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1. Introduction

Finite groups in which normality is transitive have been studied by Best and
Taussky, [1], Gaschlitz, [3], and Zacher [16]. Infinite soluble groups in which
normality is transitive have been studied by Robinson in [9]. A subgroup H of a
group G is subnormal in G if H can be connected to G by a chain of r subgroups,
in which each is normal in its successor, where r is a non-negative integer. The
least such r is called the subnormal index of H in G (or the defect of H in G).
Then groups in which normality is transitive are precisely those in which every
subnormal subgroup has subnormal index at most one. Thus the structure of
soluble groups in which every subnormal subgroup has subnormal index at most
n (such a group is said to have bounded subnormal indices) has been dealt with
by Robinson in [9] for the case where n is one. However Theorem D of [12]
states that a soluble group of derived length n can be embedded in a soluble group
in which the subnormal indices are at most n. Therefore we must impose further
conditions on the groups if we hope to obtain any worthwhile results for the above
problem with n greater than one.

In this paper we consider the structure of soluble p-groups which have a
bound on their subnormal indices. The investigation involves a class of periodic
soluble groups which, for want of a better terminology, we call p2 groups. This
class of groups does not appear to have been studied elsewhere and so the first
part of this paper is concerned with giving some of its interesting properties. An
idea of the complexity of this class can be obtained from Theorem 2.1 which states
that every soluble group of finite exponent can be embedded in a p J-group of the
same derived length.

2. The classes P3 , P2, PN2

DEFINITION. A group G is radicable if every element of G has an m-th. root
for every positive integer m. Let 3. denote the class of periodic radicable abelian
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groups. Then, using the usual closure operator notation (see for instance [13]), G
is a v3 group if and only if there is a series

1 = Go ^ Gt ^ G2 ^ • • S < V i ^ Gn = G

in which each Gt is normal in Gi+1 and Gi+1/Gt is a 3 group. There are two

obvious ways of forming generalizations of this class.

DEFINITION. A group G is a P 3 group if and only if there is a transfinite as-
cending series {Gx}x^p in G with G = Gp and each Ga + i/G0l a 3 group.

DEFINITION. A group G is a pN 3 group if and only if there is a transfinite
ascending series {Gac}x^p in G with G = Gp, each Ga normal in G, and each
Gx+i/Gx lying in J2. (PN is not a closure operation).

Let Gm denote the subgroup of G generated by the w-th powers of the elements
of G. Then we can generalise the concept of radicability as follows:

DEFINITION. A group G is quasi-radicable if G = Gm for all positive integers m.
It is easy to see that the groups in p 3 , P3 and pN 3 are all quasi-radicable,

by an induction argument (transfinite for the last two classes).
The following theorem proves the existence of sufficiently many v3 groups

to justify further investigation, and indicates that our previous definitions give
rise to non-trivial classes of groups.

THEOREM 2.1. Every soluble group of finite exponent can be embedded in a
P3 group of the same derived length.

PROOF. Suppose G is a soluble group of finite exponent and has derived
length n. We may assume n is greater than one since the result is well-known for
abelian groups (see for example Kuros, [7]). We use induction on n. Let ,4 = G01"1*
(where G(1) = G', the derived group of G and G(n) = (G("~°)'). Then A is an
abelian group of finite exponent and G/A is a soluble group of finite exponent
with derived length n — 1. By the well-known result of Krasner and Kaloujnine
[6] we can embed G in AWrG/A, the unrestricted standard wreath product of A
and G/A. If H is the base group of A WrG/A then H is periodic since A has finite
exponent. But A can be embedded in A* e 3 and by the induction hypothesis G/A
can be embedded in B*, a v3 group of derived length n — 1. Then G can be em-
bedded in A WrG/A which in turn can be embedded in A*WrB* = G*. IfH* is the
base group of G* then H is embedded in tor H*, the torsion subgroup of H*.
Thus A WrG/A is embedded in (tor H*)B*. Therefore G can be embedded in
(tor H*)B* which is a v3 group of derived length «, as required.

