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In this work, an exact Eulerian model is used to describe the steady-state motion
of a bidirectional vortex in a conical chamber. This particular model is applicable
to idealized representations of cyclone separators and liquid rocket engines with
slowly expanding chamber cross-sections. The corresponding bulk motion is assumed
to be non-reactive, rotational, inviscid and incompressible. Then, following Bloor &
Ingham (J. Fluid Mech., vol. 178, 1987, pp. 507–519), the spherical Bragg–Hawthorne
equation is used to construct a mathematical model that connects the solution
to the swirl number and the cone divergence angle. Consequently, a self-similar
formulation is obtained independently of the cone’s finite body length. This enables
us to characterize the problem using closed-form approximations of the principal flow
variables. Among the cyclonic parameters of interest, the mantle divergence angle and
the maximum cross-flow velocity are obtained explicitly. The mantle consists of a
spinning cone that separates the circumferential inflow region from the central outflow.
This interfacial layer bisects the fluid domain at approximately 60 per cent of the
cone’s divergence half-angle. Its accurate determination is proven asymptotically using
two different criteria, one being preferred by experimentalists. Finally, recognizing
that the flow in question is of the Beltramian type, results are systematically described
over a range of cone angles and spatial locations in both spherical and cylindrical
coordinates; they are also compared to available experimental and numerical data.

Key words: geophysical and geological flows, rotating flows, vortex flows

1. Introduction

Cyclonic flow field modelling is presently undergoing an era of renewed interest,
especially in advanced propulsion-related combustion devices, where swirl-dominated
cyclonic motions have proven to be beneficial due to their self-cooling properties,
enhanced stability and elevated efficiencies. Several prototypical engines driven by
liquid propellant or hybrid fuel combustion are under development today following
the bidirectional vortex notion introduced by Knuth and co-workers in 1996. Some
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Beltrami flow in a conical cyclone 709

examples include those concerned with swirl-driven hybrid rocket engines by Knuth
et al. (1996, 2002) and those associated with liquid–liquid thrust chambers by
Sauer et al. (2002), Chiaverini et al. (2003) and Majdalani (2007, 2012). In this
context, a bipolar vortex denotes a cyclone with a pair of outer and inner coaxial,
co-rotating swirling streams that are separated by a spinning wheel known as the
mantle. The latter constitutes a rotating, non-translating layer along which mass can
cross inwardly from the outer, annular vortex to the inner, central core region, where
stable combustion and dynamic mixing are sustained.

So far, using cylindrically shaped cyclonic chambers, analytical models have been
developed by Vyas & Majdalani (2006) and Majdalani & Rienstra (2007) for the
liquid–liquid engine application and by Majdalani (2007) for the hybrid engine
configuration. Cold flow experiments using particle image velocimetry (PIV) have
been undertaken in parallel by Rom, Anderson & Chiaverini (2004) and Rom (2006).
In the same vein, numerical simulations have been carried out under both cold and
reactive flow conditions by Fang, Majdalani & Chiaverini (2003) and Majdalani &
Chiaverini (2017).

Prior to its use in liquid and hybrid thrust engines, the bidirectional vortex concept
was first implemented in industrial cyclones. Being focused on flow filtration rather
than propulsion, some of the earliest analyses of cyclonic flow fields may be traced
back to experimental and semi-empirical studies of dust separators. In this vein,
Shepherd & Lapple (1939, 1940) devised an expansive cyclone separator circuit to
study and quantify basic flow characteristics such as velocities, pressures, frictional
losses, vortical structures, inlet variations and dust loading impacts on the pressure
drop. Along similar lines, Alexander (1949) sought to characterize cyclonic variables
with the inclusion of thermal effects. In the same year, ter Linden (1949) investigated
the effects of varying the length of the vortex finder on the cyclone separator’s
efficiency. Then in the spirit of optimization, Stairmand (1951) developed two cyclone
designs that either maximized the separator’s efficiency or its mass flow rate.

In shifting attention from air to water as the working medium, several pioneering
works come to mind, and these date back to Kelsall (1952) and his ultramicroscope
illumination method to measure the tangential speed of fine aluminium particulates
that are entrained in a hydrocyclone. Kelsall’s apparatus consisted of a so-called
‘cylinder on cone’ made of cast acrylic walls that facilitated the accurate measurement
of both tangential and axial flow velocities, hence leaving the radial speed to be
deduced from mass conservation. In a follow-up study, Kelsall (1953) reported a
body of experimental data that helped to characterize the separation efficiency of
hydrocyclones.

Noting the relevance of hydrocyclones to the ore and mining industries, Fontein
& Dijksman (1953) sought to characterize the pressure behaviour and tangential
velocities in their innovatively designed cyclonic device. By inserting a freely spinning
spindle with paddles into the air core, they were able to acquire measurements at
various axial elevations.

Sliding on to the mid-decade in Germany, Barth (1956) focused on the
characterization of the separation efficiency, which depended on the smallest
size particle that could still be separated. To this end, Barth (1956) applied the
equilibrium-orbit model or static particle theory, where the balance between centrifugal
and particle drag forces determined the motion of an entrained particle. In this manner,
he was able to predict the critical particle diameter below which particles would drift
inwardly.

Then using a series of experiments by Smith (1962a,b), the mantle location in a
hydrocyclone was measured and catalogued along the length of the separator. It was
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710 T. A. Barber and J. Majdalani

found that despite the use of a vortex finder, the axial variation of the mantle location
remained small and that two possible locations of the mantle existed, namely, 0.62
and 0.72. A decade later, Leith & Licht (1972) developed an empirical correlation
for the collection efficiency of a gaseous cyclone, which could be conveniently
used in the design of high efficiency flow separators. In a follow-up study of dust
collection devices, Leith & Mehta (1973) reviewed several procedures that existed for
estimating the pressure drop and collection efficiency. By evaluating these theories
against experimental measurements, they identified the most optimal pressure drop
and efficiency theories that could lead to an improved design optimization procedure
for cyclone separators.

Returning back to characteristic studies of hydrocyclones, Knowles, Woods &
Feuerstein (1973) investigated the three-dimensional flow patterns that evolved in the
absence of an air core using tracer particles and cine photography. These researchers
compared their results to those observed in hydrocyclones that operated with an air
core and found them to be consistent.

Furthermore, by decomposing a cyclone into an inlet, a downflow and an upflow
region, Dietz (1981) was able to develop an analytic formulation for the collection
efficiency of a reverse-flow cyclone. Also in the spirit of establishing a design
optimization procedure, Boysan, Ayers & Swithenbank (1982) resorted to a two-phase
algebraic turbulence model of gaseous cyclones with entrained particles to develop
a computational tool that could predict grade-efficiency curves based on stochastic
particle tracking.

