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Abstract

Marques-Smith and Sullivan [‘Partial orders on transformation semigroups’, Monatsh. Math. 140 (2003),
103–118] studied various properties of two partial orders on P(X), the semigroup (under composition)
consisting of all partial transformations of an arbitrary set X . One partial order was the ‘containment
order’: namely, if α, β ∈ P(X) then α ⊆ β means xα = xβ for all x ∈ dom α, the domain of α. The other
order was the so-called ‘natural order’ defined by Mitsch [‘A natural partial order for semigroups’, Proc.
Amer. Math. Soc. 97(3) (1986), 384–388] for any semigroup. In this paper, we consider these and other
orders defined on the symmetric inverse semigroup I (X) and the partial Baer–Levi semigroup P S(q).
We show that there are surprising differences between the orders on these semigroups, concerned with
their compatibility with respect to composition and the existence of maximal and minimal elements.
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1. Introduction

In [5] Mitsch defined a partial order on an arbitrary semigroup S by

a ≤ b if and only if a = xb = by and a = ay for some x, y ∈ S1,

and now this is called the natural partial order on S. Later in [3] the authors
studied various properties of this order on the semigroup T (X) consisting of all total
transformations of an arbitrary nonempty set X . Then in [4] Marques-Smith and
Sullivan extended some of the previous work to the semigroup P(X) consisting of
all partial transformations of X .

In [4] the authors also considered another ‘natural’ partial order on P(X): namely,
regarding α, β ∈ P(X) as subsets of X × X , it is clear that ⊆ is a partial order on
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P(X) and that

α ⊆ β if and only if xα = xβ for all x ∈ dom α,

where dom α denotes the domain of α ∈ P(X). In particular, they characterized
the meet and join of ≤ and ⊆ in the poset consisting of all partial orders on P(X)
(surprisingly, the join always exists and equals ⊆ ◦ ≤, the composition of the two
relations). In this paper, we investigate similar ideas for a subsemigroup of P(X)
defined as follows.

For any set X , we let

I (X)= {α ∈ P(X) : α is injective}

denote the symmetric inverse semigroup on X (see [1, Section 1.9]). In addition, if
α ∈ P(X), we let ran α denote the range of α and say that the cardinals

g(α)= |X\dom α|, d(α)= |X\ran α|

are the gap and defect of α, respectively. Next, if |X | = p ≥ q ≥ ℵ0, we write

P S(q)= {α ∈ I (X) : d(α)= q} and BL(q)= T (X) ∩ P S(q),

where BL(q) is the Baer–Levi semigroup of type (p, q) defined on X (see
[1, Section 8.1]). It is well known that this semigroup is right simple, right cancellative
and idempotent-free. On the other hand, in [6] the authors showed that P S(q), the
partial Baer–Levi semigroup on X , never has these properties. Nonetheless, they
characterized Green’s relations and ideals of P S(q), and in this paper we study some
properties of three partial orders on P S(q).

In particular, unlike for I (X), we show that ≤ is properly contained in ⊆ (as
relations) on P S(q). In addition, ≤ is always right compatible on P S(q) but is never
left compatible. These and other results differ greatly from those obtained for P(X)
in [4].

2. Partial orders

Throughout this paper, |X | = p ≥ q ≥ ℵ0. Also, Y = A ∪̇ B means that Y is a
disjoint union of A and B. As usual, ∅ denotes the empty (one-to-one) mapping which
acts as a zero for P(X). In particular, d(∅)= p, so ∅ ∈ P S(q) precisely when q = p.
For each nonempty A ⊆ X , we write idA for the identity transformation on A: these
mappings constitute all the idempotents in I (X) and belong to P S(q) precisely when
|X\A| = q .

It is well known that, for each nonzero α ∈ I (X), αα−1
= iddom α and α−1α =

idran α . Consequently, this is also true for P S(q) and we use this fact without further
comment.
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We modify the convention introduced in [1, Vol. 2, p. 241]: namely, if α ∈ I (X) is
nonzero then we write

α =

(
ai
xi

)
and take as understood that the subscript i belongs to some (unspecified) index set I ,
that the abbreviation {xi } denotes {xi : i ∈ I }, and that ran α = {xi }, xiα

−1
= {ai } and

dom α = {ai : i ∈ I }. For simplicity, we often write Xα instead of ran α, in which case
Xα−1

= ran α−1
= dom α.

