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Abstract

Ocean acidification (OA) refers to a global decline in the average pH of seawater driven by the
absorption of atmospheric carbon dioxide (CO2). Marine macroalgae, while affected by this pH
change, are also able tomodify seawater pH through their own interactionwith inorganic carbon
in the carbonate system. Through this action, macroalgae-dominated habitats are potential
refugia from OA for associated marine species. This review summarises the most prominent
literature on the role of macroalgae in OAmitigation and the potential of macroalgal habitats to
serve as OA refugia. It includes a brief overview of macroalgal distribution in an effort to
illustrate where such refugia might be most prevalent. Macroalgae influence seawater carbonate
chemistry through the absorption of CO2 and HCO3

� during photosynthesis, raising surround-
ing seawater pH in the process. This transient effect on seawater chemistry could provide some
respite from the negative effects of OA for many marine species. This refuge role varies over a
range of scales alongwithmacroalgal architecture, which varies in size from low-growing turfs to
large canopy-forming stands. The associated pH changes can range over various temporal (daily
and seasonal) and spatial (from centimetre to kilometre) scales. Areas of high macroalgal
biomass are likely to play an important role as significant OA refugia. Such communities are
distributed widely throughout the globe. Large brown macroalgae (Laminariales) dominated
communities are common in temperate regions, while members of the Fucales are responsible
for substantial macroalgal stands in warmer tropical regions. These marine fields and forests
have great potential to serve as localised refuges from OA.While more work needs to be done to
clarify the effect of macroalgal communities on seawater pH on a large scale, such refuge areas
could become important considerations for the management of marine resources and in
protected area selection.

Impact statement

Ocean acidification (OA) is recognised as a significant aspect of global change that will have
widespread impacts on marine ecosystems. There has been a recent increase in published
research that acknowledges the potential for marine vegetation, such asmacroalgae, tomodulate
local pH conditions through biotic processes and thereby serve as OA refugia for marine
organisms. However, the specific role that macroalgae play in the carbonate chemistry dynamics
of shallow coastal marine environments has not yet been reviewed in detail. This review assesses
the available literature documenting the distribution patterns and structural complexities of
macroalgae and how this informs their role in pHmodulation over various temporal and spatial
extents. A wholistic understanding on the role of macroalgal marine vegetation as OA refugia
can facilitate improved local OA management and protected area management to benefit
impacted coastal marine species.

Introduction

In the marine environment, ocean acidification (OA) refugia refers to locations where naturally
higher pH levels are observed, through biotic or physical drivers, providing periodic or sustained
relief from global OA for marine organisms (Kapsenberg and Cyronak, 2019). OA is a conse-
quence of increasing anthropogenic emissions of carbon dioxide (CO2) into the earth’s atmos-
phere (Caldeira and Wickett, 2003; Sabine et al., 2004; Doney et al., 2009). This global process
results from increased absorption of atmospheric CO2 by the oceans, which ultimately shifts the
carbonate chemistry equilibrium of seawater resulting in a decline in average seawater pH
(Doney et al., 2009; Dickson, 2010). Concurrent changes in carbonate chemistry associated with
a decline in pH include changes to the concentrations of inorganic carbon, such as an increase in
dissolved CO2 and bicarbonate (HCO3

�) and a decrease in carbonate ions (CO3
2�) (Feely et al.,

2004; Dickson, 2010).
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In addition to OA, other natural and anthropogenic processes
(e.g., pollution, mariculture, aquaculture, upwelling and freshwater
inputs) can result in intensified acidification, resulting in evenmore
complex carbon system dynamics, especially in coastal areas
(termed coastal acidification; e.g., Wallace et al., 2014; Doney
et al., 2020; Isah et al., 2022; Savoie et al., 2022). These changes in
ocean chemistry have implications for marine organisms and eco-
systems by reducing carbonate ion availability for calcification
(Hofmann et al., 2010) and disrupting key biological processes
through changes in pH (e.g., organism physiology and behaviour;
Pörtner, 2008; Heuer and Grosell, 2014; Clements and Hunt, 2015;
Nagelkerken and Munday, 2016).