With the advancement of flow visualization techniques, Dabir & Petty (1986) were
able to use laser Doppler anemometry in combination with dye injection to confirm
that up to four reversals or countercurrent flows could evolve in the conical section
of a hydrocyclone with a two-to-one vortex finder contraction. They also confirmed
that the mean tangential velocity remained nearly independent of the axial distance,
unlike the axial velocity at the centreline, which varied linearly with the elevation.
In a similar configuration, Chu & Chen (1993) used a particle dynamics analyser to
accurately measure the radial and axial velocities along with the particle sizes and
concentrations at various axial stations inside a transparent hydrocyclone.

It should be noted that, in contrast to the critical size efficiency, the collection
efficiency is defined as the ratio of the mass flowrate of particles recovered to that
of particles introduced into a cyclone separator. In this context, Li, Lin & Vatistas
(1987) considered that the incoming momentums of both the carrying medium
and the suspended particles remained conserved in a fundamentally frictionless
cyclone separator. This enabled them to apply the moment of momentum analysis in
conjunction with the stability-radius theory to predict the collection efficiency within
approximately 6 per cent of reported values.

Along similar lines, Iozia & Leith (1989) employed the static-particle theory to
estimate the maximum tangential velocity and the radius of the forced vortex core
which, in turn, could be used to predict cyclone collection efficiencies. According
to this particular approach, particles of a critical size would remain suspended at
the edge of the forced vortex region where the tangential velocity reached its peak
value, namely, at the equilibrium point between particle inertia and viscous drag.
This work was later complemented by Xiang, Park & Lee (2001), who investigated
the role of the cone’s tip dimensions on the separator’s collection efficiency. These
efforts were also augmented by Avci & Karagoz (2003), who developed analytical
models for the collection efficiency and cutoff size as functions of the cyclone’s
geometric and physical properties. These included the cone’s apex diameter, height,
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Beltrami flow in a conical cyclone 711

inlet width, surface friction, vortex length and flow regime. Then using a cylindrical
swirl tube with inlet vanes, Peng, Hoffmann & Dries (2004) obtained experimental
measurements for the overall efficiency, pressure drop and grade-efficiency curves;
they also showed that their experimental findings agreed reasonably well with model
predictions developed for a tangential inlet, cylinder-on-cone cyclone.

Computationally, in one of the most detailed models developed up to that point,
Concha et al. (1996) proposed different sets of equations that could be applied to
each of the six separate zones that they identified in a hydrocyclone. These equations
enabled them to compute the local velocities with a sufficient degree of precision.
Then, using the momentum balance of particle trajectories, they were able to deduce
the characteristic separation size.

In the context of flow filtration, work on cyclonic dust separators continued to
receive attention as documented in several thoroughly detailed articles, especially
those involving numerical simulations. For example Hoekstra, Derksen & van den
Akker (1999) carried out both experimental and numerical investigations of gaseous,
reverse-flow cyclone separators, where three turbulence closure models were tested. In
relation to their experimental measurements, these researchers found that the Reynolds
stress transport model provided more reasonable predictions than simulations based
on the eddy viscosity approach. Their work was further extended by Derksen & van
den Akker (2000), who used large eddy simulations to predict the fundamental flow
features evolving in a reverse-flow cyclone separator. Their investigation included the
precession patterns of the core vortex and its stabilizing role. In a follow-up study,
Derksen (2003) conducted large eddy simulations of a high efficiency Stairmand-type
cyclone using frozen-field, eddy-lifetime and periodic-flow approaches. Two-phase
flow effects on computations were also considered by Derksen, van den Akker &
Sundaresan (2008). Conversely, to avert the computational cost entailed in large
eddy simulations, Hu et al. (2005) modified the empirical constants for anisotropic
turbulence to arrive at an improved Reynolds stress model for strongly swirling flows.
Their three-dimensional computations were also shown to agree with measurements
acquired in a volute separator using laser Doppler velocimetry. This series of studies
culminated in a review article by Cortes & Gil (2007), who surveyed various models
for inverse-flow cyclone separators and their ability to predict the tangential velocity
distribution, pressure drop and collection efficiency.

For the conical cyclone, one the earliest theoretical studies of note may be attributed
to Fontein & Dijksman (1953). Therein, semi-empirical approaches are used to
construct physically viable approximations of the motion entailed in conically shaped
flow separators. A more refined model based on explicit, small-angle expansions
(i.e. of the type sin θ ≈ θ , which are suitable for small cone divergence angles) is
later suggested by Bloor & Ingham (1973); these researchers also compare their
analytical predictions to experimental measurements by Kelsall (1952). Then after a
period of inactivity in this field, the small-angle expansion is superseded by a more
realistic approximation for the conical cyclone, which does not make use of the
small-angle approximation (Bloor & Ingham 1987). Nonetheless, its resulting solution
is still shown to be suitable for small cone angles only. In fact, what we refer to as
the Bloor–Ingham model will later prove to substantially outperform its predecessors,
especially in its ability to reproduce the overall features of the motion in conical
cyclones. For example, despite its inviscid character and limitations to small cone
angles and simplistic boundary conditions, the Bloor–Ingham solution is repeatedly
shown to exhibit similar characteristics to the flow simulated numerically by Hsieh
& Rajamani (1991), Hoekstra et al. (1999) and Derksen & van den Akker (2000).
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712 T. A. Barber and J. Majdalani

For this reason, the Bloor–Ingham model will be carefully revisited and extended in
the context of a conically shaped cyclonic chamber.

Realizing that the conical configuration remains of fundamental relevance to both
industrial cyclones and modern contraptions of liquid and hybrid thrust engines,
the present study aims at reproducing an exact form of the Bloor–Ingham solution
that remains applicable at large divergence half-angles. Using a judicious choice of
normalized variables and curvilinear coordinates, our approach will therefore extend
the work of Bloor & Ingham (1987). This will be accomplished by using the spherical
Bragg–Hawthorne equation as the basis for deriving an exact inviscid solution of the
Beltramian type. Not only will the new solution be shown to satisfy Euler’s equation
identically, it will be further used to unravel essential flow parameters, such as the
conical swirl number, cross-flow velocity, pressure, vorticity and mantle locations,
in a manner to obviate the need for scaling or conjecture. Finally, the salient flow
features in this problem will be discussed and compared whenever possible to existing
models in the literature.

