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Mixing and average mixing times for
general Markov processes

Robert M. Anderson, Haosui Duanmu, and Aaron Smith

Abstract. Yuval Peres and Perla Sousi showed that the mixing times and average mixing times of

reversible Markov chains on finite state spaces are equal up to some universal multiplicative constant.

We use tools from nonstandard analysis to extend this result to reversible Markov chains on compact

state spaces that satisfy the strong Feller property.

1 Introduction

Consider the simple random walk on Z2n , given by

Xm =
m

∑
i=1

δ i , modulo 2n(1.1)

for an i.i.d. ∼ sequence δ1 , δ2 , . . . of random variables with Unif({−1,+1}) distribu-
tion. It is easy to see that X2m is always even, while X2m+1 is always odd for m ∈ N.
�is periodic behaviour means that the chain is not ergodic. On the other hand, there
are various ways that this periodic behaviour seems to be essentially the only obstacle
to mixing. For example, for T ∼ Geom(Cn2) for a sufficiently large constant C > 0,
one can easily check that the distribution of XT is very close to uniform on Z2n (see
e.g., [LPW09] for a coupling argument).

�is sort of (near-)periodicity is o�en undesired, and a common way to “fix”
the problem is to replace a chain with an ε-lazy version (in Example (1.1), the
1
3
-lazy chain can be obtained by sampling the driving sequence from δ1 , δ2 , . . .

i . i .d .∼
Unif({−1, 0,+1})). �is chain is also close to uniform a�er Θ(n2) steps, but it is
natural to ask if smaller modifications can also eliminate periodic behaviour; for the
above example, choosing T ∼ Unif({Cn2 ,Cn2 + 1}) spreads our random time over
only two choices but still works well. �is minimal modification turns out to work
quite generally, and [PS15] shows that this gives an equivalent reduction in the time a
discrete chain takes to mix (see also refinements in [HP17]). �e modest goal of this
paper is to give a quick proof of the analogous result for continuous chains.

Beyond providing a proof of this useful result, we were motivated to write this
paper as a way to illustrate how the machinery developed in [ADS19], which shows
thatmixing times and hitting times are equal up tomultiplicative constants for general
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Markov processes satisfying regularity conditions, can be used to give fairly quick and
simple translations of facts about discrete chains into facts about continuous chains.

2 Notation and Main Results

We fix a compact metric state space X endowed with Borel σ-algebra B[X] and let

{P(t)x (⋅)}x∈X ,t∈N denote the transition kernel of a Markov process with stationary
measure π.�roughout this paper, all transition kernels are assumed to have a unique

stationary distribution. We occasionally write P(t)(x ,A) for P(t)x (A). For any x ∈ X,
let P

(0)
x (⋅) be the Dirac measure on x. �roughout the paper, we include 0 in N. We

write Px(A) and P(x ,A) as an abbreviation for P
(1)
x (A) and P(1)(x ,A), respectively.

For probability measures µ, ν on (X ,B[X]), we denote by
∥ µ − ν ∥= sup

A∈B[X]

∣µ(A) − ν(A)∣
the usual total variation distance between µ and ν.

Definition 2.1 Let ε ∈ R>0. �e mixing time tm(ε) of {P(t)x (⋅)}x∈X ,t∈N is

min{t ≥ 0 ∶ d(t) ≤ ε},
where d(t) = supx∈X ∥ P(t)(x , ⋅) − π(⋅) ∥.

We use {P(t)L (x , ⋅)}x∈X ,t∈N to denote the lazy transition kernel of {P(t)(x , ⋅)}x∈X ,
given by the formula PL(x , ⋅) = 1

2
P(x , ⋅) + 1

2
δ(x , ⋅) where δ(x , ⋅) denote the Dirac

measure at x. Note that the lazy transition kernel {P(t)L (x , ⋅)}x∈X ,t∈N has the same

stationary distribution as {P(t)(x , ⋅)}x∈X ,t∈N, and we denote its mixing time by tL(ε).
In general, it is possible to have tm ≫ tL due to (near)-periodicity. To avoid these

issues, one could instead take an average over two successive steps. �is suggests the
following definition.

Definition 2.2 For ε ∈ R>0, the average mixing time is

ta(ε) =min{t ≥ 0 ∶ sup
x∈X

∥ 1

2
(P(t)(x , ⋅) + P(t+1)(x , ⋅)) − π(⋅) ∥≤ ε}.