3. Preliminary results and definitions

DEFINITION. Let H be a subgroup of a group G. Then H is subnormal in G
if and only if for some integer r ^ 0
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H = Hr-=3 Hr_t <] Hr.2 • • • <a jy0 = G

(where H *s G means that H is a normal, not necessarily proper, subgroup of
G). We usually write H<ir G.

DEFINITION. For any subgroup H of a group G we define the standard series
ofHin Gas follows:
HG' ° = G; if a is not a limit ordinal let HG' * be the normal closure of H in
H0-'-1; if a is a limit ordinal let HG-' = f]p<xH

G'p.

It is easy to show that H<ir G if and only if H — HG'r, and it is well-known

that HGr = HyGHr (where y G # r denotes [G, H,--

DEFINITION. The least r ^ 0 such that H = HG> r is the /«</e;c of subnormality
ofH in G, and is denoted by s(G : H).

The standard series provides a simple criterion for a group to have a bound
on its subnormal indices.

LEMMA 3.1. (Lemma 2 (i) of [10]). A group G has a bound for its subnormal
indices if and only if for each H ^ G, HG'" = jjG'n + 1 = • • •, where n is independent
ofH.

The next lemma is really the key to what follows.

LEMMA 3.2. (2.2 of [11]). Let A, H be subnormal subgroups of G. Suppose
A e 21. If H/H' is periodic then A normalises H. If in addition H is nilpotent then
[H,A]= 1.

COROLLARY 3.3. J i s N-closed, that is if G is generated by subnormal M sub-
groups then G is a 2. group.

DEFINITION. A subgroup H of a group G is ascendant in G if there is an as-
cending (transfinite) chain of subgroups of G, each normal in its successor, con-
necting H to G.

LEMMA 3.4. (Corollary to lemma 4.3 of [11]). In any group an ascendant
Cpoo subgroup is subnormal.

COROLLARY 3.5. In any group an ascendant Q subgroup is subnormal.

PROOF. If H is ascendant in G and His a .2 group then if is a direct product
of groups of type Cpco for various primes. By 3.4 each of these Cpoo subgroups of
G is subnormal. Thus H is contained in the subgroup generated by all the sub-
normal 2. subgroups of G. But by 3.3 this last subgroup is a St group and is clearly
normal in G. Hence H is subnormal in G.

4. Properties of pi? groups

DEFINITION. For any group G let K^G) be the subgroup of G generated by
all the ascendant 2. subgroups of G. Let K0(G) = 1; if a is a limit ordinal let

https://doi.org/10.1017/S1446788700013811 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013811


368 D. McDougall [4]

i f a i s n o t a l i m i t o r d i n a l l e t

(G)). But by 3.3 and 3.4 K^G) is a J-group. Hence {^(G)} is an ascending series
of characteristic subgroups of G in which the factors are J-groups. We call
{KX(G)} the upper-2-series of G. This terminology is justified during the proof
of the next lemma.

LEMMA 4.1. vSt = PNJ2. Also G e p J if and only if G = Kn(G) for some
positive integer n.

PROOF. Clearly PJ2 ^ PNJ2. Suppose G e P J . Let {Gx}x^p be an ascending
J-series in G with G = Gp. We will show by transfinite induction that Gx ^ Kjfi)
for all a ^ p. Note that this will justify our use of the word 'upper' in the terminology.

Suppose Gp ^ Kp{G) for all ft < a. Suppose a is a limit ordinal. Then
G*= [J^Gf, £ \Jf<aKfi(G) = KX(G). If a is not a limit ordinal then GXKX_ X(G)I
K^^G) is an ascendant subgroup of G/Kx^t(G). Also GxKx_l(G)/Kx^1(G)
S GJGX n JKa_1(G), which is a homomorphic image of GJGa-i since ATa_i(G)
5: Ga _! by hypothesis.

Since GJGX^1 is a J group it follows that Ctt/i;_1(G')/^(_1(G) also belongs
to 1. Hence by the definition of KjjG) we have G^.^G) ^ A;(G). Therefore
ATa(G) ^ Gx for all a ^ p. Since Gp = G this means that ATp((7) = (7 and hence
G e pNJ?. Hence PN J ^ p J , and so we have equality.

