HILBERT C^{*}-MODULES AND CONDITIONAL EXPECTATIONS ON CROSSED PRODUCTS

MAHMOOD KHOSHKAM

(Received 26 April 1994; revised 3 October 1994)

Communicated by P. G. Dodds

Abstract

In this paper, we study the structure of certain conditional expectation on crossed product C^{*}-algebra. In particular, we prove that the index of a conditional expectation $E: B \rightarrow A$ is finite if and only if the index of the induced expectation from $B \rtimes G$ onto $A \rtimes G$ is finite where G is a discrete group acting on B.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 46L05; secondary 46H25.

Introduction

In this paper we study conditional expectations defined on certain C^{*}-algebras given as crossed products. Consider a pair $A \subset B$ of C^{*}-algebras, $E: B \rightarrow A$ a conditional expectation, and an action of a discrete group G on B commuting with E. Then, there are conditional expectations \tilde{E} (respectively \tilde{E}_{r}) from $B \rtimes G$ (respectively $B \rtimes_{r} G$) onto $A \rtimes G$ (respectively $A \rtimes_{r} G$). Many properties of \tilde{E} (and \tilde{E}_{r}) are realized by studying the Hilbert C^{*}-modules obtained by a Jones-type basic construction method. Consequently, a large portion of this paper is concerned with Hilbert C^{*}-modules and the C^{*}-algebra of the so-called compact operators on a Hilbert C^{*}-module. In Section 2 we consider a Hilbert C^{*}-module \mathscr{E} equipped with an action of a group G. Then, G acts on $\mathscr{K}(\mathscr{E})$ and the main theorem of this section states that if G is discrete, then $\mathscr{K}(\mathscr{E}) \rtimes G$ (respectively $\left.\mathscr{K}(\mathscr{E}) \rtimes_{r} G\right)$ is $*$-isomorphic to $\mathscr{K}(\mathscr{E} \rtimes G)$ (respectively $\mathscr{K}\left(\mathscr{E} \rtimes_{r} G\right)$). In Section 3 , we prove that \tilde{E} (and \tilde{E}_{r}) has finite index if and only if E has finite index. We also show that the canonical conditional expectations from $B \rtimes_{r} G$ onto $B \rtimes_{r} H$ and from $B \rtimes G$ onto $B \rtimes H$ for a subgroup H of G have finite indices if and only if $[G: H]<\infty$. The notion of index considered here was introduced by Watatani [14] who was inspired by Jones' index theory for subfactors [7]. The index

[^0]of a conditional expectation $E: B \rightarrow A$ is a positive element of B. When the index is scalar (for example B simple) it belongs to the set $\left\{4 \cos ^{2} \pi / n: n \geq 3\right\} \cup[4, \infty)$. One hopes that if $E: B \rightarrow A$ has finite index, then A and B cannot be structurally very different. For example, it is known that a C^{*}-subalgebra A of a nuclear C^{*}-algebra B need not be nuclear [1,3]. However, when $E: B \rightarrow A$ has finite index, then B is nuclear if and only if A is so. Throughout this paper all C^{*}-algebras (except for ideals) are assumed to be unital and we deal with actions of discrete groups only. If a group G acts on a C^{*}-algebra A as a group of automorphisms, then $A \rtimes G$ and $A \rtimes_{r} G$ respectively denote the full and the reduced crossed product C^{*}-algebras [10].

1. Finitely-generated Hilbert C^{*}-modules

In this section we prove a series of technical lemmas on Hilbert C^{*}-modules. Let A be a C^{*}-algebra and \mathscr{E} a Hilbert A-module. Then $\mathscr{L}(\mathscr{E})$ denotes the C^{*} albegra of adjointable operators and $\mathscr{K}(\mathscr{E})$ the closed ideal in $\mathscr{L}(\mathscr{E})$ generated by the elements $\theta_{\xi, \eta}$ where $\xi, \eta \in \mathscr{E}$ (cf. [8]). If \mathscr{E}_{1} is a right Hilbert A-module, \mathscr{E}_{2} a right Hilbert B-module, and $\pi: \mathscr{E} \rightarrow \mathscr{L}\left(\mathscr{E}_{2}\right)$ a $*$-representation, then the algebraic tensor product $\mathscr{E}_{1} \odot \mathscr{E}_{2}$ has a natural B-valued inner product. Namely, $\left\langle x_{1} \otimes x_{2}, y_{1} \otimes y_{2}\right\rangle=$ $\left\langle x_{2}, \pi\left(\left\langle x_{1}, y_{1}\right\rangle\right) y_{2}\right\rangle$ with $x_{1}, y_{1} \in \mathscr{E}_{1}$ and $x_{2}, y_{2} \in \mathscr{E}_{2}$. Let $\mathscr{E}_{1} \otimes_{A} \mathscr{E}_{2}$ denote the completion of $\mathscr{E}_{1} \odot \mathscr{E}_{2}$ after vectors of length zero have been factored out. For a Hilbert module $\mathscr{E}, 1_{\mathscr{E}}$ denotes the identity operator on \mathscr{E}.

LEMMA 1.1. Let \mathscr{E}_{1} and \mathscr{E}_{2} be Hilbert modules over C^{*}-algebras A and B respectively, and $\pi: A \rightarrow \mathscr{L}\left(\mathscr{E}_{2}\right) a$ *-representation. If π is faithful, then the mapping $\mathscr{L}\left(\mathscr{E}_{1}\right) \rightarrow \mathscr{L}\left(\mathscr{E}_{1} \otimes_{A} \mathscr{E}_{2}\right)$ defined by $T \rightarrow T \otimes 1_{\mathscr{E}_{2}}$ is faithful.