Recall that a transition kernel {P(t)x (⋅)}x∈X ,t∈N is reversible if

∫
A
P(x , B)π(dx) = ∫

B
P(x ,A)π(dx).

for every A, B ∈ B[X]. We can now quote the following result from [PS15].

�eorem 2.1 ([PS15, �m. 1.4]) For every 0 < ε ≤ 1
4
, there exist universal positive

constants cε and c′ε so that for every finite reversible Markov process,

cε tL(ε) ≤ ta(ε) ≤ c′ε tL(ε).
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We generalize �eorem 2.1 to transition kernels with compact metric state space
satisfying the following continuity condition.

Definition 2.3 DSF�e transition kernel {P(t)x (⋅)}x∈X ,t∈N satisfies the strong Feller
property if for every x ∈ X and every ε > 0, there exists δ > 0 such that

(∀y ∈ X)(∣y − x∣ < δ Ô⇒ (∥Px(⋅) − Py(⋅)∥ < ε)).
�roughout the paper, we use C to denote the collection of discrete time reversible

transition kernels with compact metric state space satisfying Assumption 2.3. Our
main theorem is the following.

�eorem 2.2 For every 0 < ε < 1
4
, there exist universal constants dε , d

′
ε such that, for

every {Px(⋅)}x∈X ∈ C, we have
dε tL(ε) ≤ ta(ε) ≤ d′ε tL(ε).

2.1 Equivalent Form of Mixing Times and Hitting times

In this section, we define a quantity that is asymptotically equivalent to the mixing
times defined in the previous section. �is equivalent form plays an important role
throughout the entire paper. Let

d(t) = sup
x ,y∈X

∥ P(t)(x , ⋅) − P(t)(y, ⋅) ∥ .
Similarly, for ε ∈ R>0, define the standardized mixing time to be

tm(ε) =min{t ≥ 0 ∶ d(t) ≤ ε},
and let tL(ε) be the analogous quantity for the lazy kernel gL .

2.2 Nonstandard Analysis and Nonstandard Probability Theory

In this paper, we use nonstandard analysis, powerful machinery derived from math-
ematical logic, as our main toolkit. For those who are not familiar with nonstandard
analysis, [DRW18] and [DR16] provide reviews tailored to probabilists and statisti-
cians. [ACH97, CNOSP95, WL00] provide thorough introductions.

For completeness, we give a brief introduction to nonstandard analysis as well as
nonstandard probability theory. �is section is taken from [ADS19, Section. 2.2] and
[Kei84].

Given any set S, the superstructure VS over S is found by iterating the power set
operation countably many times. �at is

V1(S) = S ,
Vn+1(S) = Vn(S) supP(Vn(S)),

V(S) = ⋃
n∈N

Vn(S).
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We use ∗: V(S)→ V(∗S) to denote the nonstandard extension map taking ele-
ments, sets, functions, relations, etc., to their nonstandard counterparts. An internal
object is an element of a set ∗b where b ∈ V(S). We assume that S contains R as
a subset. In particular, ∗R and ∗N denote the nonstandard extensions of the reals
and natural numbers, respectively. An element r ∈ ∗R is infinite if ∣r∣ > n for every
n ∈ N and is finite otherwise. An element r ∈ ∗R with r > 0 is infinitesimal if r−1 is
infinite. For r, s ∈ ∗R, we use the notation r ≈ s as shorthand for the statement “ ∣r − s∣
is infinitesimal,” and similarly, we use use r ⪆ s as shorthand for the statement “either
r ≥ s or r ≈ s.”

Given a topological space (X ,T), the monad of a point x ∈ X is the set

⋂U∈T ∶ x∈U
∗U . An element x ∈ ∗X is near-standard if it is in the monad of some y ∈ X.

We say y is the standard part of x and write y = st(x). Note that such y is unique. We
use NS∗(X) to denote the collection of near-standard elements of ∗X], and we say
NS∗X is the near-standard part of ∗(X). �e standard part map st is a function from
NS∗∗ (X) to X, taking near-standard elements to their standard parts. In both cases,
the notation elides the underlying space Y and the topology T, because the space and
topology will always be clear from context. For a metric space (X , d), two elements
x , y ∈ ∗X are infinitely close if ∗d(x , y) ≈ 0. An element x ∈ ∗X is near-standard if and
only if it is infinitely close to some y ∈ X. An element x ∈ ∗X is finite if there exists
y ∈ X such that ∗d(x , y) <∞ and is infinite otherwise.

