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EINSTEIN'S EQUATIONS IN AN EXTERIOR DOMAIN

JURGEN KLENK1

(Received 12 January 1995)

Abstract

A proof is given for the existence and uniqueness of a stationary vacuum solution (.<#, g, £)
of the boundary value problem consisting of Einstein's equations in an exterior domain ^
diffeomorphic l o l x £ (where £ = (R3\B(0, /?)) and boundary data depending on the
Killing field f on 3E. The boundary data must be sufficiently close to that of a stationary,

spatially conformally fiat vacuum solution (JZ, J, | ) .

1. Introduction

It is believed that in general relativity rotating stars can be described as rigidly rotating
bodies of perfect fluid in hydro- and thermo-dynamical equilibrium. This model
has been extensively discussed in many papers, for an overview see for example
Lindblom [8]. However to verify the validity of this model, it is necessary to establish
an existence proof for stationary, asymptotically flat global solutions of Einstein's
equations G = 8n T, where T is the perfect fluid energy-momentum tensor.

This was partially achieved by Heilig [7] in 1994. He constructed an operator
depending on three variables: the angular velocity co of the fluid, the parameter
v = j-j of Ehler's framework theory [5], and the metric g of the whole spacetime.
This operator vanishes for co = 0, v = 0 and g the well-known global solution of
the corresponding static Newtonian problem. Using an implicit function theorem
argument, he could then prove the existence of global solutions in the neighbourhood
of the static Newtonian solution for small co and v. These solutions continuously
depend on the two parameters a> and v and are thus only suitable to describe "very
slowly" rotating stars.

A different approach, outlined for example by Pfister [11] is to decompose the
global problem by taking the surface of the star as a natural boundary and solving
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232 Jiirgen Klenk [2]

the interior matter problem and the exterior vacuum problem separately. The inte-
rior and exterior solutions are then fitted so that the global solution is continuously
differentiable across the boundary. But until now all attempts to create an explicit
global solution by extending known interior matter solutions with specific equations
of state to the exterior region or by extending the Kerr solution to the interior region
have failed. Therefore, to successfully carry out this program, it seems necessary to
establish mathematical existence results for both the interior and exterior boundary
value problem.

In this paper we establish an existence result for the stationary vacuum boundary
value problem in an exterior domain, an extension of a result obtained by Reula [ 13] in
1989. The solutions we seek will be called 4-solutions and are defined in the following
way:

DEFINITION 1.1. A stationary vacuum solution of Einstein's equations in an exterior
domain in the 4-dimensional formulation (4-solution) is given by a triple {M, g, £),
where

• JC is a 4-dimensional manifold;
• g is the metric on Jt satisfying Ric = 0;
• £ is a smooth timelike Killing vector field on (./#, g) with orbits diffeomorphic

toR;
• there exists a spacelike hypersurface y of {J(, g) and a diffeomorphism

X : S := R3\B(0, R) -» S* such that the map

* : l x ^ l , ( ( , p ) H *(r, p) := 0(r, *(/>))

is a diffeomorphism, where <p : 0& x Jt ->• J( is the flow of the Killing vector
field f;

• the metric g lies in a suitable weighted Sobolev space2 that guarantees its
asymptotic flatness.

With this definition, J( is diffeomorphic to R x E, where E = 0£3\B(O, R) for a
ball of fixed radius R. Thus we will eventually have to solve a fixed boundary value
problem rather than a more difficult free boundary value problem, which would have
been the case had we used the exterior region of the star as a domain.

In Section 2 we will prove that for any 4-solution there exists a corresponding
3+1-solution and vice versa. The 3+1-solutions are defined in the following way:

DEFINITION 1.2. A stationary vacuum solution of Einstein's equations in an exte-
rior domain in the 3+1-decomposed formulation (3+1-solution) is given by a triple

Y, r)> where

2For a discussion of these function spaces see for example Bartnik [3] and Adams [2].
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[3] Stationary vacuum solutions of Einstein's equations 233

• 5? is a 3-dimensional manifold;
• y is the metric and x a complex scalar field on &;
• there exists a diffeomorphism x • £ := Q&3\#(0, R) - • S*;
• y a nd T satisfy the following equations:

0, (l)

SHic - (r + x)~2(dx ®dx +dx® dx) = 0. (2)