PROOF. Let $T \in \mathscr{L}\left(\mathscr{E}_{1}\right)$, and $T \neq 0$. Then, there exists $\xi \in \mathscr{E}_{1}$ such that $T \xi \neq$ 0 . Since π is faithful $\pi(\langle T \xi, T \xi\rangle) \neq 0$. Hence, there exists $\eta \in \mathscr{E}_{2}$ such that $\pi(\langle T \xi, T \xi\rangle) \eta \neq 0$. Therefore, $\left\langle\pi(\langle T \xi, T \xi\rangle) \eta, \eta_{1}\right\rangle \neq 0$ for some $\eta_{1} \in \mathscr{E}_{2}$. Hence,

$$
\left\langle(T \otimes 1)\left(\xi \otimes \eta_{1}\right),(T \otimes 1)(\xi \otimes \eta)\right\rangle=\left\langle\eta_{1}, \pi(\langle T \xi, T \xi\rangle) \eta\right\rangle \neq 0
$$

and $T \otimes 1 \neq 0$.

Lemma 1.2. Let A be a unital C^{*}-algebra and \mathscr{E} a Hilbert A-module. If $1_{\mathscr{E}} \in$ $\mathscr{K}(\mathscr{E})$, then there exist $u_{1}, \ldots, u_{n} \in \mathscr{E}$ such that $1_{\mathscr{E}}=\sum_{i=1}^{n} \theta_{u_{i}, u_{i}}$.

Proof. Choose $y_{1}, y_{2}, \ldots, y_{m} ; x_{1}, x_{2}, \ldots, x_{m} \in \mathscr{E}$ such that $T=\sum_{i=1}^{m} \theta_{x_{i}, y_{i}}$ and $\left\|1_{\mathscr{E}}-T\right\|<1$. Then, $T+T^{*}=\sum_{i=1}^{m} \theta_{x_{i}, y_{i}}+\theta_{y_{i}, x_{i}}$ is invertible. For every $\xi, \eta \in \mathscr{E}$, we have that $\left\langle\theta_{\xi, \xi}(\eta), \eta\right\rangle=\langle\xi, \eta\rangle\langle\xi, \eta\rangle^{*}$. Since $\langle\xi, \eta\rangle\langle\xi, \eta\rangle^{*}$ is positive in A by
[12, Corollary 2.7], $\theta_{\xi, \xi}$ is a positive element of $\mathscr{L}(\mathscr{E})$. Using this and the equation $\theta_{x+y, x+y}=\theta_{x, y}+\theta_{y, x}+\theta_{x, x}+\theta_{y, y}$ we have

$$
\theta_{x, y}+\theta_{y, x} \leq \theta_{x+y, x+y} \leq \theta_{x+y, x+y}+\theta_{x-y, x-y}=2 \theta_{x, x}+2 \theta_{y, y} .
$$

Apply this inequality to each term of $\sum_{i=1}^{m} \theta_{x_{i}, y_{i}}+\theta_{y_{i}, x_{i}}$ to conclude that the operator $S=\sum_{i=1}^{m} \theta_{x_{i}, x_{i}}+\theta_{y_{i}, y_{i}}$ is positive and invertible. Then,

$$
1_{\mathscr{E}}=S^{-1 / 2} S S^{-1 / 2}=\sum_{i=1}^{m} \theta_{S^{-1 / 2} x_{i}, S^{-1 / 2} x_{i}}+\theta_{S^{-1 / 2} y_{i}, S^{-1 / 2} y_{i}}
$$

which is the desired result.

Lemma 1.3. Let $\mathscr{E}=\mathscr{E}_{1} \otimes_{A} \mathscr{E}_{2}$ and $1_{\mathscr{E}} \in \mathscr{K}(\mathscr{E})$. Then, there exist $x_{1}, x_{2}, \ldots, x_{m} \in$ \mathscr{E}_{1} and $y_{1}, \ldots, y_{m} \in \mathscr{E}_{2}$ such that $\sum_{i=1}^{n} \theta_{x_{i} \otimes y_{i}, x_{i} \otimes y_{i}}$ is positive and invertible.

Proof. By Lemma 1.2 there exist $z_{1}, \ldots, z_{n} \in \mathscr{E}$ such that $1_{\mathscr{E}}=\sum_{i=1}^{n} \theta_{z_{i}, z_{i}}$. Without loss of generality we assume that $\left\|z_{i}\right\| \leq 1$ for $i=1, \ldots, n$. Given $\epsilon>0$, choose $x_{i j} \in \mathscr{E}_{1}$ and $y_{i j} \in \mathscr{E}_{2}, j=1,2, \ldots, n_{i}$ such that $\left\|z_{i}-\sum_{j=1}^{n_{i}} x_{i j} \otimes y_{i j}\right\|<\epsilon / n$. Let $w_{i}=\sum_{j=1}^{n_{i}} x_{i j} \otimes y_{i j}$. Then $\left\|w_{i}\right\| \leq 1+\epsilon / n$, and $\theta_{w_{i}, w_{i}}=\sum_{j, k=1}^{n_{i}} \theta_{x_{i j}, \otimes_{i j}, x_{i} \otimes y_{i k}}$.