Let X be a topological space endowed with Borel σ-algebra B[X] and let MX
denote the collection of all finitely additive probability measures on (X ,B[X]). An
internal probability measure µ on (∗X , ∗B[X]) is an element of ∗M(X). Specifically,
an internal probability measure µ on (∗X , ∗B[X]) is an internal function from
∗
B[X]→ ∗[0, 1] such that

(1) µ(∅) = 0;
(2) µ(∗X) = 1; and
(3) µ is hyperfinitely additive (that is, it satisfies the usual equality for an additive

measure, but with the sum ranging from 1 to any element in ∗N).

�eLoeb space of the internal probability space (∗X , ∗B[X], µ) is a countably additive
probability space (∗X , ∗B[X], µ) such that

∗B[X] = {A ⊂ ∗X∣(∀ε > 0)(∃A i ,Ao ∈ ∗B[X])(A i ⊂ A ⊂ Ao ∧ µ(Ao ∖ A i) < ε)}
and

µ(A) = sup{st(µ(A i))∣A i ⊂ A,A i ∈ ∗B[X]}
= inf {st(µ(Ao))∣Ao ⊃ A,Ao ∈ ∗B[X]}.

Every standard model is closely connected to its nonstandard extension via the
transfer principle, which asserts that a first order statement is true in the standard
model is true if and only if it is true in the nonstandardmodel. Finally, given a cardinal
number κ, a nonstandardmodel is called κ-saturated if the following condition holds:
let F be a family of internal sets, if F has cardinality less than κ and F has the finite
intersection property, then the total intersection of F is non-empty. In this paper,
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we assume our nonstandard model is as saturated as we need (see e.g., [ACH97,
�m. 1.7.3] for the existence of κ-saturated nonstandard models for any uncountable
cardinal κ).

3 Hyperfinite Representation of Compact Spaces

In this section, we give an overview of hyperfinite representation for compact metric
spaces. Hyperfinite representation for more general metric spaces are discussed in
[DRW18]. We use similar notation to [DRW18]. For the rest of the paper, we use the
common notation d(x ,A) = inf{y ∈ X ∶ d(x , y)} for every x ∈ X and every A ⊂ X.
�e formal definition of a hyperfinite representation of a compact metric space is
given below.

Definition 3.1 Let (X , d)be a compactmetric space. Let δ ∈ ∗R+ be an infinitesimal.
A δ-hyperfinite representation of X is a tuple (S , {B(s)}s∈S) such that

(i) S is a hyperfinite subset of ∗X;
(ii) s ∈ B(s) ∈ ∗B[X] for every s ∈ S;
(iii) for every s ∈ S, the diameter of B(s) is no greater than δ;
(iv) B(s1) ∩ B(s2) = ∅ for every s1 ≠ s2 ∈ S;
(v) ⋃s∈S B(s) = ∗X.

�e set S is called the base set of the hyperfinite representation of X. For every
x ∈ ⋃s∈S B(s), we use sx to denote the unique element in S such that x ∈ B(sx).

As discussed in [DRW18], hyperfinite representations exist for more general
spaces. For simplicity, we focus on hyperfinite representations of compact metric
spaces in this paper. Moreover, by [ADS19,�m. 3.3], for every compact metric space
X and every positive infinitesimal δ, there exists a δ-hyperfinite representation of X.

4 Hyperfinite Representation of Markov Processes

Wegive a brief introduction of hyperfinite representation of generalMarkov processes
in this section. �e construction of such hyperfinite representations is developed in
[DRW18] and [ADS19].