In particular if p is finite so that G e P.2, then G = Kn(G) where n = p, an
integer. Conversely if G = Kn(G) then G e p J and the proof is complete.

The class 2. is not subgroup-closed, and so PJ? is not subgroup closed. But
certain non-trivial subgroups of a p J group a P J subgroup are p J groups, as the
following lemma shows.

LEMMA 4.2. 7/" G e P J ?/re« G' e PJ , an^ ifGep£ then G' e P J .

PROOF. Suppose firstly that 1 :g 4̂ <i G, where 4̂ and G/̂ 4 are both Q-
groups. Let g e G. Then for a e 4̂ the mapping a -> [a, g] is a homomorphism.
For if al,a2eA, ata2 -> [ a ^ , ^ = [at, gUa^ g,a2][a2, g] = [at, g][a2, g].
Thus [A, g] is a homomorphic image of 4̂, and hence is a .2-group. Therefore
[A, G] = n<reGl>4> 9] is a J group. Writing G/[^, G] = J? we have that A/[A, G]
is a central 2, subgroup of H, with the factor group isomorphic to G/A e St. As
remarked in Section 2 H is quasi-radicable. But H is a periodic nilpotent group,
so by a result of Cernikov, [2], H is abelian. This means that G' ^ [̂ 4, G] ^ G'.
Thus G' = L4, G] e 2.

By 4.1 pSt = pNJ, so we can assume KP(G) = G. We show by transfinite
induction that KX(G)' e v2t for all a. Suppose a is not a limit ordinal. Consider
K.-W ^ KX_,{G) ^ KX(G). Now KX{G)IKX^(G) and Ka_1(G)/Ka.1(G)' are
both J groups, so by the above argument applied to ^ra(G)/Aa_1(G)' we have that

(G)' e J . By hypothesis ^ - ^ G ) ' e P J , and so A"a(G)' e pJ. Suppose
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a is a limit ordinal. Then Ka(G) = \Jp<aKfi(G). By hypothesis each Kp(G)' is a
p j group. Hence KX(G)' = \Jf<ltKf(G)' e N ( P J ) . But since PJ2 is p and quotient-
closed it follows that pi? is N-closed, by a result of P. Hall, [5] (p 537). Therefore
KX(G)' e p J for all a ^ p. Thus G' = Kp(G) e PJ2.

In particular if p is finite so that p = n, then clearly G' = Kn(G)' e P J .

The next lemma will be of use later.

LEMMA 4.3. If G is a soluble group of derived length d then the length of the
upper St series of G is at most d.

PROOF. Consider Kd + 1(G). This has derived length at most d since it is a
subgroup of G. But by continued application of 4.2 we have
1 g Kd+1(GYd-l) S Kd+1(GYd-2) ^ • • g Kd+1(G)' ^ Kd+l(G), where each
factor e M. By our justification of the 'upper' in our terminology in 4.1 we know
that Kd+l{Gfd~l) ^ K^G), • • ; Kd + 1(G) rg Kd{G). Thus Ka+1(G) = Kd{G) so
that the upper 3. series becomes stationary after at most d steps, that is it has
length at most d.

The Wielandt subgroup of a group G is the intersection of the normalisers of
all the subnormal subgroups of G, and will be denoted by W{G). This subgroup
was first introduced by Wielandt in [15]. We note that W{G) is a characteristic
subgroup of G and that every subnormal subgroup of W(G) is normal in W{G):

DEFINITION. The upper Wielandt series of a group G is defined as follows:
Let W0(G) = 1; if a is not a limit ordinal let W^GyW^^G) = W(G/WCC_1

(G)); if a is a limit ordinal let WX(G) = \Jp<a Wp(G).

THEOREM 4.4. Let G e Pi2, and suppose that every subnormal subgroup of G
is normal. Then G is abelian.