2. Problem formulation
2.1. Geometry

Our cyclonic separator is idealized as a cone with a divergence half-angle α and
length L. The schematic diagram in figure 1 incorporates both the divergent body and
the non-divergent cylindrical segment, termed the vortex finder. The present analysis is
limited to the divergent segment of this device; the vortex finder plays the equivalent
role of an outlet nozzle in a conical thrust chamber. Whether using cylindrical or
spherical coordinates, the origin of the reference frame may be anchored at the apex
of the cone. Mass addition takes place tangentially, at an average injection speed
of U and volumetric flowrate Q̄i. The injected stream then turns axially, leading
to a downdraft at an average axial velocity of W (see figure 2). This inwardly
directed spiral generates the outer vortex by completely filling the annular region
extending from the mantle to the wall. Inside the mantle, an inner vortex is formed
through which fluid is carried upwardly and out of the chamber. In this work, we
are not concerned with the three-dimensional development of the tangential source
into an axial stream. We follow Bloor & Ingham (1987) and assume that the flow
turning process is immediate. As for the outer vortex in the exit plane, it remains
bounded by the inner and outer radii, b and a. As shown in figure 2(a), we use a
right-handed coordinate system consisting of a spherical radius R̄, a zenith angle φ
and an azimuthal angle θ , which is taken to be positive in the direction of swirl.

2.2. Spherical equations and assumptions
To start, the flow may be classified as steady, inviscid, incompressible, rotational,
axisymmetric and non-reactive. When these assumptions are in place, the conservation
of mass and momentum equations become

∂

∂R̄
(ūRR̄2 sin φ)+

∂

∂φ
(ūφR̄ sin φ)= 0 (continuity), (2.1)

ūR
∂ ūR

∂R̄
+

ūφ
R̄
∂ ūR

∂φ
=−

1
ρ

∂ p̄
∂R̄

(radial), (2.2)

ūR
∂ ūφ
∂R̄
+

ūφ
R̄
∂ ūφ
∂φ
+

ūRūφ
R̄
−

ū2
θ cot φ

R̄
=−

1
ρR̄

∂ p̄
∂φ

(zenith), (2.3)
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FIGURE 1. Schematic of a conical cyclone separator where the outer and inner vortex
regions are clearly depicted.
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FIGURE 2. Geometric model and coordinate systems adopted by (a) the present analysis
and (b) Bloor & Ingham (1987). Everywhere, an overbar denotes a dimensional quantity.
The relabelling in (a) leads to the same azimuthal velocity, azimuthal coordinate and polar
radius in both spherical and cylindrical coordinates, which are often used in modelling
cyclonic flows.

ūR
∂ ūθ
∂R̄
+

ūφ
R̄
∂ ūθ
∂φ
+ (ūR + ūφ cot φ)

ūθ
R̄
= 0 (azimuthal), (2.4)
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with vorticity being expressible by

ω̄=
1

R̄ sin φ
∂(ūθ sin φ)

∂φ
eR +

1
R̄
∂(R̄ūθ)
∂R̄

eφ +
1
R̄

[
∂(R̄ūφ)
∂R̄

−
∂ ūR

∂φ

]
eθ . (2.5)

2.3. Boundary conditions
Given axisymmetric motion with respect to the azimuth, our conical flow field can be
made to satisfy two conditions on the streamfunction, ψ̄(R̄, φ). By insisting that ψ̄
vanishes both at the centreline and the conical wall (i.e. φ = α), one can take

ψ̄(R̄, 0)= ψ̄(R̄, α)= 0. (2.6)

Furthermore, one can assume that the tangential inlet is a source by letting ūθ(R̄i, φi)=

U. The radius and zenith angle associated with inlet conditions are given by R̄i =√
L2 + a2 and φi = α = tan−1(a/L). The same tangential injection is responsible for

producing the flow entering the annular section of the outer vortex (i.e. the downdraft
in figure 1). Finally, one may verify that mass balance between the outer, annular
vortex and the inner, core vortex is strictly maintained. By integrating the solution
over the inlet and outlet sections, it may be readily confirmed that Q̄o = Q̄i =UAi.

Naturally, the flow injected tangentially along the periphery must turn inwardly.
We therefore take W as the average axial velocity at entry, where b 6 r̄ 6 a. The
streamfunction for a uniform profile enables us to put dψ̄/d(R̄ sin φ)=WR̄ sin φ, so
that

ψ̄ = 1
2 W(a2

− R̄2 sin2 φ), (2.7)
where the choice of integration constants corresponds to a vanishing streamfunction at
the wall. The volumetric flow rate at the inlet in terms of the axial velocity becomes

Q̄i =π(b2
− a2)W. (2.8)

2.4. Normalization
Compared to the nomenclature used by Majdalani & Rienstra (2007), overbars are
removed during the normalization process. This is accomplished by taking

R=
R̄
a
; r=

r̄
a
; z=

z̄
a
; l=

L
a
; uR =

ūR

U
; uφ =

ūφ
U
; uθ =

ūθ
U
, (2.9a−g)

B=
B̄

Ua
; H=

H̄
U2
; p=

p̄
ρU2
; ψ =

ψ̄

Ua2
; Qi=

Q̄i

Ua2
; σc=

a2
− b2

Ai
, (2.10a−f )

where the conical swirl number, σc, is described in appendix A. In the above, B, H
and p represent the angular momentum, stagnation head and pressure, respectively. In
addition, we find it useful to associate the cylindrical radii rφ and rα with the zenith
angles φ and α, where rα denotes the horizontal distance from the cone axis to the
inclined wall. This enables us to define the horizontal radial fraction in any axial plane
using

Xφ =
rφ
rα
=

tan φ
tan α

. (2.11)

Accordingly, the locally normalized radial distance corresponding to the open outflow
fraction may be expressed as Xβ = rβ/rα = b/a at any axial elevation z. Furthermore,
owing to the geometric similarity at fixed divergence angle, the length L does not
appear in a judiciously normalized system, where it may be readily supplanted by l=
cot α.
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3. Solution
3.1. Bragg–Hawthorne equation

Euler’s equation can be written as ∇H−u×ω= 0, where H= p+ u2/2 represents the
dimensionless fluid head. For a given streamfunction, ψ(R, φ), the radial and zenith
velocities may be expressed as

uR =
1

R2 sin φ
∂ψ

∂φ
; uφ =−

1
R sin φ

∂ψ

∂R
. (3.1a,b)

Based on the θ -momentum equation, we group uθR sin φ and convert (2.4) into

uR
∂

∂R
(uθR sin φ)+

uφ
R
∂

∂φ
(uθR sin φ)= 0. (3.2)