But

$$
\begin{aligned}
\left\|\sum_{i=1}^{n} \theta_{w_{i}, w_{i}}-1_{\mathscr{E}}\right\| & =\left\|\sum_{i=1}^{n} \theta_{w_{i}, w_{i}}-\sum_{i=1}^{n} \theta_{z_{i}, z_{i}}\right\| \leq \sum_{i=1}^{n}\left\|\theta_{w_{i}, w_{i}}-\theta_{z_{i}, z_{i}}\right\| \\
& \leq \sum_{i=1}^{n}\left\|w_{i}-z_{i}\right\|\left(\left\|z_{i}\right\|+\left\|w_{i}\right\|\right)<n \frac{\epsilon}{n}\left(2+\frac{\epsilon}{n}\right)=\epsilon\left(2+\frac{\epsilon}{2 n}\right) .
\end{aligned}
$$

This shows that $\sum_{i=1}^{n} \theta_{w_{i}, w_{i}}$ is invertible if ϵ is sufficiently small. This, together with the inequality in the proof of 1.3 implies that the element $T=\sum_{i=1}^{n} \sum_{j=1}^{n_{j}} \theta_{x_{i}, \otimes y_{j}, x_{j} \otimes y_{i j}}$ is positive and invertible once ϵ is chosen sufficiently small.

Lemma 1.4. Let \mathscr{E} be a Hilbert B-module, \mathscr{E}° a Hilbert A-module, and $\pi: A \rightarrow$ $\mathscr{L}(\mathscr{E})$ a faithful $*$-representation. If $1_{\mathscr{E}^{\prime} \otimes_{A} \mathscr{E}}=\sum_{n=1}^{n} \theta_{x_{i}, x_{i}}$ with $x_{i} \in \mathscr{E}^{\prime} \otimes_{A} \mathscr{E}$, then there exist $u_{1}, u_{2}, \ldots, u_{n} \in \mathscr{E}^{\prime}$ such that $1_{\mathbb{E}^{\prime}}=\sum_{i=1}^{n} \theta_{u_{i}, u_{i}}$.

Proof. By 1.3 there exist $y_{1}, \ldots, y_{n} \in \mathscr{E}^{\prime}$ and $z_{1}, \ldots z_{n} \in \mathscr{E}$ such that $T=$ $\sum_{i=1}^{n} \theta_{y_{i} \otimes z_{i}, y_{i} \otimes z_{i}}$ is positive and invertible. For each $x \in \mathscr{E}^{\prime}$ define $T_{x}: \mathscr{E} \rightarrow \mathscr{E}^{\prime} \otimes_{A} \mathscr{E}$ by $T_{x}(y)=x \otimes_{A} y$.

Then $T_{x}^{*}: \mathscr{E}^{\prime} \otimes_{A} \mathscr{E} \rightarrow \mathscr{E}$ is given by $T_{x}^{*}(\xi \otimes \eta)=\pi(\langle x, \xi\rangle) \eta$. Also, for $z \in \mathscr{E}$, let $S_{z}: B \rightarrow \mathscr{E}$ be defined by $S_{z}(c)=z c$. Then $S_{z}^{*}(x)=\langle z, x\rangle$, and $\theta_{y_{i} \otimes z_{i}, y_{i} \otimes z_{i}}=T_{y_{i}} S_{z_{i}} S_{z_{i}}^{*} T_{y_{i}}^{*}$.

Hence

$$
\sum_{i=1}^{n} \theta_{y_{i} \otimes z_{i}, y_{i} \otimes z_{i}}=\sum_{i=1}^{n} T_{y_{i}} S_{z_{i}} S_{z_{i}}^{*} T_{y_{i}}^{*} \leq \sum_{i=1}^{n}\left\|S_{z_{i}} S_{z_{i}}^{*}\right\| T_{y_{i}} T_{y_{i}}^{*}
$$

Therefore

$$
\sum_{i=1}^{n} T_{y_{i}} T_{y_{i}}^{*} \geq \frac{1}{M} \sum \theta_{y_{i} \otimes z_{i}, y_{i} \otimes z_{i}}
$$

where $M=\max \left\{\left\|S_{z_{i}} S_{z_{i}}^{*}\right\|: i=1, \ldots, n\right\}>0$. Then $\sum_{i=1}^{n} T_{y_{i}} T_{y_{i}}^{*}=\sum_{i=1}^{n} \theta_{y_{i}, y_{i}} \otimes 1_{\mathscr{E}}$, and hence $S=\sum_{i=1}^{n} \theta_{y_{i}, y_{i}}$ is positive and invertible. Let $u_{i}=S^{-1 / 2} y_{i}$ to get $1_{\mathscr{E}^{\prime}}=$ $\sum_{i=1}^{n} \theta_{S^{-1 / 2} y_{i}, S^{-1 / 2} y_{i}}$.

COROLLARY 1.5. Let $\mathscr{E}^{\prime}, \mathscr{E}$, and π be as in Lemma 1.4. If $\mathscr{E}^{\prime} \otimes_{A} \mathscr{E}$ is a finitelygenerated projective C^{*}-module, then \mathscr{E}^{\prime} is a finitely generated projective A-module.

Proof. Since $\mathscr{E}^{\prime} \otimes_{A} \mathscr{E}$ is finitely-generated and projective, it follows that $1_{\mathscr{E}^{\prime} \otimes_{A} \mathscr{E}}$ satisfies the hypothesis of Lemma 1.4. Let $u_{1}, \ldots, u_{n} \in \mathscr{E}^{\prime}$ be as in Lemma 1.4. Then $f_{i}(x)=\left\langle u_{i}, x\right\rangle$ is an element of $\operatorname{Hom}_{A}\left(\mathscr{E}^{\mathscr{\prime}}, A\right)$ and $\left\{\left(u_{i}, f_{i}\right): i=1, \ldots, n\right\}$ is a projective system. Hence \mathscr{E}^{\prime} is a finitely generated projective A-module.

2. Hilbert G-modules

Let \mathscr{E} be a Hilbert A-module equipped with an action of a discrete group G such that:
(i) $t(x a)=(t x)(t a), x \in \mathscr{E}, a \in A, t \in G$,
(ii) $t\langle x, y\rangle=\langle t x, t y\rangle, x, y \in \mathscr{E}, t \in G$.