Introducing harmonic coordinates we will show in Section 3 that in a neighbourhood
of the Minkowski background metric, (1) and (2) together with suitable boundary
conditions can be reduced to a quasilinear elliptic boundary value problem, for which
we will establish an existence and uniqueness result. Finally, in Section 4 we will
extend this result to the case of an arbitrary stationary, spatially conformally flat
vacuum solution as background metric. The main theorem can then be expressed in
the following way:3

THEOREM 1.3. Let (J(, g, £) be a spatially conformally flat 4-solution and let
o o

r = X + ico be the complex scalar field consisting of the norm k and the scalar
potential co of the twist of the Killing field £. Let x be a complex scalar field ondT,
sufficiently close to x |a£. Then there exists a unique {up to diffeomorphism) 4-solution
(^, g, £) such that r|ax = f, where x is the complex scalar field defined by the
Killing field £.

For an application of this theorem, we note that the Schwarzschild metric on ^( is
spatially conformally flat and its Killing field has vanishing twist, that is, it describes
the exterior region of a static (nonrotating) star. According to Theorem 1.3 we then
choose boundary data with non-vanishing twist from a neighbourhood of the boundary
data of the Schwarzschild metric. Thus the solution corresponding to this prescribed
boundary data has a Killing field with small but non-vanishing twist and, therefore, is
suitable to describe the exterior region of a "slowly" rotating star.

Finally, because rotating stars are axisymmetric, we note that for axisymmetrically
prescribed boundary data, the solution possesses the same symmetry property. This
follows from the uniqueness of the solution and the invariance of Einstein's equations
under rotations.

2. The 3+1-decomposition

2.1. Preliminaries The original motivation to derive a 3+1-decomposition for
Einstein's equations was to develop an initial value formulation for general relativity so

3See Definition 2.6 for the precise definition of the expressions used in this theorem.
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234 Jiirgen Klenk [4]

that certain existence and uniqueness results could be established. For an overview see
the paper of Choquet-Bruhat and York on the Cauchy problem [4]. By assuming global
hyperbolicity, they arrive at a natural foliation for the spacetime with Cauchy surfaces
as cross-sections. These Cauchy surfaces are 3-dimensional spacelike submanifolds
of the spacetime. The unit normal fields on them form a timelike, hypersurface-
orthogonal vector field on the whole spacetime with orbits diffeomorphic to K.

Contrary to this approach, we use the Killing vector field £ rather than a unit
normal field to create a foliation of ^#. The advantage of this construction is that if
( ^ , g, £) is a 4-solution, then all significant physical quantities are "conserved" along
the orbits of £. Thus the cross-sections contain all the physical information of the
4-dimensional system, and the problem to solve Einstein's equations can be reduced
to a 3-dimensional one. However, in the stationary (non-static) case the Killing field
is not hypersurface-orthogonal to some spacelike submanifold 5? of Jt'. Therefore,
to be able to carry out the projection formalism, we must regard 5? as a quotient space

First we establish some general properties of quotient manifolds.

DEFINITION 2.1. An equivalence relation ~ on a finite-dimensional manifold J{
is called regular if the quotient space 5? := Ml ~ carries a manifold structure such
that the canonical projection n : M —> 5? is a submersion, that is, such that for all
x 6 M', the tangent map nt\x : TXM —>• Tn^S? is surjective.

DEFINITION 2.2. Let M be an ^-dimensional manifold and <I> = [<pa}aei a partition
of M into disjoint connected sets. The partition is called a p -dimensional foliation if
each point of Jt has a chart <p : U -> ( / ' x V c P ® ^"~p such that for each </>„, the
connected components (U n </>a)

fi of U D (j>a are given by <p ((U D <f>a)
p) = U x {cf},

where cf e V.

Each foliation <t> = [<pa }o6/ determines an equivalence relation ~ on M by x ~ y
if x and y belong to the same leaf <pa. The following proposition is a useful criterion
to determine whether this equivalence relation is regular, that is, whether the quotient
space y is a manifold.

PROPOSITION 2.3. Let <J> be a foliation of a finite-dimensional manifold M and let
~ be the equivalence relation determined by <t>. Then ~ is regular if and only if for
every point x € M there exists a local submanifold E* of M containing x such that
T,x intersects every leaf in at most one point, and TX~EX © Tx(j>x = TXM', where <px is
the leaf containing the point x.