While lowered seawater pH caused by OA can have substantial
impacts on coastal vegetation (Koch et al., 2013; Narvarte et al.,
2020), these species can in turn also affect seawater pH. For
example, seagrass and macroalgae can raise pH on a local scale
by taking up carbon through photosynthesis (Krause-Jensen et al.,
2015). The role of coastal vegetated habitats, such as seagrass,
mangroves, salt marshes and macroalgae as carbon sinks is widely
acknowledged (e.g., Bouillon et al., 2008; Duarte et al., 2010; Alongi,
2012; Fourqurean et al., 2012; Chmura, 2013; Krause-Jensen and
Duarte, 2016).However, the role that coastal vegetated habitats play
in influencing localised carbonate chemistry and pH of surround-
ing seawater, particularly in the context of OA, has only come to the
forefront more recently, consequent to the increased attention
given to coastal acidification.

Macroalgal vegetation can play a significant role in influencing
the carbonate chemistry of seawater over various spatial and tem-
poral scales (Middelboe and Hansen, 2007; Wahl et al., 2018;
McNicholl et al., 2019) through autotrophic, calcification and
respiration processes (Middelboe andHansen, 2007; Krause-Jensen
and Duarte, 2016). These localised zones of elevated pH associated
with macroalgal beds could potentially serve as OA refugia
(Noisette and Hurd, 2018). For example, Wahl et al. (2018) found
that dense beds of brown algae and seagrass in the Western Baltic
increased the overall mean pH of the surrounding water by asmuch
as 0.3 units relative to other similar habitats with no macrophytes
and also imposed strong diurnal pH fluctuations (due to photo-
synthetic activity). This allowed mussels (Mytilus edulis) to main-
tain calcification even under acidified conditions and suggests that
seagrass and macroalgae may mitigate the impact of OA on organ-
isms living in these habitats.

Macroalgal physiology and carbon use strategies

Photosynthesis and respiration

The process of photosynthesis (which occurs only during the day)
in macroalgae requires the uptake of dissolved inorganic carbon
(DIC), which is ultimately required in the form of CO2, together
with water and light, to produce glucose and oxygen (Hanelt et al.,
2003). In aquatic and marine environments, DIC exists in differ-
ent forms: CO2, HCO3

� and CO3
2� (Cornwall et al., 2015; Stepien

et al., 2016). In seawater, DIC predominantly occurs in the form of
HCO3

� (~90%) and not as dissolved CO2 gas (<1%) due to the
rapid dissociation of CO2 in seawater (Park, 1969). As such, most
macroalgae have evolved carbon concentrating mechanisms
(CCMs), which facilitate the active uptake of DIC in the form of
HCO3

� using various energy-driven mechanisms, such as exter-
nal conversion of HCO3

� to CO2 catalysed by the enzyme car-
bonic anhydrase (common in red, green and brown seaweeds; e.g.,
Flores-Moya and Fernández, 1998; Axelsson et al., 1999; Mercado

et al., 1999) or through the uptake of HCO3
� directly in this form

via anion exchange proteins or proton pumps (Fernández et al.,
2014). Once taken up into the cells, the enzyme carbonic anhy-
drase facilitates the interconversion of DIC tomake it available for
photosynthesis (Raven, 1995). In manymacroalgal species, CCMs
are used in addition to passive CO2 diffusion (Maberly, 1990;
Raven, 2003; Giordano et al., 2005; Cornwall et al., 2015; Stepien
et al., 2016) depending on the availability and forms of DIC in
surrounding seawater. Very fewmacroalgal species rely on passive
CO2 diffusion alone for DIC uptake (Raven, 2003; Giordano et al.,
2005; Raven and Hurd, 2012; Stepien et al., 2016).

The DIC acquisition strategies employed vary among macro-
algal species and taxonomic groups (Maberly, 1990; Raven, 1997).
Green algae, like Ulva, for example, can efficiently use both CO2

and HCO3
� as inorganic carbon sources (Beer and Eshel, 1983;

Rautenberger et al., 2015). Brown algae species rely almost exclu-
sively on the uptake of DIC in the form ofHCO3

� (Surif and Raven,
1989; Zou and Gao, 2010; Fernández et al., 2014). The red algae are
also primarily HCO3

� users, with some exceptions, like Lomentaria
articulata andDelesseria sanguinea, which lack this ability and rely
on CO2 as a DIC source (Johnston et al., 1992; Kubler and Raven,
1994). The ability and efficiency with which different DIC sources
are used by macroalgal species appears to be related to habitat
rather than specific to particular taxonomic groups (Maberly,
1990; Kubler and Raven, 1994; Murru and Sandgren, 2004).