Let {P(t)x (⋅)}x∈X ,t∈N be the transition kernel of a discrete-time Markov process
with state space X. We assume that X is a compact metric space for the remainder
of the paper unless otherwise mentioned. �e transition kernel can be viewed as a

function g ∶ X ×N ×B[X]→ [0, 1] by letting g(x , t,A) = P(t)x (A) for every x ∈ X,
t ∈ N and A ∈ B[X]. We will use g(x , t,A) and P

(t)
x (A) interchangeably. We will

construct an internal transition kernel on S to represent the standard transition kernel
g. We fix a set M = {1, 2, . . . ,K} for some infinite K ∈ ∗N throughout the paper. A
hyperfinite Markov process is defined analogously to a finite Markov process. Namely,
a hyperfinite Markov process is characterized by the following four ingredients:

(1) a state space S that is a non-empty hyperfinite set;
(2) a time lineM;
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(3) a set {ν i ∶ i ∈ S} ⊂ ∗R where each ν i ≥ 0 and∑i∈S ν i = 1;
(4) a set {p i j}i , j∈S of non-negative hyperreals with∑ j∈S p i j = 1 for every i ∈ S.

It was shown in [DRW18, �m. 7.2] that one can always construct a hyperfinite
Markov process given a fixed collection of {ν i ∶ i ∈ S} and {p i j}i , j∈S .

Let p be a standard probability measure on (X ,B[X]) and let (S , {B(s)}s∈S) be
a δ-hyperfinite representation of X for some infinitesimal δ. Define the associated
hyperfinite probability measure P (with respect to p) to be the internal probability
measure on S by letting P({s}) = ∗p(B(s)) for every s ∈ S. We now quote the
following result from [ADS19].

�eorem 4.1 ([ADS19, �m. 4.16]) Suppose g ∈ C has a stationary measure π. �en
there exist some hyperfinite representation (S , {B(s)}s∈S) of X and some internal
transition kernel H on S such that:

(i) the associated internal probability measure Π (with respect to π) is a ∗stationary
distribution of H;

(ii) if g is reversible with respect to π, then H is ∗reversible with respect to Π;
(iii) for every t ∈ N, every s ∈ NS(S), and every A ∈ ∗B[X], we have

∗g(s, t, ⋃
a∈A∩S

B(a)) ≈ H(s, t,A∩ S);
(iv) for every s ∈ NS(S), every t ∈ N and every E ∈ B[X], we have

g(st(s), t, E) = H(s, t, st−1(E) ∩ S).

Note that H(x , 1, ⋅) is generally not equal to the associated hyperfinite probability
measure of g(x , 1, ⋅), though they are closely related.

Lemma 4.2 ([DRW18, Lemma. 8.15]) Π(st−1(A) ∩ S) = π(A) for every A ∈ B[X].
Define the lazy internal transition kernel {HL(s, 1, ⋅)}s∈S associated with{H(s, 1, ⋅)}s∈S to be a collection of internal transition probabilities such that

HL(i , 1,A) ≡ ∑
j∈A

HL(i , 1, { j})
= ∑

j∈A

( 1
2
H(i , 1, { j}) + 1

2
∆(i , { j})) = 1

2
H(i , 1,A) + 1

2
∆(i ,A)

for every i ∈ S and A ∈ I(S), where ∆(i ,A) = 1 if i ∈ A and ∆(i ,A) = 0 if i /∈ A.
�eorem 4.3 ([ADS19, �m. 4.21]) Suppose g ∈ C has a stationary measure π.�en:

(i) For every t ∈ N, every x ∈ NS(∗X), and every A ∈ ∗B[X], we have ∗gL(x , t,⋃a∈A∩S

B(a)) ≈ HL(sx , t,A∩ S)where sx is the unique element in S such that x ∈ B(sx).
(ii) For every x ∈ X, every t ∈ N, and every E ∈ B[X], we have gL(x , t, E) =

HL(x , t, st−1(E) ∩ S).
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5 Mixing Times and Average Mixing Times with Their Nonstandard
Counterparts

In this section, we develop nonstandard notions of mixing and average mixing times
for hyperfinite Markov processes and we show that the nonstandard notions agree
with the standard notions. For the remainder of the paper, we fix g ∈ Cwith stationary
measure π.We also fix a hyperfinite representation (S , {B(s)}s∈S) ofX and an internal
transition kernel {H(s, 1, ⋅)}s∈S on S as in�eorem 4.1.

5.1 Agreement on Mixing Times

�e following lemma shows that the mixing time of the lazy chain is no greater than
the mixing time of the hyperfinite lazy chain.