PROOF. This is Proposition 4.4.9 in [1].
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[5] Stationary vacuum solutions of Einstein's equations 235

The local submanifolds T,x are called the slices or local cross-sections for the
foliation.

PROPOSITION 2.4. Let jfl be an n-dimensional manifold and f a smooth vector field
on jfZ with orbits diffeomorphic to K. Assume there exists a hypersurface & C dt
and a diffeomorphism x '• U C K"~' —*• 5? such that the map

* : l x ( / - > l , ( l , p ) H *(,, p) : = <j,(t, X(p))

is a diffeomorphism, where (j> : OS x ^ -> ^# is the flow of the vector field £.
Let 4> be the set of all orbits <f>x. Then 4> is a I-dimensional foliation of jft and
its equivalence relation ~ is regular, that is, the induced quotient space S" is a
3-dimensional manifold.

PROOF. We construct local cross-sections for the foliation O. For x = *(f, p) e
J{ and V c U a neighbourhood of p let T,x := *(r, V). For sufficiently small V the
criterion of Proposition 2.3 is satisfied and thus ~ is regular.

From now on we assume that Jt and 5? are given as in Proposition 2.4. Note that
for the following results it is not necessary to equip Jt with a metric. We establish
some properties of the push-forward and pull-back associated with the canonical
projection n : Jt -*• 5?.

1. The push-forward of a vector v € Txjft is given by its image under the tangent
map, that is, n*\x(v).

2. The pull-back of a covector a> e T*y is given by n*\y(co) = to e T*JK,
where a>(v) := co(7Tt\x(v)) for any t; € Tx^andx €n~l(y).

The push-forward and pull-back can be extended to vector fields on ^ and covector
fields on 5P, respectively. This is achieved by applying the pointwise definition
above. In addition, they can be extended to tensor fields on M of rank (0, r) and
tensor fields on «J" of rank (s, 0), respectively, by the properties of the tensor product.
Finally, scalar fields on M can be mapped onto scalar fields on 5? and vice versa by
composition of the scalar field with n or n ~'. It is important to keep in mind that none
of these definitions requires any metric on jft or 5?. However, the following lemma
is an important restriction for the definition of the push-forward.

LEMMA 2.5. The push forward of a tensor field T on M of rank (0, r) (r > 0) is
well-defined if and only ifJ&$ T = 0.

PROOF. We only give the proof for vector fields. The push-forward of a vector field
V e Tx^ can be well-defined if and only if V is constant along the orbits of the vector
field £, that is, if and only if V = <t>* V for all / 6 K (where <f>* is the pull-back of the
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diffeomorphism </>,), or in other words, 0, is a symmetry transformation4 for V. The
dynamical characterisation of the Lie derivative, (J2$ V)(x) = lim^o 7((0,* V)(*) —
V(x)), yields the desired result.

In view of this Lemma, we adopt the following notation:

k\Jt := {T € 9;jl :S%T = 0),

the set of all tensor fields on ~di of rank (s, r) which are constant along the orbits of
the vector field £.

We now want to extend the push-forward to tensor fields on J£ of arbitrary rank.
Only from now on do we assume that ~df is equipped with a metric g and that the
smooth vector field £ on jft is a Killing field with respect to g.

DEFINITION 2.6. The norm A. and the twist Q. of the Killing field £ are defined by
) and Q := (*(£" A rff"))« respectively.

In the following we will also adopt the well-known identification of the tangent
space Tyy at a point y of the abstract quotient manifold y with the subspace
§(x)x := {u 6 TxJt : g\x(v, $(*)) = 0} c 7 ^ ^ at a point x e Jr~'(;y) of the
manifold JZ. The push-forward can then be extended to tensor fields T on J{ of
arbitrary rank which satisfy J5f? T = 0 by making use of the metric g and the following
pointwise definition for vectors:

It is easy to show that JŜ X = 0 and ^Q. = 0. Thus the projections of these
fields onto 5? are defined. We denote them by X := nti and Q := n*€l, respectively.
Because g{Cl, £) = 0 we obtain with the above mentioned identification the simple
relations A. = X and & = fi.