During periods when photosynthesis is not occurring or limited
(e.g., at night or under reduced light availability), there is a net release
of CO2 gas into surrounding seawater through respiration (Duarte
et al., 2005; Middelboe and Hansen, 2007; Semesi et al., 2009). This
process also influences the carbonate chemistry and forces the
equilibrium to a state that decreases pH (Middelboe and Hansen,
2007; Saderne et al., 2013; Wahl et al., 2018). The influence of
photosynthesis and respiration on seawater carbonate chemistry is
most significant over larger spatial scales when macroalgal growth
and density is high. Since the carbonate chemistry equilibrium of
seawater is dynamic, the periodic uptake of DIC for photosynthesis
by macroalgae acts to increase pH, and CO2 released by respiration,
conversely, decreases pHoften resulting in diurnal pHcycles.Despite
these complex and ongoing changes to this equilibrium, which result
in highly variable conditions in these habitats, there is evidence to
suggest that macroalgae raise the overall average pH in surrounding
seawater, which can have temporary or long-term benefits for the
organisms that live in these habitats (Krause-Jensen and Duarte,
2016; Koweek et al., 2018; Wahl et al., 2018).

Calcification

In addition to photosynthetic needs, somemacroalgal species rely
on DIC in the form of CO3

2�, HCO3
� or CO2 to build and

maintain calcium carbonate structures through the precipitation
of CaCO3 (Roleda et al., 2012a; Hofmann and Bischof, 2014).
This process may also modulate the carbonate chemistry equi-
librium of surrounding seawater through both the absorption of
DIC and the release of CO2 (Kalokora et al., 2020). As such, the
role that calcifying species have on carbon dynamics of surround-
ing seawater is complex, as processes of photosynthesis, calcifi-
cation and respiration simultaneously influence the carbon
system, and ultimately pH, in counteracting ways (Kalokora
et al., 2020).

The best-known calcifying group of algae are the order of red
algae, the coralline algae, that form crustose or articulated
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structures by depositing CaCO3 extracellularly (Hofmann and
Bischof, 2014; McCoy and Kamenos, 2015). These algae can form
large aggregations spanning several square kilometres or also occur
as smaller crusts or as epiphytes on other living organisms (McCoy
and Kamenos, 2015). Although calcification in this group is con-
sidered to be sensitive to OA, as CO3

2� is less available in seawater
under acidic conditions (Feely et al., 2004; Fabry et al., 2008; Raven,
2011; Stepien et al., 2016), the fact that many calcifying macroalgae
utilise HCO3

� or CO2 as substrate for calcification, and not car-
bonate may limit this sensitivity (Roleda et al., 2012a). Further-
more, carbonate concentrations can be increased by these algae
through alteration of pH of water in close association with the
thallus (e.g., intercellular spaces) during photosynthetic use of CO2

and/or HCO3
� (Digby, 1977; Borowitzka and Larkum, 1987),

reducing reliance on elevated ambient carbonate ion concentra-
tions. In fact, dissolution of calcified structures because of OA
might be a greater problem than reduced calcification rates
(Doney et al., 2009; Hofmann and Todgham, 2010).

Through these interactions with the carbonate system of sea-
water, macroalgae influence the carbon equilibrium of surrounding
seawater over various scales. However, for macroalgal vegetation to
play ameaningful role as OA refugia for othermarine organisms, the
density of these primary producers needs to be high enough. Macro-
algal vegetation is not evenly distributed with respect to species and
biomass and certain regions would be of greater significance in their
effect on local seawater carbon fluxes and pH. The greatest potential
for OAmitigation is likely to be in coastal areas with large, dense and
complex macroalgal communities or seaweed farms (Chung et al.,
2013; Zacharia et al., 2015; Fernández et al., 2019; Xiao et al., 2021).