For convenience, we begin by quoting [4, Theorems 2 and 3] and [6, Theorem 8].

THEOREM 2.1. If α, β ∈ P(X) then α ≤ β if and only if Xα ⊆ Xβ, dom α ⊆

dom β, αβ−1
⊆ αα−1 and ββ−1

∩ (dom β × dom α)⊆ αα−1.

THEOREM 2.2. If α, β ∈ P(X) then the following are equivalent.

(a) α ⊆ β.
(b) Xα ⊆ Xβ and αβ−1

⊆ ββ−1.
(c) Xα ⊆ Xβ and αα−1

⊆ αβ−1.

THEOREM 2.3. If α, β ∈ P S(q) then α = λβ for some λ ∈ P S(q) if and only if
Xα ⊆ Xβ and

q ≤max(g(β), |Xβ\Xα|)≤max(g(α), q). (2.1)

Hence, αLβ in P S(q) if and only if

(Xα = Xβ and g(α)= g(β)≥ q) or (α = β and g(α) < q).

Clearly, Theorem 2.2 holds for P S(q) but the same is not true for Theorem 2.1. In
order to characterize ≤ on P S(q), note that the relation L defined on P S(q) by

(α, β) ∈ L if and only if P S(q)1α ⊆ P S(q)1β

is reflexive and transitive. However, in general, it is not anti-symmetric. For example,
let X = A ∪̇ B ∪̇ {c, d, e} where |A| = p and |B| = q , and define α, β, λ, µ ∈ P S(q)
by

α = idA ∪

(
d
c

)
, β = idA ∪

(
e
c

)
, λ= idA ∪

(
d
e

)
, µ= idA ∪

(
e
d

)
.

Then α = λβ and β = µα, so (α, β) ∈ L and (β, α) ∈ L, but α 6= β.
Nonetheless, if ρ is any partial order on P S(q), then ρ ∩ L is also a partial order

on P S(q). This idea leads to a simple description of ≤ on P S(q).

THEOREM 2.4. When restricted to P S(q), ≤ equals ⊆ ∩ L.

PROOF. Suppose that α, β ∈ P S(q) are distinct and α ≤ β in P S(q). Then α = λβ =
βµ and α = αµ for some λ, µ ∈ P S(q), and so (α, β) ∈ L. We also have Xα ⊆ Xβ
and ran α ⊆ dom µ. Hence

αα−1
= αµ(βµ)−1

= α(µµ−1)β−1
= αβ−1,

and so α ⊆ β by Theorem 2.2. Therefore, ≤ is a subset of ⊆ ∩ L.
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Conversely, suppose that (α, β) ∈ ⊆ ∩ L and α 6= β. Then α = λβ for some λ ∈
P S(q). Moreover, since α ⊆ β, we can write

α =

(
ai
xi

)
, β =

(
ai a j
xi x j

)
, µ=

(
xi
xi

)
,

where d(µ)= d(α)= q . Hence µ ∈ P S(q) and clearly α = βµ and α = αµ.
Therefore, α ≤ β in P S(q). 2

In [5, p. 384 and Lemma 1(x)], Mitsch observed that, if S is an inverse semigroup,
then the natural partial order on S equals the order � defined on S by

a � b if and only if a = eb for some idempotent e ∈ S.

Moreover, from [2, Proposition V.2.3], we know that � equals ⊆ on I (X), and thus
≤=⊆ on I (X). On the other hand, from Theorem 2.4, we deduce that ≤ is a subset
of ⊆ on P S(q) and we assert that this containment is always proper on P S(q). For,
suppose that X = A∪̇B ∪̇ {c} where |A| = p and |B| = q , and let α : A ∪ B→ A be
a bijection. Then d(α)= |B ∪ {c}| = q and so α ∈ P S(q). Likewise, if β ∈ T (X)
equals α on A ∪ B and satisfies cβ = c, then β ∈ P S(q) and α ⊆ β. But g(β)=
0< q and |Xβ\Xα| = 1< q , hence (α, β) /∈ L by Theorem 2.3 and so α 6≤ β by
Theorem 2.4.