Lemma 5.1 ([ADS19, Cor. 5.2]) For every ε ∈ R>0, we have
tL(ε) ≤ TL(ε),

where TL(ε) = ∗min{t ∈ M ∶ ∗ supi∈S ∥ HL(i , t, ⋅) −Π(⋅) ∥≤ ε} is the internal mixing
time of the lazy version of the hyperfinite chain.

It is desirable to prove the reverse direction of Lemma 5.1. To do this, we introduce
the following definition, which replaces a “so�” inequality ≤ by a “strict” inequality <.
Definition 5.1 Let ε ∈ R>0. �e strict mixing time t

(<)
m (ε) of g is

min{t ≥ 0 ∶ d(t) < ε},
where d(t) = supx∈X ∥ g(x , t, ⋅) − π(⋅) ∥.

For every ε > 0, we write t(<)L (ε) to denote the strict mixing time of the lazy chain.

�eorem 5.2 For every ε ∈ R>0:
t
(<)
L (ε) ≥ T(<)L (ε),

where T
(<)
L (ε) = ∗min{t ∈ M ∶ ∗ supi∈S ∥ HL(i , t, ⋅) −Π(⋅) ∥< ε} is the internal strict

mixing time of the lazy version of the hyperfinite chain.

Proof Pick ε ∈ R>0. For every t ∈ N,
∗ supx∈∗X ∥

∗gL(x , t, ⋅) − ∗π(⋅) ∥
≥ ∗ supi∈S ∥

∗gL(i , t, ⋅) − ∗π(⋅) ∥
= ∗ supi∈S

∗ supA∈∗B[X]∣∗gL(i , t,A) − ∗π(A)∣
≥ ∗ supi∈S

∗ supA∈I(S)∣∗gL(i , t, ⋃
a∈A

B(a)) − ∗π(⋃
a∈A

B(a))∣
Thm. 4.3≈ ∗ supi∈S

∗ supA∈I(S)∣HL(i , t,A) −Π(A)∣
= ∗ supi∈S ∥ HL(i , t, ⋅) −Π(⋅) ∥ .
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Let t0 be a natural number such that ∗ supx∈∗X ∥
∗gL(x , t0 , ⋅) − ∗π(⋅) ∥< ε. �en

∗ supi∈S ∥ HL(i , t0 , ⋅) −Π(⋅) ∥ ⪅ ∗ supx∈∗X ∥ ∗gL(x , t0 , ⋅) − ∗π(⋅) ∥
= sup

x∈X

∥ gL(x , t0 , ⋅) − π(⋅) ∥< ε.
Hence, we have the desired result. ∎

5.2 Agreement of Average Mixing Time

In this section, we show that the hyperfinite average mixing time is equivalent to the
standard average mixing time. We begin by showing that standard average mixing
times are no greater than hyperfinite average mixing times.

�eorem 5.3 For every ε ∈ R>0:
ta(ε) ≤min{t ∈ M ∶ sup

i∈S

st(∥ 1
2
(H(i , t, ⋅) +H(i , t + 1, ⋅)) −Π(⋅)∥) ≤ ε}.

Proof Pick ε ∈ R>0. We have

sup
i∈S

st(∥H(i , t, ⋅) +H(i , t + 1, ⋅)
2

−Π(⋅)∥)
≥ sup

x∈X

st( sup
A∈∗B[X]

∣H(x , t,A) +H(x , t + 1,A)
2

−Π(A)∣).
By the construction of Loeb measure, for every B ∈ ∗B[X], there exists B′ ∈ ∗B[X]

such that B△ B′ has Loeb measure 0. For every A ∈ B[X], the set st−1(A) is Loeb
measurable; thus,

sup
x∈X

st( sup
A∈∗B[X]

∣H(x , t,A) +H(x , t + 1,A)
2

−Π(A)∣)
≥ sup

x∈X

sup
A∈B[X]

∣H(x , t, st−1(A) ∩ S) +H(x , t + 1, st−1(A) ∩ S)
2

−Π(st−1(A) ∩ S)∣.
By �eorem 4.1 and Lemma 4.2, we have

sup
x∈X

sup
A∈B[X]

∣H(x , t, st−1(A) ∩ S) +H(x , t + 1, st−1(A) ∩ S)
2

−Π(st−1(A) ∩ S)∣
= sup

x∈X

sup
A∈B[X]

∣ g(x , t,A) + g(x , t + 1,A)
2

− π(A)∣
= sup

x∈X

∥ g(x , t, ⋅) + g(x , t + 1, ⋅)
2

− π(⋅)∥.
Hence, we know that

ta(ε) ≤min{t ∈ M ∶ sup
i∈S

st(∥H(i , t, ⋅) +H(i , t + 1, ⋅)
2

−Π(⋅)∥) ≤ ε},
completing the proof. ∎
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�e following result is an immediate consequence of Lemma 5.3.