Macroalgal distribution patterns

Globally, macroalgal distribution is determined by seawater surface
temperature, while local scale distribution is established in response
to substrate properties and depth. Lüning (1991) described

macroalgal floras of the world in detail and the regions identified
based on macroalgal vegetation closely resemble the seven tem-
perature zones adopted by Briggs (1995) (Figure 1).

Marine forests

Canopy-forming macroalgae occur along various coastlines and
include large brown species, such as large Laminarian kelps and
smaller Fucalean genera, which dominate marine benthic commu-
nities known as marine forests. Large robust canopy-forming
brown algae are recognised habitat engineers known for their ability
to alter physical conditions in the surrounding benthos (Steneck
et al., 2002; Schiel and Foster, 2015; Teagle et al., 2017; Wernberg
et al., 2019). These subtidal brown algae are the most important
macroalgal primary producers based on area cover and net primary
production (Duarte et al., 2022). Kelp forest communities include a
variety of canopy-forming species that differ widely in stature.
Steneck et al. (2002) recognised at least three different groups of
large forms that represent the kelp-component in kelp forests. The
floating canopy kelps (e.g., Macrocystis) that grow up to 45 m in
length, smaller canopy kelps like Ecklonia and Nereocystis (<10 m);
and kelps that are held upright by rigid stipes (Laminaria and
Ecklonia radiata) (<5 m). These ecosystem engineers create
forest-like marine vegetation types that have complex three-
dimensional structures. Like terrestrial forests, kelp communities
have associated understory algal communities (Leliaert et al., 2000;
Bennett andWernberg, 2014; Leclerc et al., 2016; Smale et al., 2020).

The smaller canopy-forming algae are from the Fucales, of
which Sargassum and Cystoseira species are the most widespread
(Nizamuddin, 1970). Sargassum is more common in the warm-
temperate, subtropical and tropical coasts (Yip et al., 2020), while
Cystoseira is most diverse in the Mediterranean (Nizamuddin,
1970). This pattern of canopy-forming algal distribution is reflected
in the mapped brown algal marine forests, which show strong
representation in cool- to cold-temperate regions, but also in some

Figure 1. Distribution of coastal temperature zones based on Briggs, 1995 (reproduced from Bartsch et al., 2012). Blue, polar regions; green, cool temperate; yellow, warm
temperate; red, tropical.
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warmer tropical coasts such as the Caribbean and Indo-China
(Figure 2) (Assis et al., 2020).

Lower canopy-forming algae like Gelidium corneum are also
considered foundational, or habitat forming species (Quintano
et al., 2017; Borja et al., 2018; Muguerza et al., 2022), particularly
on some European coasts, with Gelidium canariense representing
an important canopy-forming species on Macronesian islands
(Alfonso et al., 2017; Hernández, 2021). While these algae are not
as tall as the kelps, the canopies formed are similar in height (20–
30 cm) to some of the fucalean-dominated communities
(Robertson, 1987; Quintano et al., 2018; Alfonso et al., 2021;
Hernández, 2021). Smaller brown and red foliose species are usually
important components of the under-story vegetation and occur
both under canopies of larger brown algae as well as in the gaps
between stands of taller algae. However, temperate G. corneum
(Quintano et al., 2017, 2018; Casado-Amezúa et al., 2019) and
Gelidium canariense (Alfonso et al., 2021; Hernández, 2021) are
both recognised as short canopy-forming species in their own right.

Polar macroalgae

The polar macroalgae flora is confined predominantly to the subtidal
zone due to seasonal ice scour, which abrades rock surfaces on the
intertidal reefs (Zacher et al., 2009). Light limitation during winter
months limits the poleward distribution of kelps that form such
extensive forests in temperate regions (Steneck et al., 2002). However,
a few Laminarian species do occur in these cold polar regions (Filbee-
Dexter et al., 2019), withmacroalgal communities in cold polar waters
generally comprised of a canopy of large brown algae, with an under-
story community of foliose and coralline macroalgae (Brouwer et al.,
1995; Wiencke and Amsler, 2012). Although the Arctic has limited
potential for substantial macroalgae communities, since only 35% of
the benthos in this region has hard substrate that can support large
attached macroalgae like kelp forests (Filbee-Dexter et al., 2019),
subtidal macroalgae communities can reach biomass values compar-
able to temperate kelp communities (Wiencke and Amsler, 2012).