The following proposition is fundamental for the equivalence of 4-solutions and
3+1-solutions.

PROPOSITION 2.7. 1. We denote by y := ntg = g - J r ' f <g> £" the projection

of the metric g onto y . Let V e SQ-rf, f e &s
r J( and D be the Levi-Civita

connection on (J(,g). Let V = nt(V) and T = nt(f). Then the Levi-Civita
connection V on (5?, y) is given by

Vvr = n.(Dyf). (3)

Differential operators associated with the Levi-Civita connection V are:

4This is the precise definition of the expression "V is constant along the orbits of the vector field f".
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[7] Stationary vacuum solutions of Einstein's equations 237

(a) the covariant differential V;
(b) the gradient V;
(c) the divergence div;
(d) the Laplacian A.

In addition, we have the exterior derivative d '• f\ S? -> [\ y , which is indepen-
dent ofV.

2. For the norm and the twist of the Killing field, we have the following equations

dn" = *.(•(£> A Ric(£,.))), (4)
3

XX.y(Q, VX), (5)

AX = ^k-ly(Vk, VX) - A.-'j?(n, «) - 27r,(Ric(f, £)). (6)

3. L<tf n : y 0 ' ^ x X-^ ~+ X-^ be defined by 1(U, V) := (-ky1/2g(DuV,
£). We note that I can be regarded as the second fundamental form on the space-
like hypersurface y . Let Riem be the Riemannian curvature tensor on (^ ' , g),
W, X,Y,Z € &£Jt and W, X,Y,Ze ST^S? their respective projections onto y.
Then the Riemannian curvature tensor Sftiem on (y, y) is given by

y ($Uem(.W, X)Y, z ) = nt (g (Riem (w, X^j , Y,

( i ) ( ) ) (7)

4. Let Ric be the Ricci tensor on (*/#, g). Then the Ricci tensor i%ic on (y, y)
is given by

(8)

5. Let G be the Einstein tensor on {Jt, g). Then the Einstein tensor <S on (y, y)
is given by

= -k~2nb ® n" - -k~2y(Q, n)y + i x - ' v (vx) --k-2dk

- l-k-' (Ax) 9 + \yr29 (VX, VX) Y + **G. (9)

PROOF. 1. The operator V defined in (3) is the induced connection on (y, y),
thus the five Levi-Civita properties hold.
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2. To prove (4)-(6) we note that for any Killing field £,

, U)V = DVDV^ -

For further details see for example Lindblom [9].
3. This is GauB' equation.
4. Equation (8) can be derived by using the definition &Zic = C\3£iem (where

C\3?.iem is the contraction of ffliem over 1 and 3), Equation (7), and the definition of
the norm and the twist of the Killing field.

5. From (6) and (8) we calculate the scalar curvature M on (y, y) (where R is
the scalar curvature on {M', g)):

0Z = --k-2y(Si, Q) - -k-2y(Vk, Vk) + X"1 AX + TT.R. (10)

Then the Einstein tensor can be computed from its definition.

2.2. The decomposition

THEOREM 2.8. There is a unique {up to diffeomorphism) correspondence between
4-solutions and 3+1 -solutions.

1. Let (J/K, g, f) be a 4-solution. The corresponding 3+l-solution (y, y, r) can
be obtained as follows:
Let 5? :— jft I ~, where ~ is the equivalence relation determined by the foliation
4> = [<t>x) of the orbits of the Killing field £. Let X and Q be the projections of the
norm and the twist of the Killing field § onto y, and y := n*g the projection of the
metric onto y . Define the scalar field a> by Vo> := Q.
Then the metric y and the complex scalar field x on y are given by

y := ky, z := k + ico.

2. Let (y, y, r) be a 3+l-solution. The corresponding 4-solution (^, g, £) can
be obtained as follows:
Let JM be a 4-dimensional manifold diffeomorphic tolxE and let £ be a vector
field on M with orbits diffeomorphic to K such that y = MI ~, where ~ is the
equivalence relation determined by the foliation <t> = {<f>x} of the orbits of the vector
field £. On J% choose a basis field [e0, et, e2, e3} such that e0 = | . For any point
y € y identify the tangent space Tyy with the subspace span [e{ (x), e2(x), e3(x)} of

wherex e n~l(y). Define

k := Re r, co:=lmz, y :=k~ly, Sl:=Vco, dAb := (-k)'3'2 *
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[9] Stationary vacuum solutions of Einstein's equations 239

Let A := n*k and y := n*y. Furthermore, for any x e jfl define the covector £b(*)
in the following way:

t-b(x)(ei(x)) = (n*(kAb))(xXei(x)) for i = 1, 2, 3.