The resulting material derivative directly leads to the tangential velocity,

uθR sin φ = B(ψ) or uθ =
B(ψ)

R sin φ
, (3.3a,b)

where the tangential angular momentum, B(ψ), is yet to be determined. Using the free
vortex relation for the tangential velocity, B(ψ) may be linked to the radial vorticity,
ωR. By substituting uθ into (2.5), we retrieve

ωR =
1

R2 sin φ
dB
dψ

∂ψ

∂φ
, (3.4)

where the derivative with respect to ψ is used in view of B = B(ψ). Next, the
tangential vorticity may be extracted from the φ-momentum equation. Transforming
∇H − u×ω= 0 into scalar form, we segregate the φ-component and write

1
R

dH
dψ

∂ψ

∂φ
+

1
R2 sin φ

ωθ −
B(ψ)

R sin φ

(
1

R2 sin φ
dB
dψ

∂ψ

∂φ

)
= 0. (3.5)

This expression may be considerably simplified and rearranged into

ωθ

R sin φ
=

1
R2 sin2 φ

B(ψ)
dB
dψ
−

dH
dψ
. (3.6)

After inserting ωθ from (2.5) into (3.6), the velocities may be eliminated through (3.1).
The outcome is a form of the Bragg–Hawthorne equation in spherical coordinates,
namely,

∂2ψ

∂R2
+

sin φ
R2

∂

∂φ

(
1

sin φ
∂ψ

∂φ

)
= R2 sin2 φ

dH
dψ
− B(ψ)

dB
dψ
. (3.7)

In what follows, the proper choice of B(ψ) and H(ψ) will be instrumental to the
solution of (3.7). In order to link B and H, we consider the inlet condition where
the tangential velocity enters at an average velocity of U. Based on the tangential
momentum equation, we have

uθR sin φ = B(ψ), (3.8)
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where B remains constant along a streamline. Next we differentiate (2.7) and (3.8)
with respect to R sin φ to obtain, at the top section of the cone,

dB
d(R sin φ)

= 1;
dψ

d(R sin φ)
=

R sin φ
πσc

. (3.9a,b)

A combination of these two expressions leads to

B
dB
dψ
=πσc ≡ κc = const. (3.10)

This relation grants the tangential velocity the freedom to vary with the streamfunction.
Assuming a constant inlet velocity, we have dH/dψ = 0. Furthermore, in view
of the flow being isentropic, the total enthalpy variation reduces to that of the
stagnation pressure head (Bragg & Hawthorne 1950). These substitutions into the
Bragg–Hawthorne equation lead to a substantially more compact form, namely,

∂2ψ

∂R2
+

sin φ
R2

∂

∂φ

(
1

sin φ
∂ψ

∂φ

)
=−κc. (3.11)

3.2. Streamfunction and velocities

In seeking an exact solution, we posit ψ =R2G(φ) and, pursuant to the work detailed
in § B.1, we obtain

ψ = 1
2κcR2 sin2 φ(λ− lnΦ + csc φ cot φ − csc2 φ), (3.12)

where
λ= csc2 α − csc α cot α + lnΦα =Φα csc α + lnΦα (3.13)

Φ ≡ tan( 1
2φ); Φα ≡ tan( 1

2α). (3.14a,b)
The corresponding velocities become

uR = κc[(λ− lnΦ) cos φ − 1], (3.15)
uφ = κc[(lnΦ − λ) sin φ +Φ] (3.16)

and
uθ =

1
R sin φ

[1+ (κcR sin φ)2(λ− lnΦ −Φ csc φ)]1/2. (3.17)

Compared to the inviscid model of Vyas & Majdalani (2006), the tangential velocity
obtained using this approach retains the free vortex form and, as such, the inverse
variation with the distance from the axis of rotation ∼(R sin φ)−1. Additionally,
(3.17) exhibits a crucial dependence on the inlet velocity profile and the spatially
varying streamfunction. It can therefore be seen that the characteristic features of
this procedure consist of, first, retaining the spatial dependence granted by the
streamfunction and, second, accounting for a specific axial injection profile at entry.

At this stage, using the subscript ‘BI’ to denote the model by Bloor & Ingham
(1987), one may write

ψBI =
1
2κcR2 sin2 φ[λBI − ln( 1

2 tan φ)+ csc φ cot φ − csc2 φ], (3.18)

where λBI ≡ csc2 α− cotα cscα+ ln[(tanα)/2]. Note that for small cone angles, (3.18)
may be recovered asymptotically from (3.12) using successively imposed small-angle
approximations, tan(φ/2) ≈ φ/2 ≈ (tan φ)/2. Although the dual displacement of the
1/2 in the streamfunction may seem negligible at first, it can be shown to have a
significant impact on the subsequent flow properties, especially for large cone angles.
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Beltrami flow in a conical cyclone 717

3.3. Equivalent cylindrical polar values
In the interest of clarity, our expressions are transformed into their polar cylindrical
equivalents. The switch between spherical and cylindrical coordinates follows the
standard transformation matrix (§ B.3). By substituting the values for the radial and
zenith velocities, the radial and axial velocities in a cylindrical reference frame
emerge. Thus, the streamfunction and velocities may be collapsed into

ur =−κcΦ; uz = κc(λ− lnΦ − 1). (3.19a,b)

To convert the streamfunction and velocities into cylindrical coordinates, we employ
R=
√

r2 + z2, sin φ = r/R, cos φ = z/R, and φ = tan−1(r/z). These relations yield

ψ = 1
2κcr2

(
λ− ln Z − Z

√
1+ ζ 2

)
, (3.20)

uR = κc[ζ (λ− ln Z)(1+ ζ 2)−1/2
− 1], (3.21)

uφ =−κc[(λ− ln Z)(1+ ζ 2)−1/2
− Z], (3.22)

uθ =
1
r

[
1+ (rκc)

2
(
λ− ln Z − Z

√
1+ ζ 2

)]1/2
(3.23)

and
ur =−κcZ; uz = κc(λ− ln Z − 1), (3.24a,b)

where the dimensionless variables ζ and Z stand for z/r and
√

1+ ζ 2 − ζ ,
respectively.