Temperate algal vegetation

In cold- and warm-temperate regions, the large brown algae also
dominate the subtidal zone (Flores-Moya, 2012; Huovinen and
Gómez, 2012). Themost prominent group in this regard are the kelps
(Laminariales), which attain the largest size of these brown canopy-
forming algae (Steneck et al., 2002). These are common in cooler
regions (warm and cold temperate) but relatively rare along warmer
coastlines (Bolton, 2010).Dense beds of smallermacroalgal groups are
also common in temperate areas (Lüning, 1991; Shepherd and Edgar,
2013). Estimates based on habitat availability models show that, while
these smaller algae potentially cover a substantial area, they make a
limited contribution to primary production (Duarte et al., 2022).

Tropical algal vegetation

Subtidal algal vegetation in tropical regions usually forms a
mosaic with coral reefs. These metazoan colonies share space with
both turf and foliose macroalgae communities, the relative abun-
dance of which is dependent on the interplay between herbivory,
nutrients and light availability (Hurd et al., 2014). Foliose algae are
usually rare in coral reef systems, unless there is reduction in
herbivory or an increase in nutrients (Lobban and Harrison,
1994). These algae are often fucoids like Cystoseira, Turbinaria
and Sargassum (Mejia et al., 2012). Foliose algae, along with some
coralline algae, usually form communities on the shallow shore-
ward reef flats of coral atolls, while the seaward slopes are usually
occupied by corals, coralline algae and calcified macroalgae such
asHalimeda (Littler and Littler, 1994). One of the reasons for this
is the availability of hard substrate on a relatively flat surface to
which they can attach (Fong and Paul, 2011). Extensive macro-
algal communities are not common in tropical regions, however,
Wilson et al. (2010) and Evans et al. (2014) report substantial algal
meadows off the coast of Australia.

Based on macroalgal distribution models, there appears to be
great potential for OA mitigation in algal beds, both in temperate

Figure 2. Modelled distribution of brown forest forming macroalgal species (after Assis et al., 2020).
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and tropical regions. However, the greatest opportunities for larger
scale OA refuge would lie within the high biomass areas offered by
temperatemarine forests. High biomass can also be created through
coastal seaweed aquaculture initiatives, which may alleviate OA
stresses in shallow coastal areas.

Trends in oceanacidification refugeprovision bymacroalgae

Temporal trends

Refuge from OA provided by macroalgae can be temporally con-
sistent or cyclical, depending on several factors such as seasonal
productivity (Middelboe and Hansen, 2007), photosynthetic state
(diurnal cycles), water retention time and mixing (Middelboe and
Hansen, 2007; Buapet et al., 2013; Koch et al., 2013) and nutrient
availability (Gao and McKinley, 1994; Celis-Pla et al., 2015).

Macroalgae are subject to seasonal differences in productivity
and photosynthetic rates, like many other plant species, related
to temperature preferences, irradiance and nutrient availability
(Takahashi et al., 2002; Saderne et al., 2013; Attard et al., 2019;
Kapsenberg and Cyronak, 2019). This means that their provision
as OA refuges may vary with seasonal differences in productivity
(Li et al., 2022). Studies have found that in most regions macro-
algal productivity is typically higher in summer and spring
months. For example, Middelboe and Hansen (2007) identified
seasonal pH variability associated with macroalgal productivity
(Fucus vesiculosus, F. serratus, Ceramium rubrum andUlva spp.)
on the northeast coast of Zealand (Denmark), evidenced by
higher average pH in summer and lower pH in winter, which
they attributed mostly to seasonal differences in irradiance.
These findings are similar to other studies that also found higher
average pH and higher variability in carbonate parameters
(pCO2 and DIC) in productive summer months, for example,
Krause-Jensen et al. (2015) in a subarctic fjord in Greenland and
Delille et al. (2009) in a Southern Ocean Archipelago. As
such, macroalgal-dominated habitats may provide seasonal
relief for marine organisms from OA during periods of higher
productivity.