Then the metric g on JM is given by

PROOF. 1. Let (M, g, f) be a 4-solution. Since Ric = 0, (4) simply becomes
dSlb = 0, that is, £2b is a closed 1-form. Applying Poincare's Lemma on the con-
tractible manifold y , the 1-form Q.b is exact, that is, £2b = do) or Q = Vco for a
function co on y . Equations (5), (6) and (8) then become

Aco =-k~ly(Vo),Vk), (11)

AA = i*-1)?(VA., VA.) - A--'y(Vw, Vco), (12)

BfAc = -k~2dco ®dco

+ -A.-1V(VA)--dA<8)rfA. (13)

Applying both the conformal transformation y := ky and the substitution r := k+ico
we find that (1) and (2) are satisfied. Thus (J^, y, T) is a 3+1-solution.

2. Let (y, y, r) be a 3+1-solution. Equations (11)—(13) follow directly from (1)
and (2) when applying the conformal transformation y = Ar'y and the substitution
A + ico := r. With Q. := Vw, (11) can be rewritten as d(*(Slb)) = \k~ldk A (*(fit>)),
where the second equation holds due to the properties of the Hodge-star operator.
We will use this equation to prove that (—A)~3/2(*(nb)) is closed, hence exact with
Poincare's Lemma applied on the contractible manifold y . This proves the existence
of the 1-form A". We have

<i((-A)-3/2(*(fib))) = d«-kyy2) A

^() A

= 0.

With the given definition of the metric g, £b is the covector field associated with the
vector field £. It is a straightforward computation to show that f is a timelike Killing
field, and that A and Q. are the projections of the norm and the twist of £, respectively.
Thus we can apply Proposition 2.7 to prove that Ric = 0.
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Indeed by inserting (12) in (6) and (13) in (8) and using (4) together with dti" =
d2co = 0, f, | b ^ 0 everywhere, and |"(g,-) # 0 for / = /, 2, 3, we find that Ric = 0.
Thus (M, g, £) is a 4-solution.

3. Reduction, existence and uniqueness

In this section we reduce (1) and (2) along with suitable boundary conditions on
to formulate a quasilinear elliptic boundary value problem. For this problem

we establish an existence and uniqueness result provided that the boundary data is
sufficiently close to that of the Minkowski metric (serving as a "background metric").
This is achieved by reproving a result of Reula [13], making use of a different theorem
for elliptic boundary value problems. In the next section we will extend this result to
a larger class of background solutions.

Using (8), (9) and (10), we replace (2) by the equivalent expression for the Einstein
tensor <£ on 5?. From now on we also use the index notation because all quantities
will be expressed in the global chart S" = Y,.

3.1. Preliminaries We state an implicit function theorem and an existence and
uniqueness theorem for elliptic boundary value problems, which will be used several
times in the proofs of the reduction, existence and uniqueness results of this section.

THEOREM 3.1. Let X, Y, Z be Banach spaces, let U C X and V c Y be open
subsets, and let f : U x V -*• Z. Let (JC0, y0) & U x V be such that f (*<>, yo) = 0.
Let f be Frechet differentiate at (x0, y0) with respect to the first component and
Dif \(Xo,yo) : X -+ Z be either surjective with complemented kernel5 or bijective.

Then there exist neighbourhoods Vo C V of yo and UQ C U of x0 and a map
g : Vo —> f/o (which is unique ifD\f !(*„,,,„) is bijective) such that for all ye Vowe
havef(g(y),y) = 0 .

PROOF. The case of the bijective Frechet differential is Theorem 2.5.7 in [1]. The
extension to the surjective case is a straightforward calculation.

