, without replacing the

exponent by (7); still, expansion (6) can serve as a good initial guess when computing the root
of (3). In this way, the leading term of fr(t) can be calculated effortlessly even for extremely
small values of t , say t = 10−50.

2. Analysis of the Laplace inversion integral

The Laplace inversion formula yields the representation

fr(t) = 1

2iπ

∫ R+i∞

R−i∞
eut

I√
2u(r)

I0(r)
du,

where R > 0, so that the integration contour lies in the right half-plane. To estimate the growth
of fr(t) near t = 0, we have to investigate the singularity at ∞ of the integrand. For a large
index, the modified Bessel function admits the expansion [8], [13, p. 225]

Iν(r) ∼
(

r

2

)ν

eνν−ν−1/2
(

c0 + c1

ν
+ · · ·

)
, (9)

where the ci are constants, with c0 = 1/
√

2π . This holds for ν → ∞, uniformly with respect
to arg(ν), as long as arg(ν) is bounded away from ±π . Horn [8] showed (9) for Jν(r), the
Bessel function of the first kind, but from the relation Iν(r) = e−νπ i/2Jν(reπ i/2), one easily
sees that replacing Jν(r) by Iν(r) only affects the constants c1, c2, . . . in this expansion. If we
let the real part R of our integration contour tend to ∞ as t → 0, we therefore have

fr(t) = 1

(2π)3/2iI0(r)

∫ R+i∞

R−i∞

(
r

2

)√
2u

eut+√
2u(

√
2u)−

√
2u−1/2 du(1 + O(R−1/2))

= 2−7/4

π3/2iI0(r)

∫ R+i∞

R−i∞
exp

(
ut − 1

2

√
2u log u + √

2(1 + ρ)
√

u − 1

4
log u

)
du

× (1 + O(R−1/2)).

The integrand of the latter integral has a saddle point, let us call it u0 = u0(t), which is found by
equating the derivative to 0. This yields (3). Shifting the integration contour through the saddle
point achieves concentration, so that only a small part of the contour matters asymptotically.

In many instances of the saddle point method, it suffices to choose a contour that passes
through an approximation of the saddle point. In our example, one might try to use a contour
based on the first terms of (6). However, tedious calculations reveal that the concentration of
the integrand around the approximate saddle point is insufficient, no matter how many terms
of (6) are taken. We therefore set the real part of the integration contour to the exact saddle
point, so that R = u0:

fr(t) ∼ 2−7/4

π3/2iI0(r)

∫ u0+i∞

u0−i∞
exp

(
ut − 1

2

√
2u log u + √

2(1 + ρ)
√

u − 1

4
log u

)
du. (10)
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Let y denote the new (real) integration variable:

u = u0 + iy, −∞ < y < ∞.

Close to the saddle point, i.e. for small values of the new integration variable y, we have the
uniform expansions

√
u = √

u0 + iy

2
√

u0
+ y2

8u
3/2
0

+ O

(
y3

u
3/2
0

)
, log u = log u0 + iy

u0
+ y2

2u2
0

+ O

(
y3

u3
0

)
,

and

√
u log u = √

u0 log u0 + iy√
u0

+ i log(u0)y

2
√

u0
+ log(u0)y

2

8u
3/2
0

+ O

(
log(u0)y

3

u
5/2
0

)
.

We insert these into the exponent of (10) and obtain

ut − 1

2

√
2u log u + √

2(1 + ρ)
√

u − 1

4
log u

= u0t − 1

2

√
2u0 log u0 + √

2(1 + ρ)
√

u0 − 1

4
log u0 − My2 + O

(
log(u0)y

3

u
5/2
0

)
, (11)

where

M =
√

2 log u0

16u
3/2
0

−
√

2(1 + ρ)

8u
3/2
0

(12)

= t3

2 log(1/t)2

(
1 + O

(
log log(1/t)

log(1/t)

))
. (13)

Note that the y-terms in (11) vanish, because we integrate through a saddle point. We now have
to identify a range

−h < y < h

for y = Im(u) that captures the main contribution to the integral (10). A good choice is

h = log(1/t)2

t3/2 ,

because it satisfies h
√

M → ∞, so that the integral of the local expansion (11) can be completed
to a full Gaussian integral:∫ h