Many studies have identified diurnal cycles in seawater pH
adjacent to macroalgal vegetation, with the common pattern
being higher pH during the day (driven by photosynthesis) and
lower pH at night (driven by respiration; e.g., Middelboe and
Hansen, 2007; Semesi et al., 2009; Frieder et al., 2012; Cornwall
et al., 2013; Krause-Jensen et al., 2015; Wahl et al., 2018). These
patterns occur in response to daylight availability for photosyn-
thesis. In some cases, diurnal variability in pH can be as high as
1.2–1.5 units depending on the density of macroalgal growth and
resultant levels of productivity (Krause-Jensen et al., 2015; Wahl
et al., 2015). The extent of diurnal variability can also be influ-
enced by physical factors, such as tidal processes or seawater
exchange. Shallow areas with less mixing and higher water reten-
tion times usually experience high diurnal pH variability
(Middelboe and Hansen, 2007; Hurd, 2015). Diurnal fluctuations
in pH can benefit associated organisms by providing cyclical or
periodic relief from OA. Wahl et al. (2018) found that the brown
algae F. vesiculosus in the Kiel Fjord increased overall mean pH of
seawater by 0.01–0.2 units, with diurnal variability of 1.2 units.
Mussels (Mytilus edulis) benefited from this autotrophic pH
modulation as they were able to maintain calcification rates even
at low pH levels (7.7–8.1 depending on algal density) by shifting
their calcification process to daytime periods to fall in with the
periods of higher pH provided by the vegetation (Wahl et al.,

2018). Other studies have found similar benefits for growth,
development and physiology in other bivalve species (sum-
marised in Table 1) (Frieder et al., 2014; Young and Gobler,
2018; Jiang et al., 2022; Young et al., 2022). However, there is
also evidence to suggest that not all species are capable of adapt-
ing their calcification process to benefit from diurnal pH vari-
ability (Cornwall et al., 2013) and, as such, may still be negatively
affected by corrosive conditions at night.

Spatial trends

Macroalgae can serve as OA refugia over a range of spatial scales as
they can form habitats ranging in size from large stands and
canopies to low-level algal crusts (Hepburn et al., 2011). Macro-
algae also occur at a vast range of locations, such as in shallow
coastal areas, rock pools, estuaries or deeper subtidal locations
(Layton et al., 2020; Falkenberg et al., 2021). The distribution and
structure of macroalgal growth will offer refuge from OA at differ-
ent spatial extents. On a small scale, pH fluctuation related to
biological activity can occur at spatial scales as small as centimetres,
for example, in the diffusive boundary layer at the thalli surface
(Noisette and Hurd, 2018; Guy-Haim et al., 2020). Conversely, in
large- and dense-algal aggregations, biological activity can have an
influence at an extent of metres to kilometres (Krause-Jensen et al.,
2015).

On a micro-scale (centimetres) macroalgal metabolism can
create favourable micro-zones of higher pH within their diffusive
boundary layer (Noisette and Hurd, 2018; Guy-Haim et al., 2020),
where pH can be up to 1–3 units higher than surrounding sea-
water (Wahl et al., 2015). Marine organisms that live on the
surface of macroalgae can benefit from this chemical refuge,
especially during the daytime when photosynthetic activity is
highest (Noisette and Hurd, 2018) (Table 1). For example,
Saderne and Wahl (2013) found that both calcifying (Electra
pilosa) and non-calcifying (Alcyonidium hirsutum) Bryozoan
species were tolerant of high pCO2 levels (1,193 � 166 μatm)
associated with upwelling events in the Western Baltic Sea, and
they attributed this tolerance to the potential periodic relief from
OA provided by the brown macroalgal species Fucus serratus on
which these species live. Similarly, Doo et al. (2020) found that an
epiphytic foraminifera, Marginopora vertebralis, showed higher
tolerance to end-of-the-century temperature (�3 °C) and pCO2

(~1,000 μatm) when kept experimentally under these treatments
with its red macroalgal host, Laurencia intricata. Similar benefi-
cial symbiotic relationships that facilitate micro-refugia from OA
exist between calcifying and non-calcifying algae. For example,
Guy-Haim et al. (2020) and Short et al. (2014) found that the
coralline algae Ellisolandia elongata and Hydrolithoideae spp. are
less susceptible to the effects of OA, evidenced by higher calcifi-
cation rates at low pH (7.8 and 7.7, respectively), when associated
with non-calcifying epiphytic algae. There are also examples of
species, such as urchin larvae (Pseudechinus huttoni) that are well
adapted to pH variability and therefore show no positive or
negative response to the variable pH in their settlement habitats
(Houlihan et al., 2020).