PROOF. By a result of Robinson in [9] soluble groups in which normality is
transitive are metabelian, so that G e I2. By 4.2 G' e J . Let A ^ G' with A
isomorphic to Cp oo. A is subnormal in G and so A -d G. Now G/CG(A) is iso-
morphic to a subgroup of the automorphism group of A. But A satisfies the
minimum condition and so by a well-known result its automorphism group is
residually finite. Thus G/CG(A) is a residually finite ^-group. But a residually
finite radicable group is trivial, so that A is contained in the centre of G. This im-
plies that G' is contained in the centre of G, so that G is nilpotent. A nilpotent
periodic quasi-radicable group is abelian by a result of Cernikov [2], and so G
is abelian.

We are now in a position to consider the lengths of the various series in PM
groups.

THEOREM 4.5. IfG e PJ2 then the following invariants coincide:
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(i) the derived length d(G) of G,
(ii) the length q{G) of the upper 2,-series of G,
(iii) the nilpotent length n{G) of G,
(iv) the Wielandt length w(G) of G.

PROOF. We prove first that d{G) = q(G). By 4.3 q(G) ^ d(G). On the other
hand each factor of the upper J series is abelian and so d{G) ^ q{G). Hence we
have equality.

Next we show that d(G) = n(G). Clearly d(G) ^ n(G). Let 1 = Gn<i G,_!
< • • • < G( < G be a nilpotent series in G of shortest length. We use induction
on d(G). Now GjG± is a nilpotent pJ group, so by Cernikov 's result again we
have G' ^ Gt. Now d{G)— 1 = derived length of G". But by the induction
hypothesis d{G') ^ nilpotent length of G'. Hence d{G)-\ ^ n(G') ^ 72(0!) =
n(G)— 1. Thus d(G) ^ «(G) and so we have equality.

It only remains to show that w(G) = d(G). Now A\(G) is a normal 3. sub-
group of the periodic group G. Hence by 3.2 Kt(G) g Wi(G). It is easy to see that
by induction we have K^G) g W,-(G) for all*'. Hence w(G) ^ ^(G),and in particular
G has finite Wielandt length.

Suppose A is a subnormal subgroup of a group G. We show by induction
that Wm(A) £ A n Wm(G). By hypothesis Wm^{A) ^ A n Wm_1(G). If
5'/fFm_1(y4) is a subnormal subgroup of AjWm^l{A) then 5 is subnormal in A,
and hence also in G. Hence S W ^ - ^ G V ^ - ^ G ) is subnormal in GjW^^G)
and so ^m(G) normalises SWm.l{G). Hence Wm(G) n ^normalises S(Wm.1(G) n
(^) = S, and so JFm(G) n A ^ WJA).

Let us now return to the matter in hand; proving that w(G) 2: q(G). We have
WW(G) = Gwhere wfa) = w, Ww^t(G) < G.NowG/Jfw_,((;) = W(G/Ww_l(G)
and so is a pJ group in which normality is transitive. Then by theorem 4.4
G' S iVw-i(G). Substituting G' for A above we have Ww_i(G') ^ G' n Ww_i
(G) = G'. Thus the Wielandt length of G' is at most w-1. If we again use induc-
tion on d{G) = q(G), q(G)-l S w - 1 and so q(G) ^ w(G). Therefore we have
equality, q(G) = w(G).

We note that although these four series in a p J group turn out to have the
same length there is no reason to suppose that they coincide term by term. In fact
counterexamples are easy to construct: take C,oo x (Cpoo wr CqGO), where this
last group is the standard restricted wreath product of Cpao by Cqco. The first
term of the upper J-series of this group is C, GO x base group of the wreath
product, whereas the derived group is the base group.

The next part of this section on P2L groups concerns their subnormal structure,
and their effect on the subnormal structure of groups in which they occur as sub-
normal subgroups.

LEMMA 4.6. If H is a periodic subnormal subgroup of an arbitrary group G
then HKjfi) is normal in HKx + i(G)for all a.
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PROOF. Since His subnormal in G and KX(G) is a normal subgroup, HK^G)
is subnormal in G. Thus HKX(G)IKX(G) is a periodic subnormal subgroup of
G/KX(G). But Ka + 1(G)/Ka(G) is a normal J subgroup of G/KX(G) and so by 3.2
KX+1(G)/KX(G) normalises HKa(G)/K.(G). Hence HKX(G)^ HKa+l{G).