In [4], the authors defined partial orders �′ and � on P(X) as follows.

(α, β) ∈�′ if and only if

Xα ⊆ Xβ, dom α ⊆ dom β and αβ−1
∩ (dom α × dom α)⊆ αα−1,

(α, β) ∈� if and only if (α, β) ∈�′ and ββ−1
∩ (dom α × dom α)⊆ αα−1.

They showed that �′ is an upper bound for ≤ and ⊆, and that �= ≤ ∨⊆ = ⊆ ◦ ≤
on P(X). Clearly �⊆�′ and these are also partial orders on I (X), a semigroup in
which ≤ = ⊆. Therefore, the next result is not surprising.

THEOREM 2.5. �=�′ on I (X).

PROOF. Suppose that α, β ∈ I (X) and (α, β) ∈�′. Then dom α ⊆ dom β and
ββ−1

= iddom β , so

ββ−1
∩ (dom α × dom α)= iddom α = αα

−1.

Hence (α, β) ∈�, and thus �′ ⊆� as required. 2

Given that ≤=⊆ and �=�′ on I (X), it is natural to ask whether all four orders
are equal on I (X). In fact, �=⊆ on I (X) precisely when |X | = 1. For example, if
|X |> 1, we can choose distinct x, y ∈ X and define α, β ∈ I (X) by

α =

(
x
x

)
, β =

(
x y
y x

)
.
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Then Xα ⊆ Xβ, dom α ⊆ dom β and

αβ−1
∩ (dom α × dom α)= ∅ ⊆ αα−1.

Hence (α, β) ∈�′ =� but α 6⊆ β, so ⊆ is properly contained in � on I (X) for
|X |> 1. It is easy to see that �=⊆ when |X | = 1, so we omit the details.

From Theorem 2.5 and the definition of � and �′, we also know that �=�′ on
P S(q). As we show in Example 2.6 below,⊆ is always properly contained in�, hence
on P S(q) we always have:

≤=⊆ ∩ L  ⊆  �.

EXAMPLE 2.6. Suppose that X = A ∪̇ B ∪̇ {x} ∪̇ {y}where |A| = p and |B| = q , and
let θ : A ∪ B→ A be a bijection. Define α, β ∈ P S(q) by

α =

(
A ∪ B x

A x

)
, β =

(
A ∪ B x y

A y x

)
where α|(A ∪ B)= θ = β|(A ∪ B). Then (α, β) ∈� since y /∈ dom α and so

αβ−1
∩ (dom α × dom α)= idA∪B ⊆ iddom α = αα

−1.

But α 6⊆ β since xα 6= xβ, and so ⊆ is always properly contained in �. Moreover,
� 6= ⊆ ◦ ≤ on P S(q): otherwise ⊆ � and � is contained in ⊆ ◦ ⊆ (since ≤ is
contained in ⊆), so � is contained in ⊆, which is a contradiction.

It is well known that if α, β ∈ I (X), then α = βµ for some µ ∈ I (X) if and only
if dom α ⊆ dom β (see [2, Exercise V.2]). This helps to characterize the R-relation
on I (X), and the same is true for P S(q) (see [6, Theorem 7]). Clearly, the relation D
defined on I (X) by

(α, β) ∈ D ⇐⇒ α = β or dom α  dom β

is a partial order on I (X). Moreover, �⊆ D. For, suppose that (α, β) ∈� and
dom α = dom β. In this event, xα = yβ for some y ∈ dom α, and so (x, y) ∈ αβ−1

∩

(dom α × dom α). Hence x = y and we deduce that α = β. That is, if (α, β) ∈� then
α = β or dom α  dom β, and thus �⊆ D. In fact, the containment is proper. For
example, if 1, 2, 3 ∈ X and

δ =

(
1 2
1 2

)
, ε =

(
1 2 3
2 1 3

)
, δε−1

=

(
1 2
2 1

)
then (δ, ε) ∈ D but (δ, ε) /∈�. And it is easy to see that also � D on P S(q).