4. Results and discussion
4.1. Mantle locations

One of the earliest mentions of the term ‘mantle’ in connection with cyclone
separators dates back to Bradley and Pulling (1959; 1965). In this context, Bradley
(1965) defines the mantle as the locus of zero vertical velocity. This locus is specified
by the angle at which either uR or uz vanishes. Consequently, two mantle inclinations
may be defined in a conical chamber as a function of the zenith angle φ. The first,
βR, corresponds to the location where uR vanishes, and the second coincides with the
angle, βz, where uz = 0. These can be obtained sequentially from

uR = 0 :
{
λ− ln

[
tan
(

1
2βR
)]}

cos βR − 1= 0,
uz = 0 : λ− ln

[
tan
(

1
2βz
)]
− 1= 0.

}
(4.1)

In order to determine the mantle location asymptotically, we first consider the
behaviour of the radial velocity uR and its corresponding cylindrical velocity, uz, as
these components direct the flow into and out of the cyclonic chamber. In theory,
the two mantles are located where uR = 0 and uz = 0, respectively, thus defining two
conical surfaces along which the flow switches polarity between a downward and an
upward spiral. Similar experimental and numerical patterns are reported by Pervov
(1974), Luo et al. (1989), Zhou & Soo (1990), Peng et al. (2002) and Hu et al.
(2005). Because uR or uz appear as functions of the zenith angle φ, we solve for the
root of uR = 0 and uz = 0, and call these inclination angles βR and βz, respectively.
Based on (4.1), we set 1− λ cos βR + lnΦβR cos βR = 0 and 1− λ+ lnΦβz = 0, where
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718 T. A. Barber and J. Majdalani

ΦβR = tan(βR/2) and Φβz = tan(βz/2). We then use a MacLaurin series expansion to
extract

uR = 0 : 1− λ+ ln
(

1
2βR
)
+
(

1
2βR
)2 ( 1

3 + 2λ+ 2 ln 2
)
+ · · · = 0,

uz = 0 : 1− λ+ ln
(

1
2βz
)
+

1
12β

2
z + · · · = 0.

}
(4.2)

In actuality, of the twelve algebraic roots that emerge for βR, only two are meaningful,
namely,

β̃R =



√
−pln[4(λ+ ln 2+ 1

6)e
2(λ−1)]√

λ+ ln 2+ 1
6

, 0<α 6 α0,

√
pln[4(λ+ ln 2+ 1

6)e
2(λ−1)]√

λ+ ln 2+ 1
6

, α0 <α <
1
2
π,

(4.3)

where α0 = 0.48785(27.952◦), with the tilde denoting an asymptotic approximation.
Fortuitously, it may be shown that the piecewise representation in (4.3) may be
collapsed into a single, uniformly valid expression for the mantle location, namely,

β̃R =

√
pln[4(λ+ ln 2+ 1

6)e
2(λ−1)]

λ+ ln 2+ 1
6

=
α
√

e
−

(
1
3
−

5
24

e+
1
2

ln α
)(

α
√

e

)3

+O(α5 ln α)

(4.4)
and so, using a superscript to denote the asymptotic expansion order, we have

β̃
(2)
R ≈ 0.606531α + 0.0519838α3

− 0.111565α3 ln α. (4.5)

By repeating this process for βz= 2 arctan[exp(λ− 1)], twelve algebraic roots may be
retrieved, but of these only one proves to be physical, specifically,

β̃z =

√
6 pln[ 23 e2(λ−1)] =

α
√

e
+

5e− 2
24

(
α
√

e

)3

+
100− 300e+ 273e2

5760

(
α
√

e

)5

+O(α7)

(4.6)
and so

β̃(2)z ≈ 0.606531α + 0.107766α3
+ 0.0185508α5. (4.7)

A comparison between (4.5) and (4.7) reinforces the intrinsic similarity between the
asymptotic forms of β̃(2)z and β̃(2)R , which may be traced back to their basic definitions.
Alternatively, instead of using the inclination angle β to define the mantle, one may
track the mantle vertically using the fraction of the radius XβR or Xβz corresponding
to either uR = 0 or uz = 0. As per (2.11), these are given by

XβR = tan βR/ tan α; Xβz = tan βz/ tan α, (4.8a,b)

which can be approximated using

X̃βR = cot α tan

{
1+ cos α pln[4Φ2

αeΦ2
α−1( 1

6 + ln 2Φα +Φα csc α)]
1+ (1+ cos α)[ 16 + ln 2Φα]

}1/2

(4.9)
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FIGURE 3. Mantle inclination angle versus α as predicted by either (a) βR (——) and
β̃
(0)
R (– – –) or (b) βz (——) and β̃(2)z (– – –). Also shown is the connection between these

solutions and λ (— · —).

and

X̃βz = cot α tan
[

6
√

pln
(

2
3Φ

2
αeΦ2

α−1
)]
. (4.10)

In practice, a three-term asymptotic expansion for each of the radial fractions may be
conveniently retrieved, specifically,

X̃(2)
βR
=

1
√

e
−

e+ 4 ln α
8e
√

e
α2
≈ 0.606531− 0.0758163α2

− 0.111565α2 ln α (4.11)

and

X̃(2)
βz
=

1
√

e
+

2− e
8e
√

e
α2
+

388+ 420e− 255e2

5760e2
√

e
α4

≈ 0.606531− 0.0200338α2
− 0.00505237α4. (4.12)

Equations (4.4) and (4.6) are quite illuminating. In view of the small size of αe−1/2,
a one-term approximation of the mantle location yields βR = βz ≈ 0.6065α, which
explains the ubiquitous use of βz = 0.6α, or alternatively, Xβz = 0.6, in several
empirical studies of conically shaped cyclone separators. Therein, using uz = 0 to
define the mantle seems to be preferred, at least from an experimental perspective,
over the uR= 0 criterion. This is owed in large part to the ease with which the uz= 0
condition may be implemented experimentally, or recreated numerically. According to
(4.4), the use of βR = 0.6α entails an absolute error that varies between 0.0066 and
0.11◦ for 1 6 α 6 60◦. In practice, the 60 % mantle inclination is repeatedly reported
in several independent investigations, including those by Bradley & Pulling (1959),
Pervov (1974), Dabir & Petty (1986), Hoekstra et al. (1999) and Chesnokov, Bauman
& Flisyuk (2006).

To further characterize the mantle inclination, the functional dependence of βR and
βz on α is illustrated in figure 3 as well as table 1. Note that λ varies between
−4.24 and 1 for 16 α6 90◦. As for the mantle location, both exact and approximate
representations are overlaid and shown to be graphically indiscernible, except when
the divergence half-angle approaches the impractical value of 90◦. Nonetheless, the
error incurred in using βR= 0.6α to estimate the mantle location reaches a maximum
of 0.44◦ at α= 90◦, unlike the error in βz, which exceeds 1.3◦ using β̃(2)z . Instead, the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

49
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.494


720 T. A. Barber and J. Majdalani

uz= 0 condition leads to a rather uniform ratio Xβz at any axial station. We conclude
that, for divergence half-angles below 38◦, both βR and βz may be suitably relied on
to characterize the mantle, as their predictions in this range fall within 5 % or less.
For larger angles, only βR continues to follow the 60 % of α approximation. These
results are clearly reflected in table 1.