THEOREM 4.7.

a) If H is a subnormal subgroup of G, and G e pJ then s(G : H) ^ g(G).
TTIMJ G has a bound on its subnormal indices.

b) If He P£> and H is subnormal in G then s(G : H) g q(H)+\.
c) pJ! is a subnormal coalition class. That is if H and K are subnormal pJ?

subgroups of G then their join J = (H, K} is a subnormal pJ subgroup of G. Also
we have s(G : / ) g max {q(H), q{K)} + 1.

PROOF, a) This follows immediately from lemma 4.6 for we have / /< :
HKy{G)~a HK2(G)-x • • • <J HKq(G) = G.

b) We show by induction that Kt(G) 2: Kt(H) for any subnormal subgroup
H of G. Suppose therefore that K^^G) ^ K^^H). Suppose that S/K^^H)
is a subnormal .2 subgroup of H/K^^H). Then Sis subnormal in H, and so also
in G. Therefore SA';_1(G)/Ari_1(G

!) is a subnormal subgroup of G/K^^G).
1(G) = 5 /5n ^T,_1(G), which is a homomorphic image of

since K^^G) Z *"i-i(#) by hypothesis. Thus SK^^G^Ki-^G)
is a J group. Thus SK^^G) ^ /^(G)- It follows from the choice of 5 that
#,(//) ^ ^(G). Thus if H is subnormal in G we have Kt(H) ^ K,(G) for all /.

Now let 7/epJ with r̂ = q(H). Then we have A,(G) ^ ^ ( / ^ ) = ^ . Thus
H is a subnormal subgroup of Kq(G), and so by a) H<iq Kq(G) -o G. Therefore
s(G : H) g q{H)+\ as required.

c) Let H, K be subnormal pJ subgroups of G. Let n = max {q{H), q(K)}.
Then by the argument used in b) Kn(H) ^ Kn(G),Kn(K) ^ Kn(G). But H = Kn{H)
and /«: = Kn(K). Thus / = <//, K) ^ Kn(G). But by a) Kn[G) is a group with a
bound for its subnormal indices. Then it is easy to show that the join of an ar-
bitrary collection of subnormal subgroups of Kn(G) is subnormal in Kn{G) (see,
for instance p 85 of [13]). Thus / is subnormal in G. It remains to show that
/ e p J . Again as in b) we have Kn(H) £ Kn(J) and Kn(K) S Kn(J), so that
/ <, Kn(J). Therefore / = Kn(J) and J is a P J group.

We now turn to the locally nilpotent structure of v£l and PJ2 groups.

THEOREM 4.8.

(i) The lower central series of a PJ2 group becomes stationary at the derived
group. Thus G' = [G", G] = • • •.

(ii) The Baer radical of a PJ2 group of length n is nilpotent of class at most n.
(iii) If G is a p J group and is also a Baer group then it is abelian.

PROOF, (i) Let GepJ . Then G/[G', G] is a nilpotent periodic group and is
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quasi-radicable. Hence using Cernikov's result again G/(G', G] is abelian. Thus
G' ^ [G', G] ^ G'. Therefore G' = [Gr, G] = [(?', G, G].

(ii) Suppose G e p2, with q(G) = n. We proceed by induction on n. Now
G("~1}e 2. and so by lemma 3.2 it commutes with every subnormal nilpotent
subgroup of G. Hence G*""1' is contained in the centre of B, where B is the Baer
radical of G. However B\G(n~1) is contained in the Baer radical of G/G(n~l), which
by the induction hypothesis is nilpotent of class at most n — 1. Thus B is nilpotent
of class at most n.

(iii) If G e P J and is a Baer group then K^G) is in the centre of G by lemma
3.2. By transfinite induction it clearly follows that G is a ZA group. But G is
periodic and quasi-radicable, so by Cernikov's result G is abelian.

In [8] McLain shows that the group Cp GO wr Cq oo coincides with its Frattini
subgroup. However the proof he gives can be adapted to give the following more
general result.

THEOREM 4.9. If G e P J then G has no maximal subgroups and so coincides
with its Frattini subgroup.