To prove a result for � which is similar to Theorem 2.4 for ≤, we define another
relation on P S(q) by

(α, β) ∈1 ⇐⇒ Xα ⊆ Xβ and αβ−1
⊆ ββ−1

∪ dom α × (dom β\dom α).
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Note that if (α, β) ∈1 then, post-multiplying the above containment by β, we obtain

α ⊆ β ∪ [dom α × (dom β\dom α)] ◦ β

which highlights the difference between ⊆ and 1. In fact, we assert that �⊆1.
To see this, suppose that (α, β) ∈� and let (x, y) ∈ αβ−1. If y ∈ dom α, then

(x, y) ∈ αβ−1
∩ (dom α × dom α), so x = y ∈ dom β and hence (x, y) ∈ ββ−1. On

the other hand, if y /∈ dom α, then x ∈ dom α and y ∈ dom β\dom α, so (x, y) ∈
dom α × (dom β\dom α). That is, (α, β) ∈1 and this proves the assertion. Although
1 is not a partial order (see Example 2.9 below), we have the following result.

THEOREM 2.7. When restricted to P S(q), � equals 1 ∩ D.

PROOF. We have shown that �⊆1 ∩ D. Therefore, suppose that (α, β) ∈1 ∩ D
and α 6= β. Then Xα ⊆ Xβ and dom α  dom β. Also αβ−1

⊆ ββ−1
∪ dom α ×

(dom β\dom α) and, by intersecting this containment with dom α × dom α, we obtain

αβ−1
∩ (dom α × dom α)⊆ ββ−1

∩ (dom α × dom α)= αα−1,

and so (α, β) ∈�. 2

EXAMPLE 2.8. Let X = A ∪̇ B ∪̇ {c, d, e} where |A| = p and |B| = q , and define
α, β, γ ∈ P S(q) by

α = idA ∪

(
c
e

)
, β = idA ∪

(
d
e

)
, γ = idA ∪

(
c d
c d

)
. (2.2)

Then α 6= β and dom α 6⊂ dom β, so (α, β) /∈ D. But Xα = Xβ and αβ−1
=

idA ∪{(c, d)}, ββ−1
= idA∪{d} and dom α × (dom β\dom α)= A × {d} ∪ {(c, d)}.

Therefore (α, β) ∈1. In addition, (α, β) /∈� simply because dom α 6⊆ dom β, hence
� is properly contained in 1. On the other hand, dom α  dom γ , so (α, γ ) ∈ D, but
(α, γ ) /∈1 since Xα 6⊆ Xγ . That is, D and 1 are noncomparable relations on P S(q).

EXAMPLE 2.9. Clearly 1 is reflexive. However, if α and β are defined as in (2.2),
then (α, β) ∈1 and (β, α) ∈1 but α 6= β, so 1 is not anti-symmetric. Also, suppose
that X = A ∪̇ B ∪̇ {c, d, e, f, g} where |A| = p and |B| = q , and define α, β, µ ∈
P S(q) by

α = idA ∪

(
c d
e d

)
, β = idA ∪

(
e f
d e

)
, µ= idA ∪

(
d g
e d

)
.

Then Xα = Xβ = Xµ and

αβ−1
= idA ∪

(
c d
f e

)
⊆ ββ−1

∪ dom α × {e, f },

βµ−1
= idA ∪

(
e f
g d

)
⊆ µµ−1

∪ dom β × {d, g}.

https://doi.org/10.1017/S0004972709001038 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972709001038


[7] Partial Baer–Levi semigroups 201

So, (α, β) ∈1 and (β, µ) ∈1. But

αµ−1
= idA ∪

(
c d
d g

)
6⊆ µµ−1

∪ dom α × {g},

hence (α, µ) /∈1 and so 1 is not transitive.

3. Compatible partial orders

As in [4, Section 3], if ρ is a partial order on a transformation semigroup S, we
say that γ ∈ S is left compatible with ρ if (γ α, γβ) ∈ ρ for all (α, β) ∈ ρ; right
compatibility with ρ is defined dually. For comparison with our results below, we
first quote [4, Theorems 9 and 11].