4.2. Streamlines
The streamlines prescribed by (3.20) are shown in figure 4 at four different cone
half-angles of 30◦, 45◦, 60◦ and 75◦. The contour curves represent lines of constant ψ ,
which illustrate the downdraft, bending and updraft regions. Also shown are the mantle
inclinations corresponding to uR = 0 and denoted by βR. The observed subdivisions
of the flow field are consistent with several experimental studies, including those by
Shepherd & Lapple (1939), Stairmand (1951), Kelsall (1952), Escudier (1987) and
Peng et al. (2002). Here the dashed lines represent ψBI , which clearly deviates from
the present solution as α is increased. Interestingly, these streamlines appear as though
they are entering the conical chamber through the outlet, instead of the inlet, because
the small-angle approximation that the Bloor–Ingham solution is based on deteriorates
as φ is increased. Furthermore, the differences in streamline curvatures translate into
deviations in the velocity components. For example, the relative difference between
the exact value of uR and its predicted value based on ψBI reaches 5 per cent for a
cone half-angle of 28◦.

4.3. Spherical radial and zenith velocity distributions
The spherical radial velocity, uR, controls the spherical polarity of the flow. Simply
put, negative values imply downward motion along the R coordinate whereas positive
values correspond to an updraft (figure 1). In figure 4, the direction and location of
the flow are specified. The outer vortex is delineated by the region in which uR < 0,
wherein the fluid is transported downwardly in a spiralling fashion. In contrast, the
positive uR region within the inner vortex induces convection of the spinning fluid
upwardly and out of the top.

Another feature that may be inferred from uR concerns the physicality and behaviour
of the spherical radial mantle. This corresponds to the surface of revolution where
uR= 0. The ensuing mantle inclination remains constant throughout the cone, and this
property leads to a constantly changing horizontal location as the axial position is
vertically increased. This particular axial shifting is confirmed through (3.21) and may
be observed in figure 5, where uR is plotted at either (a) four axial locations or (b)
five half-angles, to clearly demarcate the inner and outer vortex regions.

By inspection of (3.22), uφ is seen to be solely dependent on the zenith angle
and the conical swirl number. Being somewhat akin to the radial velocity of the
bidirectional vortex considered by Vyas & Majdalani (2006), uφ vanishes at both the
core and the side wall. Conversely at φ= βR or βz, the two complementary velocities
uR and ur provide the necessary link between the inner and outer vortex regions, by
permitting mass transport across the mantle interface. Because uR = 0 at φ = βR, the
connection across the mantle strictly depends on uφ . As shown in figure 5, the curves
exhibit similar profiles where the variation of uφ is shown at four axial cross-sections
and five half-angles, respectively. Everywhere between the axis and the wall, uφ
retains a negative value that is indicative of inward flow towards the cone axis.

It should be remarked that, in the absence of friction, the forced vortex region
that characterizes typical cyclonic cores cannot be fully established. Without properly
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FIGURE 4. Flow streamlines for σc = 1 and cone half-angles of (a) 30◦, (b) 45◦, (c) 60◦
and (d) 75◦. Here, the present model (——) is compared to the small-angle approximation
by Bloor & Ingham (1987) (– – –). Also shown are the corresponding mantle inclinations
(— · —) of βR ≈ 18◦, 27◦, 36◦ and 45◦, respectively.

accounting for shearing stresses in the core region, uR (and hence uz) becomes
unbounded as (φ, r) → 0. In a viscous medium, a core boundary layer develops
around the centreline to the extent of mitigating any divergence in the velocity. One
also expects a thin boundary layer to form along the conical wall, in fulfilment of
the no slip requirement.

4.4. Tangential and axial velocities
Figure 6 illustrates the behaviour of the swirl and axial velocities compared to
the experimental and numerical measurements of Hsieh & Rajamani (1988) and
Monredon, Hsieh & Rajamani (1992). We begin with figure 6(a,b), where the swirl
velocity in a polar plane is showcased against available experimental and numerical
data at two tangential injection velocities. Also shown on the graphs is the free
vortex motion given by uθ = r−1. The dimensions of the cyclonic contraptions used
by Hsieh & Rajamani (1988) and Monredon et al. (1992) are so analogous that
they yield similar values of the modified swirl number σc (α = 10◦, a = 0.0375 m,
and XβR ≈ 0.6). Overall discrepancies observed between theory and measurements or
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FIGURE 5. Radial and zenith velocity distributions for σc = 1 taken at (a,c) several axial
positions for a fixed divergence half-angle of 45◦ and (b,d) several half-angles at the top
of the cone where z/l = 1. The four curves in (a,c) correspond to z/l = 1 (——), 0.75
(– – –), 0.5 (— · —) and 0.25 (· · · ·). The five curves in (b,d) correspond to half-angles
of α = 75◦ (——), 60◦ (– – –), 45◦ (— · —), 30◦ (· · · · · ·) and 15◦ (— · · —).

simulations may be attributed in part to the fundamental limitations of an inviscid
model. Consistently with the free vortex form of (3.23), uθ becomes unbounded
as r → 0, and diminishes with the inverse distance from the cone axis. Its axial
variation, however, seems to be less pronounced due to its weaker dependence on
the streamfunction and the inlet profile. This grants the motion added sensitivity to
the inlet conditions, especially when compared to the free vortex model of Vyas &
Majdalani (2006). Therein, uθ = r−1 is solely dependent on the average inlet velocity.
In both models, the strictly inviscid form grows to unbounded levels at the core. By
the same token, it fails to accommodate the velocity adherence requirement that must
be secured at the wall. This result is actually characteristic of most swirl-dominated
frictionless flows; it is ascertained in work by Bloor & Ingham (1987), Harvey
(1962) and Leibovich (1978, 1984). Interestingly, the axial velocities in figure 6(c,d)
exhibit similar features to those of uR. These are illustrated for σc = 0.2 and 0.305,
respectively. Depending on the vertical distance from the apex, uz crosses the oblique
mantle while switching polarity. A similar transition is observed experimentally by
Mothes & Löffler (1985) in their investigation of particle deposition in gaseous
cyclones. The agreement between theory and either laboratory measurements or
numerical simulations may be viewed as confirmatory, especially when sufficiently
removed from the core or the bounding wall.