The induced action of G on $\mathscr{K}(\mathscr{E})$ is defined by $(t \mathscr{S})(x)=t\left(\mathscr{S}\left(t^{-1} x\right)\right)$ for $\mathscr{S} \in \mathscr{K}(\mathscr{E}), x \in \mathscr{E}$ and $t \in G$. Let $C_{c}(G, \mathscr{E})$ be the set of functions with finite support from G into \mathscr{E}. Define an $A \times G$-valued inner product on $C_{c}(G, \mathscr{E})$ by $\left\langle e_{1}, e_{2}\right\rangle(t)=\sum_{s \in G} s^{-1}\left(\left\langle e_{1}(s), e_{2}(s t)\right\rangle\right)$ where $e_{1}, e_{2} \in C_{c}(G, \mathscr{E})$ and $t \in G$. If $e \in C_{c}(G, \mathscr{E})$ and $a \in C_{c}(G, A)$ let $(e \cdot a)(t)=\sum_{s \in G} e(s) s\left(a\left(s^{-1} t\right)\right)$.

Let $\mathscr{E} \rtimes G$ be the completion of $C_{c}(G, \mathscr{E})$ in the norm $\|e\|=\|\langle e, e\rangle\|^{1 / 2}$ when $\langle e, e\rangle$ is regarded as an element of $A \rtimes G$. Similarly $\mathscr{E} \rtimes_{r} G$ is defined to be the closure of $C_{c}(G, \mathscr{E})$ with respect to the norm $\|e\|_{r}=\|\langle e, e\rangle\|_{r}^{1 / 2}$, that is, $\langle e, e\rangle$ is regarded as an element of the reduced crossed product $A \rtimes_{r} G$. Then $\mathscr{E} \rtimes_{r} G$ is a Hilbert $A \rtimes_{r} G$-module. For more on this construction we refer to [4, 9]. Using the action of G on $\mathscr{K}(\mathscr{E})$ we form the full and the reduced crossed products $\mathscr{K}(\mathscr{E}) \rtimes G$ and $\mathscr{K}(\mathscr{E}) \rtimes_{r} G$. We have the following theorem.

THEOREM 2.1. Let G be a discrete group acting on a C^{*}-algebra A and a Hilbert A-module \mathscr{E}. Then
(a) $\mathscr{K}(\mathscr{E}) \rtimes G \cong \mathscr{K}(\mathscr{E} \rtimes G)$;
(b) $\mathscr{K}(\mathscr{E}) \rtimes_{r} G \cong \mathscr{K}\left(\mathscr{E} \rtimes_{r} G\right)$.

Proof. (a) Define a covariant representation of the pair $(\mathscr{K}(\mathscr{E}), G)$ on the $A \rtimes$ G-module $\mathscr{E} \quad \rtimes G$ by $\left(u_{t} f\right)(s)=t\left(f\left(t^{-1} s\right)\right)$ and $(T f)(s)=T(f(s))$ for $f \in$ $C_{c}(G, \mathscr{E}), t, s \in G$, and $T \in \mathscr{K}(\mathscr{E})$. It is routine to check that these equations define unitary and $*$-representations. Moreover,

$$
\begin{aligned}
\left(u_{t} T u_{t}^{*}\right)(f)(s) & =t\left[T\left(u_{t}^{*} f\right)\left(t^{-1} s\right)\right]=t T\left(\left(u_{t}^{*} f\right)\left(t^{-1} s\right)\right) \\
& =t\left(T\left(t^{-1}(f(s))\right)\right)=(t T)(f)(s)
\end{aligned}
$$

Hence, by [10, Proposition 7.6.4] we obtain a $*$-representation $\pi: \mathscr{K}(\mathscr{E}) \rtimes G \rightarrow$ $\mathscr{L}(\mathscr{E} \rtimes G)$.
Since $\mathscr{K}(\mathscr{E})$ is generated by the rank one elements $\theta_{\xi \cdot n}$, and G is discrete, $\mathscr{K}(\mathscr{E}) \times G$ is generated by the elements $\theta_{\xi, \eta} u_{t}$ for $\xi, \eta \in \mathscr{E}$ and $t \in G$. It is straightforward to verify that π sends these elements into $\mathscr{K}(\mathscr{E} \rtimes G)$ and that the range of π contains the generators of $\mathscr{K}(\mathscr{E} \times G)$. Hence π is onto. To show that π is one-to-one define a *-homomorphism

$$
\hat{\pi}: \mathscr{K}(\mathscr{E} \rtimes G) \rightarrow M(\mathscr{K}(\mathscr{E}) \rtimes G)
$$

such that $\hat{\pi} \circ \pi$ is identity on $\mathscr{K}(\mathscr{E}) \rtimes G$. Let \mathscr{E}^{*} be \mathscr{E} with the $\mathscr{K}(\mathscr{E})$-valued inner product $\left\langle x^{*}, y^{*}\right\rangle=\theta_{x, y}$ and the module action $x^{*} . T=\left(T^{*}(x)^{*}\right)$ for $x, y \in \mathscr{E}$ and $T \in \mathscr{K}(\mathscr{E})$ (cf. [12, Definition 6.17]). Here x^{*} denotes x seen as an element of \mathscr{E}^{*}. Since $\left\|\theta_{x, x}\right\|=\|x\|^{2}$, it follows that \mathscr{E}^{*} is closed in the norm induced by the above inner-product. Define $\varphi: A \rightarrow \mathscr{L}\left(\mathscr{E}^{*}\right)$ by $\varphi(a)\left(x^{*}\right)=\left(x a^{*}\right)^{*}$. Then it is easy to verify that φ is a $*$-representation, and we can form the tensor product $\mathscr{E} \otimes_{A} \mathscr{E}^{*}$ equipped with the diagonal action of G. Furthermore, $\mathscr{E} \otimes_{A} \mathscr{E}^{*}$ is naturally and equivariantly isomorphic to $\mathscr{K}(\mathscr{E})$ as Hilbert $\mathscr{K}(\mathscr{E})$-modules (cf. [12, Lemma 6.22]). Using this we conclude that $\mathscr{K}\left(\mathscr{E}^{\mathscr{E}}\right) \rtimes G$ and $\mathscr{E} \otimes_{A} \mathscr{E}^{*} \rtimes G$ are isomorphic as Hilbert $\mathscr{K}(\mathscr{E}) \rtimes G$-modules. Then by [9, Lemma 3.10] we have