The effect of photosynthesis on surrounding seawater carbon-
ate chemistry can extend further than the immediate vicinity of
the algal growth. Macroalgal assemblages that form complex
communities can provide refuge from OA over much larger
spatial scales from metres (e.g., in rock pools or within canopies)
to kilometres (e.g., extensive algal beds in temperate areas) due to
higher and more concentrated levels of metabolic activity (Björk
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et al., 2004; Middelboe and Hansen, 2007; Duarte et al., 2013;
Krause-Jensen et al., 2015). The refuge potential is especially
significant in macroalgal assemblages with dense growth and
complex canopy structure with the additional benefit of reduced
seawater flow, which increases water residence time (Hendriks
et al., 2014; Hurd, 2015).

Macroalgae have been reported to increase the average pH
(to levels >8.5 pH units) in rock pools (Björk et al., 2004), lagoons
(Menéndez et al., 2001) and bays (Buapet et al., 2013). For
example, Krause-Jensen et al. (2015) found pH variability of
0.1–0.3 units occurs within the scale of 1 m2 in response to
location within the canopy of a large kelp forest in the Kobbefjord
in southwest Greenland. At a slightly larger scale, Buapet et al.
(2013) compared the pH conditions in different vegetation types
(mixed macroalgae and seagrass beds) to non-vegetated areas in
six shallow coastal bays in temperate Sweden. Their results
showed that vegetation can influence the conditions at the scale
of an entire bay as evidenced by higher pH and lower DIC
concentrations relative to the adjacent seawater outside the

bay, even in areas of the bay where vegetation did not occur
(Buapet et al., 2013).

Impacts of ocean acidification on macroalgae

It is important to consider the potential negative impacts that OA
may have on macroalgae in order to determine their provision as
OA refugia under future acidified conditions. Most studies that
have assessed the response of macroalgae to changes in seawater
carbonate chemistry associated with OA have shown that macro-
algal species from all algal groups (red, brown and green) are
generally physiologically tolerant to predicted OA and even show
enhanced growth under these conditions (see reviews by Porzio
et al., 2011 and Koch et al., 2013). This tolerance is attributed to the
ability of most macroalgal species to efficiently assimilate DIC in
various forms for photosynthesis thus allowing them to benefit
from increased availability of DIC under acidified conditions
(Fernández et al., 2015; Cornwall and Hurd, 2019). Of course, there

Table 1. Examples of studies assessing the ocean acidification (OA) refuge provision by macroalgal species for various coastal organisms

References Macroalgal species Refuge function Refuge provision

Phaeophyceae
(brown)

Frieder et al., 2014 Simulations based the La Jolla
Kelp Forest (not species
specific)

Bivalve (Mytilus californianus and Mytilus
galloprovincialis) developmental delays associated with
OA mitigated under variable pH conditions simulating
kelp forest conditions.

✓

Wahl et al., 2018 Fucus vesiculosus Bivalve (mussel Mytilus edulis) calcification impacts
associated with OA mitigated in the presence of
macroalgae (F. vesiculosus).

✓

Young et al., 2022 Saccharina latissima Bivalves (Mercenaria mercenaria, Crassostrea virginica
and M. edulis) showed higher growth rates at low pH in
the presence of macroalgae (Saccharina latissima).

✓

Jiang et al., 2022 Saccharina japonica Bivalve (Pacific oyster, Crassostrea gigas) showed higher
scope for growth, clearance rate and decreased
respiration rate and excretion rate at low pH in the
presence of macroalgae (Saccharina japonica).

✓

Cornwall et al., 2014 pH simulations for a kelp
forest (not species specific)

Coralline algae (Arthrocardia corymbosa) showed further
reduced growth rates under variable OA treatments.

�

Saderne and Wahl, 2013 Fucus serratus Bryozoan species (calcifying Electra pilosa and non-
calcifying Alcyonidium hirsutum) showedhigher tolerance
to OA (high pCO2) due to the periodic relief from OA
provided by macroalgae (F. serratus).