−h

e−My2
dy = 1√

2M

∫ h
√

2M

−h
√

2M

e−w2/2 dw

∼ 1√
2M

∫ ∞

−∞
e−w2/2 dw

=
√

π

M

∼
√

2π log(1/t)

t3/2 . (14)
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Moreover, the error from (11), the local expansion at the saddle point, is o(1), since

log(u0)y
3

u
5/2
0

= O

(√
t log

(
1

t

)2)
. (15)

We can thus determine the asymptotics of the portion | Im(u)| ≤ h of the integral (10):

2−7/4

π3/2iI0(r)

∫ u0+ih

u0−ih
exp

(
ut − 1

2

√
2u log u + √

2(1 + ρ)
√

u − 1

4
log u

)
du (16)

∼ 2−7/4

π3/2I0(r)
exp

(
u0t − 1

2

√
2u0 log u0 + √

2(1 + ρ)
√

u0 − 1

4
log u0

)

×
∫ h

−h

e−My2
dy

∼ 2−7/4

πI0(r)
M−1/2u

−1/4
0 exp

(
u0t − 1

2

√
2u0 log u0 + √

2(1 + ρ)
√

u0

)
. (17)

This gives the right-hand side of (4), after expressing
√

u0 log u0 via the saddle point equa-
tion (3), which yields

− 1
2

√
2u0 log u0 = −2u0t − ρ

√
2u0 + 1

2 . (18)

Furthermore, expanding u0 by (6) gives the expression in (5). Note that we have not yet
proved (4) and (5); it remains to show that the tails of (10), i.e. the parts where | Im(u)| ≥ h,
are asymptotically negligible. This ensures that (16) indeed captures the asymptotics of fr(t).

3. Tail estimate

To bound the tails of (10), it suffices to consider the case y = Im(u) ≥ h, since the lower
half of the tail can be handled by symmetry. We first deal with the part of the contour in (10)
where the imaginary part of the integration variable is very large, say y ≥ elog(1/t)2/4. Then y

clearly dominates u0, and it follows, from

Re(log u) ∼ log y, Re(
√

u) ∼ 1
2

√
2y, and Re(

√
u log u) ∼ 1

2

√
2y log y,

that the absolute value of the integrand is bounded by

eu0t−√
y

for small t . Hence, we obtain the bound

eu0t

∫ ∞

elog(1/t)2/4
e−√

y dy ∼ 2 exp

(
u0t + 1

8
log

(
1

t

)2

− elog(1/t)2/8
)

. (19)

Finally, we bound the portion of the integral (10) that is close to the central part, i.e.

h ≤ y < elog(1/t)2/4. (20)

The following lemma shows that, for small t , the absolute value of the integrand decreases as y

increases.
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Lemma 1. Let B be a real number. Then, for Re(u) > 0 and sufficiently large |u|, the real
part of

√
u log u + B

√
u decreases with respect to | Im(u)|.

Proof. We write u = x + iy. By symmetry, it suffices to consider the case y > 0, so that
arg(u) > 0. Straightforward calculations show that

∂

∂y
Re(

√
u) = 1

2
|u|3/2

(
y cos

arg(u)

2
− x sin

arg(u)

2

)

and
∂

∂y
Re(

√
u log u) =1

2
|u|3/2

(
(log |u| + 2)

(
y cos

arg(u)

2
− x sin

arg(u)

2

)

− arg(u)

(
x cos

arg(u)

2
+ y sin

arg(u)

2

))
.

Hence, we are led to investigate the sign of

y

(
(log |u| + B + 2)

(
cos

arg(u)

2
− x

y
sin

arg(u)

2

)
− arg(u)

(
x

y
cos

arg(u)

2
+ sin

arg(u)

2

))
.

Suppose that |u| is so large that log |u|+B +2 ≥ 12. In the preceding formula, we estimate the
trigonometric functions by the first term of their Taylor series at 0, except the first cos, where
we use two terms. This yields the lower bound

y

(
12

(
1 − 1

8
arg(u)2 − x

2y
arg(u)

)
− x

y
arg(u) − 1

2
arg(u)2

)

= y

(
12 − 2 arg(u)2 − 7x

y
arg(u)

)

= y

(
12 − 2 arctan(w)2 − 7

w
arctan(w)

)∣∣∣∣
w=y/x

.