DEFINITION 3.2. Let D be a differential operator on a domain E c K " with the flat
Laplacian 32 as principal part6 and let B be a boundary operator on 3S with principal
part Bp. Let t" ^ 0 be a tangent vector field on 3S and let n" be the normal vector
field on 3D with respect to the flat metric. Let z+(t"(x)) be the root with positive

5This means that the Banach space X can be written as the direct sum of the kernel of Dtf \^Oiyo) and
some closed subspace of X.
6See Definition 2.1 in [12]
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[11] Stationary vacuum solutions of Einstein's equations 241

imaginary part of the polynomial £n=i (*"(*) + *na(x))2 for all x € 3E and define
the polynomials p,,x(x) := T - x+(ta(x)) and q,,x(x) := Bp(x, t"(x) + xna(x)).

Then the boundary value problem (D, B) in £ is called elliptic if for all x e 3S
and /"(*) 7̂  0 the set {p,,x(x), qt,x(x)} is linearly independent.

THEOREM 3.3. Let n > 2, s > 2, 8 e R, 8 ^ - 2 + n/2 + m, 8 ^ - n / 2 - mfor
m € M. Let (D, B) be an elliptic boundary value problem in E. Then the map

(D, B) : tf^(E) -* tf,_2,a+2(E) x // , . t .1 / 2(3E)

« Fredholm. Moreover, for n > 3 ana1

1. /or - n / 2 < 8 < -2 + n/2 it is bijective;
2. for —2 + n/2 + m < 8 < -2 + n/2 + m + 1 (m € N) it is surjective;
3. for —n/2 — m — 1 < 8 < —n/2 — m (m e N) it is injective.

PROOF. The proof can be found in McOwen [10].

The Sobolev spaces used in this theorem are weighted and of fractional differen-
tiability. An introduction to the former can be found in Bartnik [3] and of the latter in
Adams [2].

3.2. The reduction We introduce a background metric and a vector field (gab, | a )
on Jt or, equivalently, a background metric and a complex scalar field (yab, x) on
J7, which are 4-solutions or 3+1-solutions, respectively. In this section we choose
(gab' 1 ° ) t o b e t h e Minkowski-solution {qab, (3,)"), and thus (yab, x) = (8ab, 1).

Then we replace (yab, x) by (</>„(,, u), the distance to the background metric:

<t>ab •= y/YYob ~ \Y Yab = VY Yab ~ &ab, U 1= X - X = X - I,

where / = det (yab)- Furthermore we define
3 the Levi-Civita connection on (^", 8ab),
tyb := dacpab the divergence of<t>ab which vanishes only in harmonic coordinates,
<p : = 8ab<t>ab t h e t r a c e o f <j>ab.

Finally we introduce a vector field n" on 6? by writing (in the global chart) E =
Ur>y? 3fi(0, r) and defining na(x) as the outward7 unit normal vector at x 6 35(0, r)
with respect to 8ab. With this unit normal vector field, we define
8ab '•=• Sab — n a n b , the tangential component of 8ab,
3, the Levi-Civita connection on ( 3 ^ \ 8ab\ax),
oab '•= Sachd<t>cd — \Kb&cd<t>cd, the traceless tangential component of <pab,
n\jf : = n"da{nbtjf

b), the normal derivative of the normal component
0fT/r*,

,^rb : = 8bxj/a, the tangential component of ifrb.

7The outward region of 3fl(0, r) is K3\S(0, r).
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THEOREM 3.4. Let u e //2(3E). For (u,<pab) e #5,_2(£) x Hs;_)(Z) denote
by

• system 1:

AM - 2(H + M + 2)-lycddcu ddu = 0,

Sf"* - (u + u + 2)"2 (daudbu + daudbu - ycddcudduyab) = 0,

"las: - « = 0,

^" = 0;

• system 2:

E(u, <t>ab) - ycddcddu + (terms of lesser order) = 0,

Eab(u, <j>ab) = ycddcdd<t>ab + (terms of lesser order)ab - 0,

"lar - u = 0 ,

<p\az = 0 ,

= 0,

= 0 ,

^*l3E = 0,

where the precise definitions of E and Eab will be given in the first part of the proof.
Then there exists e(u) > 0 such that for all (u, <pab) with |(w, 4>ab)\\ < e(ic) we

have: (u, <f>ab) is a solution of system 1 if and only if it is a solution of system 2 (up to
diffeomorphism).