$$
(\mathscr{E} \rtimes G) \otimes_{A \rtimes G}\left(\mathscr{E}^{*} \rtimes G\right) \cong\left(\mathscr{E}^{*} \otimes_{A} \mathscr{E}^{*}\right) \rtimes G .
$$

Hence

$$
\begin{aligned}
\mathscr{L}\left(\left(\mathscr{E}^{\circ} \rtimes G\right) \otimes_{A \rtimes G}\left(\mathscr{E}^{*} \rtimes G\right)\right) & \cong \mathscr{L}\left(\left(\mathscr{E} \otimes_{A} \mathscr{E}^{*}\right) \rtimes G\right), \\
& \cong \mathscr{L}(\mathscr{K}(\mathscr{E}) \rtimes G) \\
& \cong \mathscr{M}(\mathscr{K}(\mathscr{E}) \rtimes G)
\end{aligned}
$$

(cf. [8]). Using the above isomorphisms and the mapping $T \rightarrow T \otimes 1$ of $\mathscr{K}(\mathscr{E} \rtimes G)$ into $\mathscr{L}\left((\mathscr{E} \rtimes G) \otimes_{A \rtimes G}\left(\mathscr{E}^{*} \rtimes G\right)\right)$ we obtain a $*$-homomorphism $\hat{\pi}: \mathscr{K}(\mathscr{E} \rtimes G) \rightarrow$ $M(\mathscr{K}(\mathscr{E}) \rtimes G)$. It is routine to show that $\hat{\pi} \circ \pi$ is the identity on $\mathscr{K}(\mathscr{E}) \times G$.
(b) Define a covariant representation of the pair $(\mathscr{K}(\mathscr{E}), G)$ on the space $\mathscr{E} \otimes l^{2}(G)$ by $\left(u_{t} f\right)(s)=t f\left(t^{-1} s\right)$ and $(T f)(s)=T(f(s))$ for $f \in l^{2}(G, \mathscr{E}), T \in \mathscr{K}(\mathscr{E})$, and $s, t \in G$. Since this is a faithful representation of $\mathscr{K}(\mathscr{E})$ by [10, Theorem 7.7.5], we obtain a faithful representation

$$
\psi: \mathscr{K}(\mathscr{E}) \rtimes_{r} G \rightarrow \mathscr{L}\left(\mathscr{E} \otimes \mathscr{L}^{2}(G)\right)
$$

By Lemma 1.1 the mapping $T \rightarrow T \otimes 1$ from $\mathscr{K}\left(\mathscr{E} \rtimes_{r} G\right)$ into $\mathscr{L}\left(\left(\mathscr{E} \rtimes_{r} G\right) \otimes(A \otimes\right.$ $\left.l^{2}(G)\right)$) is faithful. Since $\left(\mathscr{E} \rtimes_{r} G\right) \otimes_{A \rtimes_{r} G} A \otimes l^{2}(G)$ and $\mathscr{E} \otimes l^{2}(G)$ are naturally isomorphic we get a faithful representation \wedge of $\mathscr{K}\left(\mathscr{E} \rtimes_{r} G\right)$ on the space $\mathscr{E} \otimes l^{2}(G)$. Thus

$$
\begin{aligned}
& \psi: \mathscr{K}(\mathscr{E}) \rtimes_{r} G \rightarrow \mathscr{L}\left(\mathscr{E} \otimes l^{2}(G)\right) \\
& \wedge: \mathscr{K}\left(\mathscr{E} \rtimes_{r} G\right) \rightarrow \mathscr{L}\left(\mathscr{E} \otimes l^{2}(G)\right)
\end{aligned}
$$

are faithful $*$-representations. Let $\pi: \mathscr{K}(\mathscr{E}) \rtimes G \rightarrow \mathscr{K}(\mathscr{E} \rtimes G)$ be the $*$-isomorphism given by part (a). Let $q: \mathscr{K}(\mathscr{E}) \rtimes G \rightarrow \mathscr{K}(\mathscr{E}) \rtimes_{r} G$ and $q^{\prime}: \mathscr{K}(\mathscr{E} \rtimes G) \rightarrow$ $\mathscr{K}\left(\mathscr{E} \rtimes_{r} G\right)$ be the natural surjections. Then one can check that $\varphi \circ q=\wedge \circ q^{\prime} \circ \pi$. Clearly this shows that the ranges of φ and \wedge coincide. Hence $\mathscr{K}(\mathscr{E}) \rtimes_{r} G$ and $\mathscr{K}\left(\mathscr{E} \times_{r} G\right)$ are $*$-isomorphic.