4.5. Maximum zenith and cross-flow velocities
In the vicinity of the mantle, a maximum value of |uφ| may be extrapolated.
Interestingly, the maximum radial velocity of the bidirectional vortex in a cylinder also
occurs in close proximity of the mantle. Here, the maximum |uφ| appears at a constant
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FIGURE 6. Theoretical velocity (——) and the free vortex model (– – –) compared to
experimental (u) and numerical (@) data by (a,c) Hsieh & Rajamani (1988), and (b,d)
Monredon et al. (1992). Here we show uθ for (a) U = 7.98 m s−1 and (b) 6.26 m s−1;
and uz for (c) σc = 0.2 and (d) 0.305.

angle, especially that (3.16) consists of a sole function of φ. This angle may be
calculated from the derivative with respect to φ, namely, [sinφ(lnΦ−λ)+Φ]|φmax = 0,
and so

cos(φmax)(lnΦ − λ)+ 1
2 sec2( 1

2φmax)+ 1= 0. (4.13)

Hence, for every α there exists a corresponding φmax that can be evaluated numerically.
A practically equivalent analytical root can be deduced in piecewise fashion using

φ̃max =

{
2
√

pln[−exp (2λ− 3)ϑ]/ϑ; 0<α 6 α0; α0 = 0.38732(22.192◦),

2
√

pln[exp(2λ− 3)ϑ]/ϑ; α0 <α 6 1
2π,

(4.14)

where ϑ ≡ 3/5+ 4λ+ 4 ln 2. In lieu of (4.14), a simple asymptotic approximation for
φmax may be extracted in degrees and written as

φ̃max[deg] ≈ 0.3376+ 0.3250α + 0.001185α2
[deg]; α > 10◦. (4.15)

As for the cross-flow velocity, it coincides with the mantle location and may be readily
obtained through the simple substitution of φ = βR. We get

(uφ)cross = κc[sin βR(lnΦβR − λ)+ΦβR]

≈ −(0.511+ 0.06775α + 0.00917α4
+ 0.00117α6)κcα, (4.16)

where α is in radian. The cross-flow velocity along the mantle permits a constant
supply of mass transport, or spillage as it were, from the outer, annular stream to
the core region. Both (uφ)max/σc and φmax, including the approximate expression given
by (4.14), are illustrated in figure 7(a). The cross-flow velocities, rendered in both
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FIGURE 7. Variation with α of (a) φmax (——), φ̃max (– – –) and (uφ)max (— · —);
(b) (uφ)cross (——), (ũφ)cross (– – –) and φcross = βR (— · —).

exact and approximate forms by (4.16), are displayed side by side in figure 7(b) along
with the mantle loci along which flow crossing occurs. It may be seen that (uφ)max

mirrors the cross-flow velocity so closely that the two profiles appear to be nearly
indistinguishable. This behaviour is interesting because each of these velocities stands
at a different angle.

4.6. Pressure distribution

The pressure may be directly evaluated from Euler’s momentum equation. The partial
derivatives of the pressure for both cylindrical and spherical coordinates return

∂p
∂r
=

1

r3
√

1+ ζ 2
+

κ2
c

r
√

1+ ζ 2

[
ζ 2
√

1+ ζ 2 − ζ 3
+ ζ (1+ ζ 2)

−1/2
(λ− ln Z − 1)

]
(4.17)

and
∂p
∂z
=

κ2
c

r
√

1+ ζ 2

(
ζ 2
− ζ
√

1+ ζ 2 − λ+ ln Z + 1
)
. (4.18)

Taking the normalized p0 as our baseline at the inlet of the cone where (r, z) =
(1, cotα), then (4.17) and (4.18) may be partially integrated to yield, 1p(α)= p(α)−
p0(α), where p0 may be correlated to the cone geometry as shown in table 2. One
deduces

p(r, z)=−
1

2r2
+

1
2
κ2

c [(ζ + ζ
3)(1+ ζ 2)

−1/2
− ζ 2
− ln2 Z − (2λ− 1) ln(Z + 2ζ )]. (4.19)

Figure 8 illustrates the behaviour of 1p at several axial stations and σc = 1. It is
clear that the pressure variation is dominated by its (−r−2/2) leading-order term, a
result that is equally shared by the bidirectional vortex solution in a straight cylinder.
It is also characteristic of other cyclonic studies such as those by Pervov (1974),
Mikhaylov & Romenskiy (1974), Pericleous (1987), Zhou & Soo (1990), Concha
(2007), Cortes & Gil (2007) and Hoffmann & Stein (2008). In both cylindrical
and conical configurations, the pressure difference is largest near the centreline and
negligible near the side wall.
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FIGURE 8. Radial distribution of (a) pressure referenced to the apex and (b) total vorticity
at several axial positions and α = 45◦.

α 5◦ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦ 40◦ 45◦
p0 50.32 31.15 22.04 16.49 12.68 9.88 7.73 6.02 4.63
α 50◦ 55◦ 60◦ 65◦ 70◦ 75◦ 80◦ 85◦ 90◦
p0 3.48 2.53 1.73 1.07 0.522 0.091 −0.226 −0.429 −0.500

TABLE 2. Pressure constant p0 versus α for σc = 1.

4.7. Vorticity distribution
Finally, the vorticity may be straightforwardly evaluated using ω=∇×u to show that
a special relation exists between u and ω. We find

u=
B(ψ)
κc

ω=

√
1+ 2κcψ

κc
ω. (4.20)

The vector parallelism reflected by (4.20) helps to confirm that the reconstructed
Bloor–Ingham solution belongs to the category of helical motions known as ‘Beltrami’
or ‘Beltramian’ (see Wu, Ma & Zhou 2006).

In closing, the radial variation of the total vorticity is displayed in figure 8(b)
at several fixed locations. The vorticity lines confirm the duality of radial positions
that yield the same value of ω at fixed z. This behaviour may be attributed to the
transport of vorticity along looping streamlines. It is further explored in figure 9 where
isovorticity lines are shown for a conical cyclone with divergence half-angles of 30◦
and 45◦. The resulting vorticity maps confirm the transport of vorticity along mean
flow streamlines. As for the magnitude of vorticity, it increases as the axis of rotation
is approached, especially inside an approximately 20 % radius. The region in question
is labelled ‘high intensity core vorticity’ in figure 9. Here too, the over-amplification
at the origin is caused by the absence of viscous damping.