Corollary 5.4 For every ε ∈ R>0, we have
ta(ε) ≤ Ta(ε),

where

Ta(ε) = ∗min{t ∈ M ∶ ∗ supi∈S ∥
H(i , t, ⋅) +H(i , t + 1, ⋅)

2
−Π(⋅) ∥≤ ε}

is the internal average mixing time of the hyperfinite chain.

Proof Pick ε ∈ R>0. Note that if
∗ supi∈S∥H(i , t, ⋅) +H(i , t + 1, ⋅)2

−Π(⋅)∥ ≤ ε,
then

sup
i∈S

st(∥H(i , t, ⋅) +H(i , t + 1, ⋅)
2

−Π(⋅)∥) ≤ ε.
�e result then follows from Lemma 5.3. ∎

It is desirable to prove the reverse direction of Corollary 5.4. To do this, we
introduce the following definition.

Definition 5.2 For ε ∈ R>0, the strict average mixing time is

t
(<)
a (ε) =min{t ∈ M ∶ sup

x∈X

∥ g(x , t, ⋅) + g(x , t + 1, ⋅)
2

− π(⋅)∥ < ε}.
�eorem 5.5 For every ε ∈ R>0,

t
(<)
a (ε) ≥ T(<)a (ε),

where

T
(<)
a (ε) = ∗min{t ∈ M ∶ ∗ supi∈S∥H(i , t, ⋅) +H(i , t + 1, ⋅)2

−Π(⋅)∥ < ε}
is the internal strict average mixing time of the hyperfinite chain.

Proof Pick ε ∈ R>0. For every t ∈ N, by �eorem 4.1, we have

∗ supx∈∗X∥
∗g(x , t, ⋅) + ∗g(x , t + 1, ⋅)

2
− ∗π(⋅)∥

≥ ∗ supi∈S∥
∗g(i , t, ⋅) + ∗g(i , t + 1, ⋅)

2
− ∗π(⋅)∥

= ∗ supi∈S
∗ supA∈∗B[X]∣

∗g(i , t,A) + ∗g(i , t + 1,A)
2

− ∗π(A)∣
≥ ∗ supi∈S

∗ supA∈I(S)∣
∗g(i , t, ⋃

a∈A
B(a)) + ∗g(i , t + 1, ⋃

a∈A
B(a))

2
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− ∗π(⋃
a∈A

B(a))∣
≈ ∗ supi∈S

∗ supA∈I(S)∣H(i , t,A) +H(i , t + 1,A)2
−Π(A)∣

= ∗ supi∈S∥H(i , t, ⋅) +H(i , t + 1, ⋅)2
−Π(⋅)∥.

Let t0 be a natural number such that t
(<)
a (ε) ≤ t. �en

∗ supi∈S∥H(i , t0 , ⋅) +H(i , t0 + 1, ⋅)2
−Π(⋅)∥

⪅ ∗ supx∈∗X∥
∗g(x , t0 , ⋅) + ∗g(x , t0 + 1, ⋅)

2
− ∗π(⋅)∥

= sup
x∈X

∥ g(x , t0 , ⋅) + g(x , t0 + 1, ⋅)
2

− π(⋅)∥ < ε.
Hence, we have the desired result. ∎

6 Mixing Times and Average Mixing Times on Compact Sets

In this section, we prove our main result, �eorem 2.2. �e following well-known

equivalence follows from submultiplicativity of d(t) and the fact that d(t) ≤ d(t) <
2d(t) (see Lemmas 4.11 and 4.12 from [LPW09]). Recall that tm denotes the mixing
time of a Markov process (see Definition 2.1).

Lemma 6.1 For every 0 < ε1 < ε2 < 1
2
, there exists a positive universal constant cε1 ε2

such that

tm(ε2) ≤ tm(ε1) ≤ cε1 ε2 tm(ε2)
for every Markov process with a unique stationary distribution.