REMARK 2.2. Consider a pair $A \subset B$ of C^{*}-algebras with a common identity and a faithful conditional expectation $E: B \rightarrow A$. Moreover, assume that B is equipped with the action α of a discrete group G such that α commutes with E. Then, we show that there are induced conditional expectations from $B \rtimes G$ (respectively $B \rtimes_{r} G$) onto $A \rtimes G$ (respectively $A \rtimes_{r} G$). We prove that E is of finite index type in the sense of [14] if and only if the induced conditional expectations on the crossed products are so. Recall that if A is a C^{*}-subalgebra of a C^{*}-algebra B, then a positive norm one projection $E: B \rightarrow A$ is said to be a conditional expectation from B onto A if $E(a x b)=a E(x) b$ for $a, b \in A$ and $x \in B$. We say E is faithful if $x=0$ whenever $E\left(x^{*} x\right)=0$ (cf. [14]).

DEFINITION 2.3. ([15]). A conditional expectation $E: B \rightarrow A$ is said to have finite index if there exists $u_{1}, \ldots, u_{n} \in B$ such that $x=\sum_{i=1}^{n} u_{i} E\left(u_{i}^{*} x\right), x \in B$. The set $u_{1}, u_{2}, \ldots, u_{n}$ is called a basis for E and the index of E is defined to be ind $E=\sum_{i=1}^{n} u_{i} u_{i}^{*}$.

REMARK 2.4. It follows directly from the above definition and the A-linearity of E that ind E is independent of basis. By [15, Proposition 1.2 .8], ind E belongs to the center of B. In particular, when B is simple ind E is a scalar and belongs to the familiar set $\left\{4 \cos ^{2} \pi / n: n \geq 3\right\} \cup[4, \infty)$ discovered by Jones for the index of subfactors of type II_{1} factors (cf. [7]).

REMARK 2.5. Given a faithful conditional expectation $E: B \rightarrow A$ we denote by \mathscr{E}_{E} the completion of B with respect to the norm $\|x\|_{E}^{2}=\left\|E\left(x^{*} x\right)\right\|$, that is, the norm induced by the inner product $\langle x, y\rangle=E\left(x^{*} y\right)$. Note that $\|\cdot\|_{E}$ is a norm because E is assumed to be faithful. Since E is A-linear and of norm one it extends to a projection $e_{A}: \mathscr{E}_{E} \rightarrow \mathscr{E}_{E}$. Also regard B as a subalgebra of $\mathscr{L}\left(\mathscr{E}_{E}\right)$ through left multiplication. The C^{*}-subalgebra of $\mathscr{L}\left(\mathscr{E}_{E}\right)$ generated by $B e_{A} B$ is just $\mathscr{K}\left(\mathscr{E}_{E}\right)$. In fact, we have that $\left(x e_{A} y\right)\left(x^{\prime} e_{A} y^{\prime}\right)=x E\left(y x^{\prime}\right) e_{A} y^{\prime}$ and $x e_{A} y$ is just $\theta_{x, y^{*}}$.

REMARK 2.6. Let $\alpha: G \rightarrow \operatorname{Aut}(B)$ be an action of a discrete group G and E : $B \rightarrow A$ a conditional expectation satisfying $E\left(\alpha_{t}(x)\right)=\alpha_{t}(E(x))$. This implies that A is G-invariant. By [10, Proposition 7.7.9] $A \rtimes_{r} G$ is $*$-isomorphic to a subalgebra of $B \rtimes_{r} G$. In our situation, $A \rtimes G$ may also be regarded as a C^{*}-subalgebra of $B \rtimes G$. To see this, we only need to show that every covariant representation of the pair (G, A) on a Hilbert space H extends to a covariant pair $(\hat{\pi}, \hat{u})$ of the pair (B, G) on a space K containing H. Let K be the completion of the algebraic tensor product $B \odot H$ with respect to the inner product $\langle b \odot \xi, c \odot \eta\rangle=\left\langle\xi, \pi\left(E\left(b^{*} c\right)\right) \eta\right\rangle$ after the vectors of norm zero are factored out. Let $\hat{\pi}(b)(c \otimes \xi)=b c \otimes \xi$ and $\hat{u}_{t}(d \otimes \eta)=\alpha_{t}(d) \otimes u_{t} \eta$. It is easy to check that $(\hat{\pi}, \hat{u})$ is a covariant pair. Hence, the crossed product $A \rtimes G$ is viewed as a subalgebra of $B \rtimes G$. Now one may use the proof of [12, Lemma 1.1] with appropriate modifications to prove that the obvious projection of $l^{1}(G, B)$ onto $l^{1}(G, A)$ defined by $f \rightarrow E \circ f$ extends to a conditional expectation \tilde{E} (respectively \tilde{E}_{r}) from $B \rtimes G$ (respectively $B \rtimes_{r} G$) onto $A \rtimes G$ (respectively $A \rtimes_{r} G$). Furthermore, since the conditional expectations $E_{\circ}: B \rtimes_{r} G \rightarrow B$ and $E_{\circ}^{\prime}: A \rtimes_{r} G \rightarrow A$ given by the evaluation at the identity of G are faithful (cf. [2]) and $E_{0}^{\prime} \tilde{E}_{r}=E \circ E_{\circ}$, it follows that \tilde{E}_{r} is faithful if and only if E is so.

Proposition 2.7. Let $E: B \rightarrow A$ be a faithful conditional expectation. Let \tilde{E} and \tilde{E}_{r} be the conditional expectations induced by E on $B \rtimes G$ and $B \rtimes_{r} G$ respectively (see Remark 2.5). Then $\mathscr{E}_{E} \rtimes_{r} G$ and $\mathscr{E}_{\tilde{E}_{r}}$ are isomorphic as Hilbert modules over $A \rtimes_{r} G$. If \tilde{E} is faithful, then $\mathscr{E}_{E} \rtimes_{r} G$ and $\mathscr{E}_{\tilde{E}}$ are isomorphic as Hilbert modules over $A \rtimes G$.