THEOREM 3.1. Suppose that γ ∈ P(X) is nonzero and |X | ≥ 3.

(a) γ is left compatible with ≤ on P(X) if and only if γ is surjective.
(b) γ is right compatible with ≤ on P(X) if and only if γ ∈ T (X) and γ is injective.

THEOREM 3.2. Suppose that γ ∈ P(X) is nonzero and |X | ≥ 3.

(1) γ is left compatible with � on P(X) if and only if γ is surjective.
(2) γ is right compatible with � on P(X) if and only if γ ∈ T (X) and either γ is

injective or γ is constant.

By contrast with Theorem 3.1 above, the next result is surprising.

THEOREM 3.3. Suppose that γ ∈ P S(q).

(a) γ is left compatible with ≤ on P S(q) if and only if q ≤ g(γ ).
(b) ≤ is right compatible on P S(q).

PROOF. To prove (a), suppose that γ is left compatible with ≤. If γ = ∅ (in the
case where p = q), then g(γ )= p = q . If γ 6= ∅, we choose x ∈ ran γ and let
α = idran γ \{x} and β = idran γ . Then α, β ∈ P S(q) and α ⊆ β. Also g(β)= d(γ )= q
and so g(α)= g(β)= q (since q ≥ ℵ0). Hence

q ≤max(g(β), |Xβ\Xα|)= q =max(g(α), q).

Therefore, (α, β) ∈ L by Theorem 2.3 and hence α ≤ β by Theorem 2.4. Since γ is
left compatible, we have γα ≤ γβ where γα 6= γβ = γ , and then Theorem 2.3 implies
that

q ≤max(g(γβ), |Xγβ\Xγα|).

But, since |Xγβ\Xγα| = 1< q , this implies that q ≤ g(γβ)= g(γ ).
Conversely, suppose that q ≤ g(γ ). If α, β ∈ P S(q) and α ≤ β, then α ⊆ β and

(α, β) ∈ L by Theorem 2.4. Since ⊆ is left compatible on P(X), then γα ⊆ γβ.
Also, dom γβ ⊆ dom γ implies that q ≤ g(γ )≤ g(γβ); and, since α = βµ for some

https://doi.org/10.1017/S0004972709001038 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972709001038


202 B. Singha, J. Sanwong and R. P. Sullivan [8]

µ ∈ P S(q)1 (by the definition of ≤), we know that γα = (γβ)µ and hence g(γβ)≤
g(γ α). Moreover, since γα ∈ P S(q),

|Xγβ\Xγα| = |Xγβ ∩ (X\Xγα)| ≤ q

and so

q ≤ g(γβ)=max(g(γβ), |Xγβ\Xγα|)≤ g(γ α)=max(g(γ α), q).

That is, (γ α, γβ) ∈ L as required. Finally, note that ⊆ is right compatible, and clearly
the same is true for L, so (b) follows from Theorem 2.4. 2

The next two results for the compatibility of � differ greatly from Theorem 3.2
above. Here, for simplicity, we write xy for the α ∈ I (X) with domain {x} and
range {y}.

THEOREM 3.4. Suppose that p = q and let γ ∈ P S(q). Then:

(a) ∅ is the only element of P S(q) which is left compatible with �;
(b) γ is right compatible with � if and only if γ = ∅ or dom γ = X.

PROOF. Clearly ∅ ∈ P S(q) and it is left compatible with �. Let γ be a nonzero
element in P S(q). If we choose x ∈ ran γ , y ∈ X\ran γ and define

α =

(
x
x

)
, β =

(
x y
y x

)
,

then α, β ∈ P S(q) and it is easy to check that (α, β) ∈�. However, since Xγα =
{x} 6⊆ {y} = Xγβ, then (γ α, γβ) 6∈� (by definition) and so γ is not left compatible
with �.