PROOF, "if": Let (u, <pab) be a solution of system 1. The Laplacian on (y, yab)
can be written as AM = ycddcddu + (terms of lesser order), so E(u,(f>ab) is easily
defined to match the first equation of system 1. Since \ffb — 0, the solution is given
in harmonic coordinates, and thus the Einstein tensor takes the quasilinear elliptic
form <&ab = ycddcdd(f>

al' + (terms of lesser order)"*. Therefore, Eab(u,4>ab) can be
defined to match the second equation of system 1. All terms of lesser order depend
continuously on (M, </>"*) and vanish for (u, <f>ab) = (0, 0).

To obtain the boundary values of system 2, we consider the map

G:UxV-*Z, (d, <pab).-+ (dad(<t>°b),

whereX := /^._z(£), Y := tf|,_2(E),Z := H>,i(S)xH2(ai;)x(//1(3i;)/{infini-
tesimal conformal isometries of Sab}), U := {d e X : \\d — id\\ < e), V := Y and
e is such that all d e (/are diffeomorphisms. We identify each diffeomorphism
d : E - • S, xb H> da(xb) = xa + t;a(xb) with the vector field £" e U. Since d is
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a diffeomorphism, (d(u), d(4>ab)) satisfies the (transformed) differential equations of
system 2. We also have G(id, 0) = (0 ,0 ,0) . The definition of the Frechet differential
yields

where

so that DiG\ud,0) defines an elliptic boundary value problem in S . According to
Theorem 3.3, DiG\Ud<0) • X -> Z is a Fredholm operator. Thus it has finite-
dimensional (complemented) kernel. It is also surjective since S < — | .

Applying Theorem 3.1, we find that for any solution («,</>"*) of system 1 with
I (u, (}>ab) I < e there exists a diffeomorphism d such that the transformed solution
(d(u), d((f>ab)) satisfies dty") = 0 in E, d(<p) = 0 on 3 S and 3 a r f ( O = 0 on 3E.
Thus we also have d{aab) = 0 on 3D since any traceless, symmetric, divergence free
tensor field of a 2-dimensional manifold vanishes. Therefore, the boundary conditions
of system 2 hold and (d(u), d((pab)) is a solution of system 2.

"only if" : Let (M, <j>ab) be a solution of system 2. With the given definition of E
and £"* it remains to be shown that \j/b — 0 if | (M, </>"*) | < e, that is, the solution is
given in harmonic coordinates.

We multiply the divergence of Eab with <Jy and rewrite the result as a differential
equation for ^b = da<j>ab:

L(u, <t>ab)tyb = d2fb + R(u, <t>abWb - 0, where R(0, 0) = 0.

Since L(0,0) = 32 (the flat Laplacian), it is injective. R(u,(f>ab) depends contin-
uously on (M, <pab) and can be estimated such that L(u, <pab) remains injective in a
neighbourhood of (0,0). Therefore, for | («, <f>ab) || < s, the differential equation
L(u, (j>ab)i]fb = 0, together with the boundary conditions n^-|3E = 0, ,rj/%-z = 0, yield
\frb = 0 in £ .
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3.3. The existence and uniqueness theorem

THEOREM 3.5. There exists e > Osuch that for all u € tf2(3E) with \\u\\ <e there
is exactly one solution (M, <f>al>) e Hi. , _ J ( S ) X H^_I(Y,) of system 2.

PROOF. We rewrite system 2 implicitly as the trivial solution of the map

F :X x Y-+ Z,

((«, (/>""), u) » {E(u, (f>ab), Eab(u, <pab), «|3E - u, oab\K

where X := // | ._|(5;) x tf§,_2(£), Y := //2(3E) and Z := ffi,$(E) x / / i ,
//2(3E) x / / 2 (8E") x H2OE) x //0(3E) x (H,(3S).

Obviously F((0, 0), 0) = (0,0, 0,0,0,0, 0) (this is the background solution) and
for the Frechet differential £>iF|((0,o),o) we calculate

X —>• Z ,

(« , <pab) ^ (d2u, d2<t>ab, u | 8 E ,

so that Di F|((o,o).o) decouples into two elliptic boundary value problems for u and 4>ab.
The first is simply a Dirichlet problem (M M>- (32M, M|3E)) and Theorem 3.3 shows
that this map is bijective since 8 = -3 /4 .