Proof. As pointed out in Remark 2.6, if E is faithful, then \tilde{E}_{r} is also faithful. Then $\mathscr{E}_{\tilde{E}_{r}}$ is the completion of $C_{c}(G, B)$ with respect to the norm induced by \tilde{E}_{r}. Since B is dense in \mathscr{E}_{E} the action of G extends to \mathscr{E}_{E} and $\mathscr{E}_{E} \rtimes_{r} G$ can be formed. Moreover,
$C_{c}(G, B)$ is also dense in $\mathscr{E} \rtimes_{r} G$. Hence we only need to show that the $A \rtimes_{r} G$-valued inner products on $\mathscr{E}_{\tilde{E}}$ and $\mathscr{E}_{E} \rtimes_{r} G$ coincide on $C_{c}(G, B)$. Given $x, y \in C_{c}(G, B)$ and $t \in G$ we have:

$$
\begin{aligned}
\langle x, y\rangle_{\delta_{E} \rtimes_{r} G}(t) & =\sum_{s \in G} \alpha_{s^{-1}}(\langle x(s), y(s t)\rangle)=\sum_{s \in G} E\left(\alpha_{s^{-1}}\left(x(s)^{*} y(s t)\right)\right) \\
& =E\left(\sum_{s \in G} \alpha_{s^{-1}}\left(x(s)^{*}\right) \alpha_{s^{-1}}(y(s t))\right)=E\left(\sum_{s \in G} x^{*}\left(s^{-1}\right) \alpha_{s^{-1}}(y(s t))\right) \\
& =\tilde{E}_{r}\left(x^{*} * y\right)(t)
\end{aligned}
$$

But $\tilde{E}_{r}\left(x^{*} * y\right)$ is the inner product of x with y when they are seen as elements of $\mathscr{E}_{\tilde{E}_{r}}$. If \tilde{E} is faithful, then the above argument can be repeated to get the desired result.

THEOREM 2.8. Let G be a discrete group acting on $a C^{*}$-algebra B and let E : $B \rightarrow A$ be a conditional expectation onto a C^{*}-subalgebra A of B commuting with the action of G. Then the following are equivalent.
(a) E has finite index,
(b) \tilde{E} has finite index,
(c) \tilde{E}_{r} has finite index.

Proof. Suppose (a) holds. Let $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be a basis for E. For every $x \in B$ and $t \in G$ we denote by $\lambda_{t, x}$ the element of $l^{1}(G, B)$ which is x at t and zero elsewhere. Then denoting the identity of G by e we have

$$
\begin{aligned}
\sum \lambda_{e, b_{i}} \tilde{E}\left(\lambda_{e, b_{i}^{*}} * \lambda_{t, x}\right) & =\sum_{i=1}^{n} \lambda_{e, b_{i}} \tilde{E}\left(\lambda_{t, b_{i}^{*} x}\right)=\sum_{i=1}^{n} \lambda_{e, b_{i}} \lambda_{t, E\left(b_{i}^{*} x\right)} \\
& =\lambda_{t, \sum_{i=1}^{n} b_{i} E\left(b_{i}^{*} x\right)}=\lambda_{t, x}
\end{aligned}
$$

Hence the set $\left\{\lambda_{e, b_{i}}: i=1,2, \ldots, n\right\}$ is a basis for \tilde{E}. Moreover,

$$
\text { ind } \tilde{E}=\sum_{i=1}^{n} \lambda_{e, b_{i}} * \lambda_{e, b_{i}^{*}}=\lambda_{e, \sum_{i=1}^{n} b_{i} b_{i}^{*}}=\lambda_{e, \text { ind } E}
$$

Next we show that (b) implies (a). First note that if \tilde{E} has finite index, then by [15, Proposition 2.1.5], it is faithful. Hence by Proposition $2.7, \mathscr{E}_{\tilde{E}}$ is isomorphic to $\mathscr{E}_{E} \rtimes G$. By Theorem 2.1, $\mathscr{K}\left(\mathscr{E}_{\tilde{E}}\right)$ is $*_{\text {-isomorphic to }}^{\mathscr{K}(\mathscr{E}) \times G \text {. If } \tilde{E} \text { has finite index, then }}$ $\mathscr{K}\left(\mathscr{E}_{\tilde{E}}\right)$ has an identity ([15, Proposition 2.1.5]). Since G is discrete, it follows that $\mathscr{K}(\mathscr{E})$ has an identity. Then, by Lemma 1.2 , there exist elements $u_{1}, \ldots u_{n} \in \mathscr{E}$ such that $1_{\mathscr{E}}=\sum_{i=1}^{n} \theta_{u_{i}, u_{i}}$. By [15, Proposition 2.1.5] there exists a constant $d>0$ such
that $\left\|\tilde{E}\left(x^{*} x\right)\right\| \geq d\left\|x^{*} x\right\|$. Given $b \in B$, we have

$$
\begin{aligned}
\left\|\tilde{E}\left(\lambda_{e, b}^{*} * \lambda_{e, b}\right)\right\| & \geq d\left\|\lambda_{e, b}^{*} * \lambda_{e, b}\right\|, \\
\left\|E\left(\lambda_{e, b^{*} b}\right)\right\| & \geq d\left\|\lambda_{e, b^{*} b}\right\|, \\
\left\|\lambda_{e, E\left(b^{*} b\right)}\right\| & \geq d\left\|\lambda_{e, b^{*} b}\right\|, \\
\left\|E\left(b^{*} b\right)\right\| & \geq d\left\|b^{*} b\right\| .
\end{aligned}
$$

This shows that $\mathscr{E}=B$ and $u_{1}, \ldots, u_{n} \in B$. Clearly, the set $\left\{u_{1}, \ldots, u_{n}\right\}$ is a basis for E. The equivalence of (a) and (c) is similar.