PROOF. By lemma 4.1 G e P N ^ SO that G = Kp(G) for some ordinal p. Sup-
pose that M is a proper maximal subgroup of G. Let r be the smallest ordinal such
that Kr{G) ^ M. Clearly r cannot be a limit ordinal so that r — 1 exists. Now
K^^G) ^ M and M/K^^G) is a maximal subgroup of GjK^^G), which
belongs to pJ , and so we may assume Ar_1(G) = 1. Let A — Kr{G)el. In
Lemma 10 of [4] P. Hall shows that if G is any group and A is a normal abelian
p-subgroup of G where p is a prime, then the Frattini subgroup of G contains Ap.
Using this lemma we see that in our case M ^ Ap for all primes p. But A = A",
which gives a contradiction. Hence G has no maximal subgroups. We are grateful
to the referee for pointing out this simplification of our original proof.

5. Soluble p-groups

DEFINITIONS. A group G is reduced if it has no non-trivial quasi-radicable
subgroups. If n is any set of primes a group G is n-quasi-radicable if G = Gm

for all positive integers m whose prime divisors lie in n. A group G is n-reduced
it has no non-trivial Tt-quasi-radicable subgroups.

LEMMA 5.1. Let G = <x, Ay be a p-group with A abelian and normal in G.
If A is reduced and G has a bound on its subnormal indices then G is nilpotent.

PROOF. We define a descending series of characteristic subgroups of A as
follows:

Let Ao = A; if a is not a limit ordinal let Ax = Ax-l"; if a is a limit ordinal
let Aa = f)p<lxAp. Then for some ordinal X, Ak = Ax+l = • • • = D. Now
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D = D" so that D is radicable (remembering that D is a />-group). But D is con-
tained in A and by assumption A is reduced. Hence D = 1. Suppose G is not
nilpotent, and let a be the least ordinal such that G/Ax is not nilpotent. Now if a is a
limit ordinal G/Afi is nilpotent for all /? < a. Roseblade ([14], corollary to Theorem
1) has shown that a group in which every subgroup is subnormal with subnormal
index at most r, is nilpotent of class at most / ( r ) depending only on r. If r is the
bound on the subnormal indices of G then each G/At, ft < a, has the same bound.
Hence each is nilpotent of class at most f(r). Then G/At is nilpotent of class at
most/(r) , which is a contradiction. Thus a has a predecessor a—1. G'/^4a_1 is
nilpotent and x has order/?"1 for some positive integer m. Let n e ^ - i . Then we
have

[a,x, • • • ,* ] = a ( * - 1 ) p m s ^ ' " - ^ o d ^ J . i ,
<- p m - •

that is
[a, x, • • •, x] = 1 mod Aa.

- p™ ->

Hence yAx_l(xypm S Aa and thus yAx_1G"m ^ ^ Therefore G/Ax is nilpotent,
which is a contradiction. Hence C? is nilpotent.

LEMMA 5.2. Let G be a metabelian p-group in which there is a bound on the
subnormal indices. If the abelian normal subgroups of G are reduced then G is
nilpotent.

PROOF. Let A = G'. Then by hypothesis A is reduced. Let g e G. Then
(g, Ay is normal in G and so <#, Ay has a bound on its subnormal indices. So by
lemma 5.1 (g, Ay is nilpotent. Therefore <#> is subnormal in (g, Ay, and hence
also in G. It is easy to show that since G has a bound on its subnormal indices
the join of any collection of subnormal subgroups of G is subnormal (p. 85 of
[13]). Hence every subgroup of G is subnormal. Then using Roseblade's result
we see that G is nilpotent.

We would like to extend this result to a soluble />-group of arbitrary derived
length. To do so we need the following lemma, which is stated in a more general
form than is strictly necessary.

LEMMA 5.3. Let A and B be abelian groups and let H = Horn (A, B). If n is
any set of primes and B is n-reduced then H is n-reduced.

PROOF. Suppose on the contrary that R is a 7t-quasi-radicable subgroup of
H. Let a e A. Then the mapping 6 : r -» ar for r e R is a homomorphism of R
into B. Hence Im 8 is a Tt-quasi-radicable Subgroup of B. Since B is re-reduced
9 is the zero-mapping, so that ar = 1 for all ae A and r e R. Hence R is trivial.