Wehave the following result for strictmixing times and strict averagemixing times.

Lemma 6.2 For every 0 < ε ≤ 1
4
, there exist universal positive constants eε and e′ε so

that for every finite reversible Markov process

eε t
(<)
L (ε) ≤ t(<)a (ε) ≤ e′ε t(<)L (ε).

Proof Pick some 0 < ε < 1
4
and let ε0 = ε

2
. By �eorem 2.1, we have

t
(<)
a (ε) ≥ ta(ε) ≥ cε tL(ε).

As the lazy chain of a reversible Markov process is reversible, by Lemma 6.1, we
have

cε tL(ε) ≥ cε 1

cεε0
tL(ε0) ≥ cε 1

cεε0
t
(<)
L (ε).
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Let eε = cε 1
cεε0

. �en

eε t
(<)
L (ε) ≤ t(<)a (ε).

We now prove the other direction. By�eorem 2.1 and Lemma 6.1, we have

t
(<)
a (ε) ≤ ta(ε0) ≤ c′ε0 tL(ε0) ≤ c′ε0 cεε0 tL(ε) ≤ c′ε0 cεε0 t(<)L (ε).

By letting e′ε = c′ε0 cεε0 , we have the desired result. ∎

Wenow prove�eorem 2.2 for strict mixing times and strict averagemixing times.

�eorem 6.3 For every 0 < ε ≤ 1
4
, there exist universal constants hε , h

′
ε such that, for

every {g(x , 1, ⋅)}x∈X ∈ C, we have
hε t
(<)
L (ε) ≤ t(<)a (ε) ≤ h′ε t(<)L (ε).

Proof Pick some 0 < ε < 1
4
. Let ε0 = ε

2
. By�eorem 5.5, we have t

(<)
a (ε) ≥ T(<)a (ε).

By the transfer of Lemma 6.2, we have T
(<)
a (ε) > eεT(<)L (ε). By the transfer of

Lemmas 6.1 and 5.1, we have

T
(<)
L (ε) = eε∗min{t ∈ M ∶ ∗ supi∈S ∥ HL(i , t, ⋅) −Π(⋅) ∥< ε}

≥ eε∗min{t ∈ M ∶ ∗ supi∈S ∥ HL(i , t, ⋅) −Π(⋅) ∥≤ ε}
≥ eε 1

cεε0

∗min{t ∈ M ∶ ∗ supi∈S ∥ HL(i , t, ⋅) −Π(⋅) ∥≤ ε0}
≥ eε 1

cεε0
tL(ε0) ≥ eε 1

cεε0
t
(<)
L (ε).

Let hε = eε 1
cεε0

. We then have hε t
(<)
L (ε) ≤ t(<)a (ε).

We now prove the other direction. By Corollary 5.4, we have t
(<)
a (ε) ≤ ta(ε0) ≤

Ta(ε0). By the transfer of �eorem 2.1 and the transfer of Lemma 6.1, we have

Ta(ε0) ≤ c′ε0TL(ε0) ≤ c′ε0 cεε0TL(ε).
By Lemma 5.2, we have

c′ε0 cεε0TL(ε) ≤ c′ε0 cεε0T(<)L (ε) ≤ c′ε0 cεε0 t(<)L (ε).
By letting h′ε = c′ε0 cεε0 , we have t(<)a (ε) ≤ h′ε t(<)L (ε), completing the proof. ∎

We now prove�eorem 2.2.

Proof Pick some 0 < ε ≤ 1
4
. Let ε0 = ε

2
and let ε1 = ε +

1
4
−ε

2
. By �eorem 6.3 and

Lemma 6.1, we have

ta(ε) ≤ t(<)a (ε) ≤ h′ε t(<)L (ε) ≤ h′ε tL(ε0) ≤ h′εcεε0 tL(ε).
Let d′ε = h′εcεε0 . We have ta(ε) ≤ d′ε tL(ε).
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We now prove the other direction. By�eorem 6.3 and Lemma 6.1, we have

ta(ε) ≥ t(<)a (ε1) ≥ hε1 t(<)L (ε1) ≥ hε1 tL(ε1) ≥ hε1 1

cεε1
tL(ε).

Let dε = hε1 1
cεε1

. We have ta(ε) ≥ dε tL(ε), completing the proof. ∎
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