Suppose that γ ∈ P S(q) is nonempty and right compatible with �. If a ∈
dom γ , x ∈ X\dom γ and Y = {a, x} then xa, idY ∈ P S(q) and (xa, idY ) ∈� (note
that xa . id−1

Y ∩{(x, x)} = ∅). Hence (xa .γ, idY .γ ) ∈� and so dom(xa .γ )= {x} ⊆
dom(idY .γ )= {a}, a contradiction. Thus, we have shown that dom γ = X . Therefore,
to prove (b), it remains to show that, if dom γ = X , then γ is right compatible
with �. To do this, let α, β ∈ P S(q) and (α, β) ∈�. Then, since �=�′, we have
Xα ⊆ Xβ, dom α ⊆ dom β and

αβ−1
∩ (dom α × dom α)⊆ αα−1

= iddom α.

Clearly Xαγ ⊆ Xβγ and, since dom γ = X , dom αγ = dom α ⊆ dom β = dom βγ .
Also γ γ−1

= idX (but note that idX /∈ P S(q)), and hence

αγ (βγ )−1
∩ (dom αγ × dom αγ )= αβ−1

∩ (dom α × dom α),

from which it follows that (αγ, βγ ) ∈�. 2
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THEOREM 3.5. Suppose that p > q and let γ ∈ P S(q). Then:

(a) no element of P S(q) is left compatible with �;
(b) γ is right compatible with � if and only if dom γ = X.

PROOF. To prove (a), let θ ∈ P S(q), choose x ∈ ran θ , y ∈ X\ran θ and define

α = idran θ , β =

(
ran θ\{x} x y
ran θ\{x} y x

)
,

where zβ = z for all z ∈ ran θ\{x}. Then α, β ∈ P S(q) and (α, β) ∈�. Since
x ∈ Xθα\Xθβ, (θα, θβ) 6∈� (by definition). That is, θ is not left compatible with �.
The proof of (b) is the same as that for Theorem 3.4(b), except that now ∅ /∈ P S(q). 2

For completeness, we note the following result for � on I (X).

THEOREM 3.6. If γ ∈ I (X) is nonzero then:

(a) γ is left compatible with � on I (X) if and only if ran γ = X;
(b) γ is right compatible with � on I (X) if and only if dom γ = X.

PROOF. As shown in [4, pp. 113–114], if γ is surjective then it is left compatible with
� on P(X), and so the same is true for I (X). For the converse of (a), suppose that
ran γ 6= X . Then, as in the proof of Theorem 3.5(a), there exists (α, β) ∈� on I (X)
but (γ α, γβ) 6∈�. The proof of (b) follows that of Theorem 3.5(b). 2

4. Minimal and maximal elements

As usual, if � is an order on a set S, then a ∈ S is maximal with respect to � if
a � x and x ∈ S imply that x = a; and a ∈ S is a maximum if x � a for all x ∈ S. The
notions of minimal and minimum are defined dually. In this section, we consider the
existence of minimal (maximal) elements in P S(q) with respect to each of the orders
≤, ⊆ and �.

First, recall that, if � is any partial order on a set T , and if x ∈ S ⊆ T is minimal
(maximal) in T , then x is minimal (maximal) in S. Similarly, suppose that <1 and <2
are partial orders on a set S such that <2 contains <1. Clearly, if x ∈ S is minimal
(maximal) with respect to<2, then x is minimal (maximal) with respect to<1. On the
other hand, under the same supposition, if x is a minimum (maximum) with respect to
<1, then x is a minimum (maximum) with respect to <2.

THEOREM 4.1. P S(q) has no maximum element with respect to ≤,⊆ or �.

PROOF. Write X = A ∪̇ B ∪̇ C where |A| = p and |B| = q = |C |. Clearly, if α =
idA∪B and β = idA∪C , then α, β ∈ P S(q). If γ ∈ P S(q) is a maximum with respect
to �, then (α, γ ) ∈� and (β, γ ) ∈�. Consequently Xα ⊆ Xγ and Xβ ⊆ Xγ , hence
Xα ∪ Xβ ⊆ Xγ and so ran γ = X , which contradicts d(γ )= q . Therefore P S(q) has
no maximum element with respect to �. Next recall that ≤ is properly contained in ⊆
which is properly contained in � on P S(q). So, if α is a maximum under ⊆, then it is
also a maximum under�, a contradiction. Likewise, there is no maximum under≤. 2

https://doi.org/10.1017/S0004972709001038 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972709001038


204 B. Singha, J. Sanwong and R. P. Sullivan [10]

THEOREM 4.2. The following are equivalent for α ∈ P S(q).

