BEHAVIORAL AND BRAIN SCIENCES

Volume 13 1990

Reprinted with the permission of the original publisher by Periodicals Service Company Germantown, NY 2005

Printed on acid-free paper.

This reprint was reproduced from the best original edition copy available.

NOTE TO THE REPRINT EDITION: In some cases full page advertisements which do not add to the scholarly value of this volume have been omitted. As a result, some reprinted volumes may have irregular pagination.

Contents Volume 13:3 September 1990

Tsotsos, J. K. Analyzing vision at the complexity level

Open Peer Commentary

Open Peer Commentary		Mohnhaupt, M. & Neumann, B. Support for an	
Cave, K. R. The theory and practice of attention	445	intermediate pictorial representation	452
Desimone, R. Complexity at the neuronal level	446	Siegel, R. M. Is it really that complex? After all, there	
Dickinson, B. W. Computation, complexity, and		are no green elephants	453
systems in nature	447	Strong, G. W. Algorithmic complexity analysis does	
Eagleson, R. Task-dependent constraints		not apply to behaving organisms	453
on perceptual architectures	447	Treisman, A. Search and the detection and integration	
Eklundh, JO. What are the insights gained		of features	454
from the complexity analysis?	448	Uhr, L. Some important constraints on complexity	455
Heathcote, A. & Mewhort, D. J. K. Is unbounded		Uttal, W. R. On brains and models	456
visual search intractable?	449	Wolfe, J. M. Complexity, guided search, and the data	457
Krueger, L. E. & Tsay, CY. Analyzing vision		Zucker, S. W. Adaptation and attention	458
at the complexity level: Misplaced complexity?	449		
Kube, P. R. Complexity is complicated	450	Author's Response	
Lowe, D. G. Probability theory as an alternative		Tsotsos, J. K. A little complexity analysis goes	
to complexity	451	a long way	458

Hanson, S. J. & Burr, D. J. What connectionist models learn: Learning and representation in connectionist networks

Open Peer Commentary

Open Peer Commentary		Maki, W. S. Toward a unification of conditioning
Barash, S. Relatively local neurons in a distributed		and cognition in animal learning
representation: A neurophysiological perspective	489	Munsat, S. Keeping representations at bay
Bridgeman, B. What connectionists learn:		Pavel, M. Learning from learned networks
Comparisons of model and neural nets	491	Phillips, W. A., Hancock, P. J. B. & Smith, L. S.
Brown, G. D. A. & Oaksford, M. Representational		Realistic neural nets need to learn iconic
systems and symbolic systems	492	representations
Chater, N. Connectionism and classical computation	493	Rager, J. E. The analysis of the learning needs
Golden, R. M. Are connectionist models just statistical		to be deeper
pattern classifiers?	494	Sharkey, N. E. There is more to learning than meets
Haberlandt, K. Expose hidden assumptions		the eye (or ear)
in network theory	495	Suppes, P. Problems of extension, representation,
Hendler, J. But what is the substance of connectionist		and computational irreducibility
representation?	496	Timberlake, W. Connectionist models: Too little
Jordan, M. I. A non-empiricist perspective		too soon?
on learning in layered networks	497	Toulouse, G. Advances in neural network theory
Kruschke, J. K. How connectionist models learn: The		Van Gelder, T. Connectionist models learn what?
course of learning in connectionist networks	498	Weaver, M. & Kaplan, S. Connectionist learning
Lamberts, K. & d'Ydewalle, G. What can		and the challenge of real environments
psychologists learn from hidden-unit nets?	499	Authorite Descenter
Langley, P. Approaches to learning and representation	500	Author's Response
Levelt, W. J. M. On learnability, empirical		Hanson, S. J. Learning and representation: Tensions
foundations, and naturalness	501	at the interface

Previc, F. H. Functional specialization in the lower and upper visual fields in humans: Its ecological origins and neurophysiological implications

Op

Abrams, R. A. Does visual-field specialization really
have implications for coordinated visual-motor
behavior?
Bracewell, R. M. Seeing double: Dichotomizing

Br

519

423

471

501 502503

505505

506 507

511

ben Peer Commentary		Breitmeyer, B. G. Ups and downs of the visual field:	
rams, R. A. Does visual-field specialization really		Manipulation and locomotion	545
have implications for coordinated visual-motor		Bruce, C. J. & MacAvoy, M. G. Response field biases	
behavior?	542	in parietal, temporal, and frontal lobe visual areas	546
acewell, R. M. Seeing double: Dichotomizing		Bryden, M. P. & Underwood, G. Twisting the world	
the visual system	543	by 90°	547
annan, J. R. The benefits and constraints of visual		Butter, C. M. Functional specialization in the visual	
processing dichotomies	544	system: Retinotopic or body centered?	548

Chalupa, L. M. & White, C. A. Visual information in the upper and lower visual fields may be		Osaka, N. Peripheral lower visual fields: A neglected factor?	555
processed differently, but how and why remains	N 10	Siegel, R. M. Properties of neurons in the dorsal	
to be established	549	visual pathway of the monkey	555
Crewther, D. P. The ups and downs of visual fields	550	Strong, G. W. Different regions of space or different	
Findlay, J. M. Ecology and functional specialization:		spaces altogether: What are the dorsal/ventral	
The whole is less than the sum of the parts	551	systems processing?	556
Goodale, M. A. & Graves, J. A. Pigeons, primates,		Williams, R. W. The primary visual system does not	
and division of labor in the vertebrate visual system	551	care about Previc's near-far dichotomy. Why not?	557
Heilman, K. M., Bowers, D. & Shelton, P. Attention		Young, A. W. Only half way up	558
to near and far space: The third dichotomy	552		
Kinsbourne, M. & Duffy, C. J. The role of dorsal/			
ventral processing dissociation in the economy			
of the primate brain	553	Author's Response	
Marsolek, C. J. Why the computations must not		Previc, F. H. Visual processing in three-dimensional	
be ignored	554	space: Perceptions and misperceptions	559

Continuing Commentary

On Dennett, D. C. (1983) Intentional systems in cognitive ethology: The "Panglossian paradigm" defended. BBS 6:343–390.			
Amundson, R. Doctor Dennett and Doctor Pangloss: Perfection and selection in biology and psychology	577	Author's Response Dennett, D. C. Dr. Pangloss knows best	581

On Dennett, D. C. (1988) Précis of The I	ntentio	onal Stance. BBS 11:495–546.	582
De Gelder, B. The matter of other minds	582	Author's Response Dennett, D. C. Abstracting from mechanism	583