THEOREM 5.4. Let G be a soluble p-group with a bound for its subnormal
indices. If every abelian normal subgroup of G is reduced then G is nilpotent.
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PROOF. We may assume that the derived length of G is greater than 1. We use
induction on d, the derived length of G.

Let A be a maximal abelian normal subgroup of G containing Gid~^. We
must show that G/A has the right properties to allow us to apply the induction
hypothesis. Suppose R/A is a radicable abelian normal subgroup of G/A. If we
can show that R is abelian then R = A by the maximality of A. Let x e R. Then
<x, 4 ) < J i < G and so <x, A} has a bound on its subnormal indices. A is reduced
and so by lemma 5.1 (x, A} is nilpotent. Thus <x> is subnormal in R for all
x e R. Since R has a bound on its subnormal indices every subgroup of R is
therefore subnormal in R. Hence by Roseblade's result R is nilpotent. Therefore
yAR" = 1 for some integer n. Choose n minimal with respect to this property.
Supposes > \.ThmyAR"'2 > yARn~l > yAR" = 1. For x e R and a e yAR"~2

we define xx : ayAR"'1 -> [a, x]. Then xx is a homomorphism of yARn~2/yAR"~l

into yAR"~'. The mapping x : x -» xx is a homomorphism of/? into Horn (yAR"~2j
yAR"'\ yAR"'1) = H say. Applying lemma 5.3 we have that H is reduced. Now
Rj Ker T is isomorphic to a subgroup of i/ , and so is reduced. However Ker x is
the centralizer in R of yAR"'2 and so contains A. Thus 7?/Ker T is radicable.
Therefore R = Ker T and so y^/?" - I = 1, which is a contradiction. Thus n = 1
and yAR = 1, so that A fk centre of R. Let r e R. Then the mapping x/1 -> [x, r]
for all x e /? is a homomorphic mapping of R/A onto [R, /•]. /?/^ is radicable and
so [R, r] is radicable. However [R, r] ^ A since i?/y4 is abelian, and A is reduced.
Thus [R, r] = 1 for all r e R. Hence /? is abelian. By the maximality of A we have
R = A, and so the abelian normal subgroups of G/A are reduced. Hence by
the induction hypothesis G/A is nilpotent.

Let x e G. Since G/̂ 4 is nilpotent <x, 4̂> is subnormal in G and so <x, A} has
a bound on its subnormal indices. By lemma 5.1 <x, A} is nilpotent. Thus O> is
subnormal in G. Since G has a bound on its subnormal indices this implies that
every subgroup of G is subnormal, and so by Roseblade's result G is nilpotent.

We can now prove our result concerning soluble ^-groups with a bound on
their subnormal indices.

THEOREM 5.5. Let G be a soluble p-group. Then G has a bound on its subnormal
indices if and only ifG is an extension of a p£> group by a nilpotent group.

PROOF, a) Suppose G has a bound on its subnormal indices. Let n be the
derived length of G. By lemma 4.3 Kn(G) = Kn + l(G) = • • • and ATn(C)epJ.
Consider G/Kn(G). By the definition of the upper J-series any radicable abelian
normal subgroup of G/Kn(G) is contained in Kn + l(G)/Kn(G) = 1. Thus G/Kn{G)
satisfies the conditions of theorem 5.4. Hence G/Kn(G) is nilpotent.

b) Suppose conversely that N~a G with G/N nilpotent and Ne pJ>. Suppose
G/N has class m and N has length n. Then if H is a subnormal subgroup of G we
have HN <im G. By lemma 4.6 H <i" HKn(HN). But we also have
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Kn(N) ^ Kn{HN), and Kn{N) = N. Thus H^n HN-=3m G. Therefore s(G : H)
is at most m + n, and so G has a bound on its subnormal indices.

COROLLARY 5.6. Let G be a soluble locally nilpotent periodic group. Then G
has a bound on its subnormal indices if and only if G is an extension of a PJ2 group
by a nilpotent group.