✓

Rhodophyceae
(red)

Pettit et al., 2015 Padina pavonica Negative effect of OA on Foraminifera community
composition was not mitigated by macroalgae (Padina
pavonica)

�

Doo et al., 2020 Laurencia intricata Effect of low pH in Foraminifera (Marginopora vertebralis)
growth and calcification mitigated in the presence of
macroalgae (L. intricata)

✓

Guy-Haim et al., 2020 Polysiphonia sp., Ceramium
sp., Rhodymenia sp.,
Ectocarpus sp. and
Chondracanthus sp.

Coralline algae Ellisolandia elongata is less susceptible to
OA when colonised with non-calcifying macroalgal
epiphytes.

✓

Houlihan et al., 2020 CCA encrusted cobbles (not
species specific)

Urchin (Pseudechinus huttoni) settlement and post
settlement growth unaffected by pH variability
associated with the CCA encrusted cobbles.

—

Chlorophyceae
(green)

Young and Gobler, 2018 Ulva sp. Juvenile North Atlantic bivalves (M. mercenaria, C.
virginica, and Argopecten irradians, M. edulis) showed
higher growth rates under OA conditions when in the
presence of Ulva.

✓
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are exceptions with some species sensitive to OA, with sensitivity
likely linked to mechanisms of carbon uptake and calcification
(Cornwall et al., 2012; Hofmann and Bischof, 2014) as well as the
scale of exposure (e.g., extreme low pH conditions associated with
coastal acidification induced by mariculture activities as shown by
Narvarte et al., 2020). Of all the algal groups, sensitivity to OA is
most often reported for calcifying species (see the
section “Calcification”), with this group facing the threat of being
outcompeted by the more tolerant non-calcifying algae (Hofmann
and Bischof, 2014).

Considering that some macroalgal species have heteromorphic
life cycles (e.g., many kelp species), it is also important to consider
the impact of OA on the different stages, where the early life stages
(unicellular and microscopic stages) are usually deemed more
sensitive to environmental change (Roleda et al., 2007). Although
the early life stages of some macroalgal species have been shown to
be more sensitive to other environmental factors (e.g., UV radi-
ation; Roleda et al., 2007), there is evidence to suggest that early life
stages are not affected by OA conditions (Roleda et al., 2012b, 2015;
Leal et al., 2017). This provides positive evidence for the persistence
of macroalgal habitats in future.

Conclusion and relevance

Macroalgae form important components of shallow coastal mar-
ine ecosystems and have been identified as potentially beneficial
habitats for coastal species facing ongoing OA by provision of
higher average pH conditions (Kapsenberg and Cyronak, 2019).
Being a dynamic process, autotrophic pH modulation exposes
organisms to higher variability in pH in space and time, and
therefore alternating periods of stress and recovery (Wahl et al.,
2018). As such, the species that occur in vegetated environments,
like macroalgal ecosystems, although benefitting from periodic
relief from the physiological stress incurred by OA, still require
the physiological capacity to withstand high pH variability
(Falkenberg et al., 2021). Despite short-term fluctuations in pH
conditions, autotrophic biological activity likely provides associ-
ated organisms with long-term relief from ongoing OA (Hurd,
2015; Koweek et al., 2018; Pacella et al., 2018). Considering the
apparent tolerance of most photosynthetic macroalgae to future
OA conditions, and particularly those taxa that are known to
form large stands and aggregations, it is likely these habitats will
continue to provide an important refuge for the many marine
species associated with them.

The research highlighted in this review provides important
evidence for the potential OA refuge function of brown, red and
green macroalgae by mitigating the negative effects of OA on
growth and calcification of mainly bivalves but also bryozoans,
foraminifera and coralline algae (Table 1). However, research
conducted over large spatial scales, across biogeographic regions,
and for many macroalgae-associated species (such as other cal-
cifying organisms and fish) is lacking and needs to be addressed
in future research. The role of macroalgal habitats as refugia
should be considered for local OA management and protected
area management for conservation efforts (Morelli et al., 2016;
Kapsenberg and Cyronak, 2019), especially in productive coastal
marine environments where these habitats already provide
important nursery areas for many marine species (James and
Whitfield, 2022).
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