5. Conclusions
This article revisits the problem arising in the context of a bidirectional vortex

in a conical chamber. Immediate applications include industrial cyclone separators
and modified forms of the swirl-driven liquid and hybrid rocket engines. Starting
with the spherical Bragg–Hawthorne equation, an exact Euler solution is derived
that overcomes some of the limitations of previous models of conical cyclones. Our
results are presented in both spherical and polar cylindrical coordinates to facilitate
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FIGURE 9. Isovorticity lines for (a) α = 30◦ and (b) 45◦.

cross-referencing. Through a judicious choice of normalizing parameters, a universal,
self-similar Beltramian formulation is obtained independently of the cone’s vertical
dimension. The ensuing analysis enables us to identify important parameters such as:

(i) the closed-form pressure and vorticity distributions;
(ii) the spatially invariant ratio between the velocity and vorticity vectors;

(iii) the mantle inclination at 60 % of the cone’s divergence half-angle;
(iv) the cross-flow velocity along the mantle interface (uφ)cross;
(v) the conical swirl number σc; and

(vi) the maximum zenith velocity |uφ| and its locus φmax.

The latter is reminiscent of the radial velocity in a right-cylindrical chamber.
It is interesting that our theoretical prediction for β is fully corroborated by the
experimental measurements of Bradley & Pulling (1959). Our analysis also confirms
that the cyclonic motion in question is of the Beltramian type, which is consistent
with the findings of Majdalani (2012), where a similar class of Beltramian and
Trkalian flows is identified in the context of a right-cylindrical chamber.

After expressing the streamfunction in polar cylindrical form, ψ = κcr2(λ −

ln Z − Z
√

1+ ζ 2)/2, this work enables us to deduce the fundamental expression
linking the tangential angular momentum and the streamfunction through B =
ruθ =

√
1+ 2κcψ . This relation plays a central role in the Bragg–Hawthorne

formulation as it leads to a solution that is capable of satisfying the problem’s
basic constraints in a frictionless environment. It thus complements previous studies
such as those by Bloor & Ingham (1987) and Majdalani & Rienstra (2007). In
hindsight, its primitive form could have been posited at the beginning of the
analysis to precipitate the solution more expeditiously. Similar forms of B may be
employed while seeking other solutions to this class of helical flows. These include
B= B0,

√
B0 + B1ψ,

√
B0 + B1ψ±m, B0ψ, B0ψ

±m, . . . , and others. Along similar lines,
a generalization beyond H= const. may be attempted in the quest for more elaborate
flow profiles.
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Appendix A. Conical swirl number

Through the use of (2.8), the inlet axial velocity W may be eliminated in favour of
the actual tangential flow rate into the chamber,

W =
Q̄i

π(b2 − a2)
=−

UAi

πa2(1− X2
β)
, (A 1)

where Xβ = b/a. For consistency with the bidirectional vortex study of Vyas &
Majdalani (2006), the swirl parameter may be written as

S=
πab
Ai
=

πXβ
Qi
=πXβσ , (A 2)

where σ = Ua2Q−1
i = a2/Ai is the modified swirl number. The conventional swirl

parameter, S, corresponds to the form used by Hoekstra et al. (1999) and Derksen
& van den Akker (2000). Accordingly, we have

W =−
U

πσ(1− X2
β)
=−

U
πσc

. (A 3)

Following Majdalani & Rienstra (2007), a modified swirl parameter appropriate of
conical cyclones may be defined as

σc =
a2
− b2

Ai
=

L2

Ai
(tan2 α − tan2 β)=

a2

Ai
l2(tan2 α − tan2 β)= σ

(
1−

tan2 β

tan2 α

)
, (A 4)

where β= tan−1(b/L) is the angle of the mantle throughout the cone. It may be easily
verified that σc equates to the tangential-to-axial velocity ratio and that σc is related
to σ via

σc = σ(1− X2
β)=−

U
πW

, (A 5)

where the negative sign is simply transferred to the Bragg–Hawthorne equation.

Appendix B. Partial solution of the Bragg–Hawthorne equation
B.1. Streamfunction representation

Inserting the product solution into (3.11) gives rise to a second-order ordinary
differential equation, specifically,

2G+ sin φ
d

dφ

(
1

sin φ
dG
dφ

)
=−κc. (B 1)
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The solution to (B 1) may be retrieved by setting the two complementary and
particular solutions as

G1 = sin2 φ; G2 = g(φ) sin2 φ; Gp =−
1
2κc. (B 2a−c)

Backward substitution into (B 1) yields

g(φ)=− 1
2 [csc φ cot φ + ln(csc φ + cot φ)] (B 3)

and so
G=− 1

2κc +K1 sin2 φ +K2[cos φ − (sin2 φ) lnΦ]. (B 4)

As usual, we fix the streamfunction at both the axis of symmetry and the conical wall.
Using ψ(R, 0)=ψ(R, α)= 0, we deduce G(0)=G(α)= 0 and so both K1 and K2 may
be written as

K1 =
1
2κc(csc2 α − cot α csc α + ln A); K2 =

1
2κc, (B 5a,b)

which enables us to fold (B 4) into

G=
κc sin2 φ

2
(λ− lnΦ + csc φ cot φ − csc2 φ), (B 6)

which is the precursor to (3.12).

B.2. Velocities
With the streamfunction at hand, uR and uφ may be readily determined. Through
proper differentiation, we obtain (3.15) and (3.16). To produce the tangential velocity,
we use (3.10) and solve for B. Straightforward integration renders∫

B dB=
∫
κc dψ or B(ψ)=

√
2κcψ + B0. (B 7a,b)

At the inlet, ψ = (R2 sin2 φ − 1)/(2κc), which, when substituted into (B 7), returns
B0 = 1, and so

B(ψ)=
√

1+ 2κcψ. (B 8)

It may be helpful to clarify that the previous inlet streamfunction is evaluated here
at the top of the cone, namely, at the wall where ψ = (R2 sin2 φ − 1)= 0 and where
B= 1. Next, we may update (B 8) into

uθ =
1

R sin φ

√
1+ 2κcψ. (B 9)

Note that we recover (3.8) along the inlet section, where a uniform flow prevails.
Finally, using the streamfunction inside the cone, we retrieve (3.17).

B.3. Spherical to cylindrical transformation
In order to obtain (3.19), our expressions are switched from spherical to polar
cylindrical coordinates using the standard transformation matrix,

ur = uR sin φ + uφ cos φ,
uz = uR cos φ − uφ sin φ.

}
(B 10)
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