PROOF. Suppose G has derived length d and has a bound n on its subnormal
indices. Since G is periodic and locally nilpotent it is a direct product of its p-
primary subgroups Gp. Each Gp is a soluble/j-group with a bound on its subnormal
indices. So by theorem 5.5 and Roseblade's result Gp is the extension of a 2* group
(a P J group of derived length d) by a nilpotent group of class at most/(n), for
all p. Hence G is of the same form. The reverse implication is immediate from the
proof of 5.5.

6. Application to locally nilpotent groups

In a nilpotent group G of class n the subnormal subgroups have subnormal
index at most n. It is natural therefore to look at locally nilpotent groups with a
bound on their subnormal indices. However this class seems to be too large.
But we can show that periodic ZA groups with a bound on their subnormal in-
dices are soluble. Perhaps all periodic locally nilpotent groups with a bound on
their subnormal indices are soluble, but at the moment it remains an open
question.

LEMMA 6.1. A Baer group with a bound on its subnormal indices is nilpotent.

PROOF. Since G is a Baer group <x> is subnormal in G for all elements x
of G. But since G has a bound on its subnormal indices every subgroup of G is a
subnormal subgroup. Then by Roseblade's result G is nilpotent.

THEOREM 6.2. Let G be a periodic ZA group. Then G has a bound on its sub-
normal indices if and only if G is an extension of a Q group by a nilpotent group.

PROOF. If G is an extension of a J group by a nilpotent group then we see
from the proof of 5.5 that G has a bound on its subnormal indices.

Suppose, conversely, that G has a bound on its subnormal indices. Since G is
the direct product of its />-components we may assume that G is a />-group (using
Roseblade's result). Let R be the subgroup of G generated by all the quasi-radicable
subgroups of G. Clearly R is the maximal quasi-radicable subgroup of G and is
normal in G. But by Cernikov's result a periodic quasi-radicable ZA group is
abelian, and so is a J group. Thus it remains to show that G/R is nilpotent.
Clearly G/R has no radicable abelian subgroups. Let {Za}agp be the upper central
series of G/R. Suppose G/R is not nilpotent. Let A be the least ordinal such that
Zx is not nilpotent. If A is a limit ordinal Zk = \Jll<xZli where each Z^ is nil-
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potent of class at most/(r) , using Roseblade's result with the subnormal indices
of G bounded by r. Hence Zx is nilpotent, which is a contradiction. Thus X—\
exists and Zx_ t is nilpotent. Then Zx is a soluble/?-group satisfying the hypotheses
of 5.4, and so is nilpotent, which is a contradiction. Therefore G/R is nilpotent,
as required.

Finally we have the following results on 57* groups.

THEOREM 6.3. Let G be a p-group and also an SI* group. Suppose that all the
subnormal abelian subgroups of G are reduced. If G has a bound on its subnormal
indices then it is nilpotent.

PROOF. Let {G,},<p be an ascending normal abelian series of G with Gp = G.
Suppose G is not nilpotent. Let X be the least ordinal such that Gx is not nilpotent.
If r is the bound on the subnormal indices, and if A is a limit ordinal, then Gx =
{Jn<^^f w n e r e each G^ is nilpotent of class at most/(r) . Hence Gx is nilpotent,
which is a contradiction. Thus Gl^1 is nilpotent, and so Gx is a solubles-group
with all its abelian normal subgroups reduced. Therefore by theorem 5.4 Gx is
nilpotent, which is a contradiction. Hence G is nilpotent.

COROLLARY 6.4. If G is an SI* group, a p-group, and has a bound on its sub-
normal indices then it is an extension of a PJ2 group by a nilpotent group.

PROOF. Let KX(G) be the last term of the upper J series of G, so that KX(G) =
KX + 1(G). Then Kx(G)ev& and G/KX(G) satisfies the conditions of theorem 6.3.
Hence the result follows.

The corollary gives rise to the open question: is there a v2L group which is a
/?-group, has a bound on its subnormal indices, but is not soluble? If so the struc-
ture of periodic locally nilpotent groups with a bound on their subnormal indices
is very complex.
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