(a) α is maximal with respect to �.
(b) α is maximal with respect to ⊆.
(c) dom α = X.

PROOF. (a) implies (b) since⊆ is contained in�. To show that (b) implies (c), suppose
that (b) holds and assume that dom α  X . Choose x ∈ X\dom α and y ∈ X\ran α
(recall that d(α)= q) and let β be the mapping such that dom β = dom α ∪ {x},
β|dom α = α and xβ = y. Then β ∈ P S(q) and α ⊆ β with α 6= β, contradicting our
supposition.

Finally, to show that (c) implies (a), suppose that dom α = X and let β ∈ P S(q)
satisfy (α, β) ∈�. Then, by Theorem 2.5, dom α ⊆ dom β and Xα ⊆ Xβ. So
dom β = X . Moreover, if x, x ′ ∈ X and xα = x ′β, then (x, x ′) ∈ αβ−1

⊆ idX and
it follows that x = x ′. That is, α = β and we have shown that (a) holds. 2

The corresponding result for ≤ is substantially different.

THEOREM 4.3. Let α ∈ P S(q). Then α is maximal with respect to ≤ if and only if
g(α) < q.

PROOF. Suppose that g(α)≥ q . By defining β ∈ P S(q) as in the first paragraph
of the proof of Theorem 4.2, we obtain α ⊆ β, Xβ = Xα ∪̇ {y} and g(α)= g(β).
Hence (1) in Theorem 2.3 is satisfied and thus α ≤ β but α 6= β, so α is not maximal.
Conversely, suppose that g(α) < q and assume that α < β for some β ∈ P S(q). Thus,
by Theorem 2.4, α  β and

q ≤max(g(β), |Xβ\Xα|)≤max(g(α), q)= q.

Therefore, g(β)≤ g(α) < q and so |Xβ\Xα| = q . Consequently, since Xα ⊆ Xβ,
then

q = |(Xβ\Xα)β−1
| = |dom β\dom α| ≤ g(α) < q,

a contradiction. 2

REMARK 4.4. By [6, Theorem 4(b)], the above result means that the elements of
P S(q) which are maximal under ≤ are precisely the nonregular elements of P S(q).
In fact, they form a subsemigroup of P S(q) since, for each α, β ∈ P S(q), dom αβ =

(ran α ∩ dom β)α−1 and so

g(αβ)= |X\Xα−1
| + |(X\dom β)α−1

|.

As in many algebraic settings, it is interesting to know when α ∈ P S(q) lies below
some maximal element of P S(q).

THEOREM 4.5. The following are equivalent for α ∈ P S(q).

(a) g(α)≤ q.
(b) α ≤ β for some β ∈ P S(q) maximal with respect to ≤.
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(c) α ⊆ β for some β ∈ P S(q) maximal with respect to ⊆.
(d) (α, β) ∈� for some β ∈ P S(q) maximal with respect to �.

PROOF. Suppose that (a) holds. If g(α) < q then α ≤ α and α is maximal under ≤
by Theorem 4.3. Therefore, suppose that g(α)= q . Since d(α)= q , we can write
X\ran α = A ∪̇ B where |A| = |B| = q . Let θ : X\dom α→ A be any bijection and
define β ∈ P S(q) by letting dom β = X , β|dom α = α and β|(X\dom α)= θ . Then
g(β)= 0 and Xβ = Xα ∪̇ A, so

q = |A| =max(g(β), |Xβ\Xα|)=max(g(α), q).

That is, (α, β) ∈ L and clearly α ⊆ β. Hence α < β where β is maximal with respect
to ≤.

Now suppose that (b) holds: namely, suppose that α ≤ β where g(β)= r < q.
Then α ⊆ β and d(β)= q , so we can write X\ran β = A ∪̇ B where |A| = r and
|B| = q . Let θ : X\dom β→ A be any bijection and define β+ ∈ P S(q) by letting
dom β+ = X , β+|dom β = β and β+|(X\dom β)= θ . Then α ⊆ β ⊆ β+ where β+

is maximal with respect to ⊆: that is, (c) holds by Theorem 4.2(b).
Next, suppose that (c) holds. Since ⊆ is contained in �, and any element which is

maximal under ⊆ is also maximal under �, we deduce that (d) also holds.
Finally, suppose that (d) holds: that is, suppose that (α, β) ∈� where dom β = X ,

and write

A = {x ∈ dom α : xαβ−1
= x},

B = {x ∈ dom α : xαβ−1 /∈ dom α}.