Accordingly, we can formulate an elliptic boundary value problem for (j>ab. This is
achieved by decomposing <j>ab as 4>ab = vrfnb + n"xb + nbxa + jSab + aab, where
o = Scd<t>cd and x" is a vector field orthogonal to n" with respect to Sab. Rewriting the
boundary value problem in terms of these quantities, the boundary conditions become

<P\BT. = (v +

^lez = (n°ncdadc (v + | ) + X-{dan
a){ncdca) - ^(3an

a)(3cn
c) (v - |{

Q ( ) (ncdcX
b) + (̂3cn

c)

and oab\dz remains unchanged.
Again applying Theorem 3.3 we see that the elliptic boundary value problem for

<j>ab is a bijective map since 8 = —3/4.
Thus Z^FIKO.OJ.O) is bijective and the implicit function Theorem 3.1 yields the

desired result.

4. Spatially conformally flat metrics

We now extend the results of the previous section to the case of arbitrary spatially
conformally flat background metrics.
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DEFINITION 4.1. A stationary metric (gab, | ° ) on a spacetime jft is called spatially
conformally flat if the associated metric (yab, r) on 5? is conformally flat, that is, if
Yab = M̂afc for a positive function fi e

THEOREM 4.2. Let (./#, gab, £") be a stationary, spatially conformally flat vacuum
solution of Einstein's equations. Then Theorems 3.4 and 3.5 and hold for (gab, £°)
instead of (r)ab, (3,)") as background metric and vector field, respectively.

PROOF. We have yab = ii8ab and yab = nyab, thus </>"* = /x~'0ofc and u = ix~[u.

Denote by 3 the Levi-Civita connection on (<5*\ yab). Then we have the following
transformation relations:

ycddcddu = ycdlcldu + (terms of lesser order),

ycddcdd<l>ab = ycdlcdd(i>
ab + (terms of lesser order)"*.

Thus the principal parts of the differential equations and the boundary conditions of
both systems 1 and 2 remain unchanged.

The two crucial parts in the proof of the reduction Theorem 3.4 are

1. the Frechet differential DiGl^o)- With the above transformation relations
it still defines an elliptic boundary value problem with the flat Laplacian as
differential operator. Thus the proof of the "if "-case remains unchanged.

2. the remainder R(u, <j>ab). We still have the continuous dependence of R on
(M, 4>ab), and ^(0,0) = 0. L(0,0) also remains the flat Laplacian and so the
injectivity argument remains valid.

The crucial part in Theorem 3.5 is the Frechet differential DiF|((o,o),o)- Just as in the
case of the Frechet differential D\G\^idfi), it follows from the above transformation
relations that we again have two elliptic boundary value problems for ii and (j>ab and
thus the proof remains unchanged.

PROPOSITION 4.3. Define the following tensor field on (S*, yab) :

%jk := V, Stic,, - V, Slicik + - {yikVj St - y0 V* St).

Then yab is conformally flat if and only if%jk — 0.

PROOF. See for example [6, pp. 91-92].

PROPOSITION 4.4. Both the Schwarzschild and the Reissner-Nordstr0m metric are
spatially conformally flat. The Kerr—Newman metric is not spatially conformally flat.
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PROOF. The tensor field %jk vanishes for the spatial parts of both the Schwarzschild
and the Reissner-Nordstr0m metric. For the Kerr-Newrnan metric we find that
1̂12 # 0. The calculations were done with Mathematica™.

5. Summary

To prove Theorem 1.3, we first choose a stationary, spatially conformally flat
vacuum solution (./#, gab, £a) of Einstein's equation and use the 3+1-decomposition to
rewrite it in the equivalent form (y', yab, x). Then by choosing sufficiently small data
on the boundary u — (r—r) |3E, Theorems 3.4 and 3.5 show that a solution (5?, <pab, u)
of system 2 and thus a corresponding solution of system 1 exists. With the 3+1-
decomposition we finally obtain the desired stationary vacuum solution {J(, gab,%")
of Einstein's equations, which lies in the neighbourhood of the background metric.

Using a more general theorem for elliptic boundary value problems, it should
be possible to extend the result to non-spatially conformally flat, stationary vacuum
solutions as background metrics.
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