Now observe that arctan(w)2 < π2/4 and arctan(w) < w for w > 0, so that

12 − 2 arctan(w)2 − 7

w
arctan(w) > 12 − π2

2
− 7 > 0.

This shows that Re(
√

u log u + B
√

u) has a positive derivative with respect to y.

Therefore, we can bound part (20) of integral (10) by the value of the integrand at y = h

times the length of the path. By (11), (18), and

My2
∣∣
y=h

∼ 1

2
log

(
1

t

)2

,

this amounts to a bound of the form

exp

(
−tu0(t) + √

2(1 + 2ρ)
√

u0(t) − 1

2
log

(
1

t

)2

+ o

(
log

(
1

t

)2))
elog(1/t)2/4

= exp

(
−tu0(t) + √

2(1 + 2ρ)
√

u0(t) − 1

4
log

(
1

t

)2

+ o

(
log

(
1

t

)2))
. (21)
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Table 1.

Source of error Relative error

Replace Iν by (9) O(t/ log(1/t))

Local expansion (see (11) and (15)) O(
√

t log(1/t)2)

Gaussian tails (see (14) and (22)) exp(− 1
2 log(1/t)2 + o(log(1/t)2))

Relative error of M (see (13) and (14)) O(log log(1/t)/ log(1/t))

Outer tail (see (19)) exp(−elog(1/t)2/8 + o(elog(1/t)2/8))

Inner tail (see (21)) exp(− 1
4 log(1/t)2 + o(log(1/t)2))

To complete the proof of Theorem 1, let us now compare the six error terms that arose in the
analysis (see Table 1). Note that the error from completing the tails of the Gaussian integral
in (14) is √

2

M

∫ ∞

h
√

2M

e−w2/2 dw ∼
√

2

M

e−w2/2

w

∣∣∣∣
w=h

√
2M

= exp

(
−1

2
log

(
1

t

)2

+ o

(
log

(
1

t

)2))
. (22)

If M is not expanded, i.e. (12) is used, then the error from the local expansion dominates, which
leads to (4). If, on the other hand, expansion (13) of M is taken, then it is the relative error
of M that prevails.

4. Comments

The left tail of the Hartman–Watson distribution (see (8)) is somewhat thinner than that of
the Lévy distribution (stable distribution with index α = 1

2 ), with density

g(t) = 1√
2πt3

e−1/2t , t > 0,

and Laplace transform ∫ ∞

0
e−utg(t) dt = e−√

2u, Re(u) > 0.

The faster decay of the Laplace transform of the Hartman–Watson distribution, of the order of
exp(−√

u log u), becomes manifest in the additional factor log(1/t)2 in the exponent of (8).
We now briefly comment on possible refinements of Theorem 1. Technically speaking,

continuing expansion (13) and inserting into (17) refines (5) to a full asymptotic expansion.
A better expansion, respecting the asymptotic scale of the problem, can be obtained by retaining
the explicit formula (12) for M , and taking more terms in (9) and (11). This should pose
no essential difficulties; note, however, that each term in expansion (9) gives rise to a new
saddle point, as the coefficient of 1/u in (3) changes. Thus, the expansion will involve several
implicitly defined functions of t besides u0(t). Since the dependence of the solution of (3) on
the coefficient of 1/u is light, it might be possible to give an expansion that features only u0(t).
This seems of little practical interest though.
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Concerning applications, our results can be used as a substitute for the Hartman–Watson
density for small arguments, in particular, for evaluating the density of A

(ν)
t numerically for

small t (after integrating (1) with respect to the law of Wt + νt). The related problem of
determining small-time asymptotics for the density of A

(ν)
t is left to future research. This density

is difficult to evaluate numerically for small time [9]. Analyzing it asymptotically requires
handling a double integral; see [11] and [12] for asymptotic evaluations of double integrals
pertaining to other functionals of Brownian motion and the Brownian bridge, respectively. For
ν = 0, the analysis should be simpler, as the density of A

(0)
t can be expressed as a single

integral, via Bougerol’s identity [4], [10]. Note that tail asymptotics [5], [6] and large-time
asymptotics [4], [10] of A

(ν)
t are known. See also [3] for related limit laws.
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