By the definition of �, if x ∈ dom α and xα = yβ (possible since Xα ⊆ Xβ) then
either y ∈ dom α (so y = x and x ∈ A) or y /∈ dom α (so x ∈ B). It follows that
dom α = A ∪̇ B, Aα = Aβ and Bα = Cβ for some C ⊆ dom β\dom α. Note that
Xα = (A ∪ C)β and (A ∪ C) ∩ B = ∅. Therefore Xα ∩ Bβ = ∅ (since β is injective)
and so, since dom β = X ,

|B| = |Bα| = |Bβ| ≤ |X\Xα| = q.

Next let D = X\(A ∪ B ∪ C) and observe that Dβ ∩ Xα = Dβ ∩ (A ∪ C)β = ∅.
Therefore

|Dβ| ≤ |X\Xα| = q.

Now Xβ = Aβ ∪̇ Bβ ∪̇ Cβ ∪̇ Dβ and thus

(X\dom α)β = (X\(A ∪ B))β = Xβ\(A ∪ B)β = Cβ ∪ Dβ.

Consequently g(α)= |(X\dom α)| ≤ |Bα| + q = q , and so (a) holds. 2

Observe that if p = q , then g(α)≤ q for all α ∈ P S(q). Hence, in this case, every
α ∈ P S(q) is contained in some maximal element.
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THEOREM 4.6. If p > q, then P S(q) has no minimal element with respect to ≤,⊆
or �, and hence also no minimum element.

PROOF. Suppose that p > q and let α ∈ P S(q). Then |dom α| = p and we can write
dom α = A ∪̇ B where |A| = p and |B| = q . If γ = α|A, then d(γ )= |Bα| + d(α)=
q , thus γ ∈ P S(q) and clearly γ  α. Also, if X = A ∪̇ B ∪̇ C and λ= idA∪C , then
d(λ)= |B| = q , so λ ∈ P S(q) and γ = λα (since C = X\dom α). Consequently,
(γ, α) ∈ L and so γ < α by Theorem 2.4. Therefore, there is no minimal element
under ≤, and hence none for ⊆ and � (due to their containing ≤). Hence, there is also
no minimum element under each of these orders. 2

When p = q , it is easy to see that ∅ is the minimum under≤,⊆ and�. In this case,
we say that α ∈ P S(q) is nonzero minimal with respect to an order � on P S(q) if α is
minimal among the nonzero elements of P S(q) under �.

THEOREM 4.7. If p = q, then the following are equivalent for α ∈ P S(q).

(a) α is nonzero minimal with respect to �.
(b) α is nonzero minimal with respect to ⊆.
(c) α is nonzero minimal with respect to ≤.
(d) |dom α| = 1.

PROOF. Since � contains ⊆, and ⊆ contains ≤, then (a) implies (b), and (b) implies
(c). To show that (c) implies (d), suppose that (c) holds and assume that |dom α|> 1.
Now, as in the proof of Theorem 4.6, if |dom α| = p, then there exists γ ∈ P S(q) such
that ∅< γ < α, contradicting (c). On the other hand, if |dom α|< p then g(α)= p.
In this case, choose a ∈ dom α and write C = dom α\{a} (which is nonempty by
assumption). If β = α|C and λ= idC then β, λ ∈ P S(q) and β = λα. Therefore,
(β, α) ∈ L and clearly β  α. That is, ∅< β < α, contradicting (c) again.

Finally, to show that (d) implies (a), suppose that |dom α| = 1, say dom α = {x}.
Since �=�′ and by the definition of �′, if there exists β 6= ∅ such that (β, α) ∈�,
then dom β = {x} and ran β = {xα}. Hence α = β and so α is nonzero minimal
under �. 2
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