3. Conditional expectations corresponding to subgroups

Let G be a discrete group and let $\alpha: G \rightarrow \operatorname{Aut}(A)$ be a continuous action of G on a C^{*}-algebra A. If H is a subgroup of G, then we define conditional expectations E_{H} (respectively E_{H}^{r}) from $A \rtimes G$ (respectively $A \rtimes_{r} G$) onto $A \rtimes H$ (respectively $\left.A \rtimes_{r} H\right)$. We show that E_{H} and E_{H}^{r} are of finite index type if and only if $[G: H]<\infty$. Here again the ideas in [12, Proposition 1.2] are used to show that the projection of $l^{1}(G, A)$ onto $l^{1}(H, A)$ given by restriction extends to a norm one projection of $A \rtimes G$ onto $A \rtimes H$. We present a proof of this fact for completeness.

Proposition 3.1. Let G be a discrete group acting on a C^{*}-algebra A and let H be a subgroup of G. Then, the projection of $l^{1}(G, A)$ onto $l^{1}(H, A)$ extends to a conditional expectation of $A \rtimes G$ onto $A \rtimes H$.

Proof. First we show that $A \rtimes H$ is a C^{*}-subalgebra of $A \rtimes G$. Clearly if $f \in l^{1}(H, A)$, then $\|f\|_{A \rtimes G} \leq\|f\|_{A \times H}$. We need to show the reverse inequality. Let ϕ be a state of $A \rtimes H$. Then by [10, Proposition 7.6.10], there exits a positive definite function $\Phi: H \rightarrow A^{*}$ such that for each $f \in l^{1}(H, A)$ we have $\phi(f)=$ $\sum_{t \in H} \Phi(t)(f(t))$, and $\sum_{t \in H} \Phi(t)\left(f^{*} * f\right)(t) \geq 0$.

Extend Φ to G by letting it to be zero off H. Let $\left\{x_{i}\right\}$ be a complete set of representatives of the right cosets of H. For $f \in l^{1}(G, A)$ we have

$$
\begin{aligned}
\sum_{t \in G} \Phi(t)\left(f^{*} * f(t)\right) & =\sum_{t \in H} \Phi(t)\left(\sum_{s \in G} \alpha_{s}\left(f\left(s^{-1}\right)^{*} f\left(s^{-1} t\right)\right)\right) \\
& =\sum_{s \in H} \Phi(t)\left(\sum_{i} \sum_{t \in H} \alpha_{s}\left(f\left(x_{i}^{-1} s^{-1}\right)^{*} f\left(x_{i}^{-1} s t\right)\right)\right) \\
& =\sum_{i} \sum_{s \in H} \sum_{t \in H} \Phi(t)\left(\alpha_{s}\left(f\left(x_{i}^{-1} s^{-1}\right)^{*} f\left(x_{i}^{-1} s^{-1} t\right)\right)\right) \\
& =\sum_{i} \sum_{t \in H} \Phi(t)\left(f_{x_{i}}^{*} * f_{x_{i}}(t)\right) \geq 0
\end{aligned}
$$

where $f_{x_{i}}(s)=f\left(x_{i}^{-1} s\right)$ and is restricted to H. The inner sums in the last expression are non-negative as Φ is positive definite on H. But this shows that $\Phi: G \rightarrow A^{*}$ is also positive definite. Now by [10, Proposition 7.6.10], Φ defines a positive linear functional on $A \rtimes G$. Hence, every positive linear functional of $A \rtimes H$ extends to a positive linear functional on $A \rtimes G$. It follows that $\|f\|_{A \times H} \leq\|f\|_{A \times G}$ for each $f \in l^{1}(H, A)$. Therefore $A \rtimes G$ contains $A \rtimes H$ as a C^{*}-subalgebra. Let $f \in l^{1}(G, A)$ be self-adjoint. Then $\left.f\right|_{H}$ is a self-adjoint element of $A \rtimes H$. Hence there exists a state ϕ of $A \rtimes H$ such that $\left\|\left.f\right|_{H}\right\|_{A \times H}=\left|\phi\left(\left.f\right|_{H}\right)\right|$. Then $\left\|\left.f\right|_{H}\right\|_{A \times H}=\left|\phi\left(\left.f\right|_{H}\right)\right|$, and $|\tilde{\phi}(f)| \leq\|f\|_{A \times G}$ where $\tilde{\phi}$ is the extension of ϕ to $A \rtimes G$. This shows that the mapping of $l^{1}(G, A)$ onto $l^{1}(H, A)$ given by restriction extends to a norm one projection of $A \rtimes G$ onto $A \rtimes H$. Finally it is straightforward to verify that this projection is actually a conditional expectation.

Remark 3.2. The projection of $l^{1}(G, A)$ onto $l^{1}(H, A)$ also extends to a conditional expectation of $A \rtimes_{r} G$ onto $A \rtimes_{r} H$. We refer to [2] for a proof.

Let G, H, and A be as in the statement of Proposition 3.1. Then

$$
\begin{aligned}
E_{H}: A \rtimes G & \rightarrow A \rtimes H, \quad \text { and } \\
E_{H}^{r}: A \rtimes_{r} G & \rightarrow A \rtimes_{r} H
\end{aligned}
$$

denote the conditional expectations given by Proposition 3.1 and Remark 3.2. In general, E_{H} is not faithful. For example, if H is an amenable subgroup of a nonamenable group G, then E_{H} is not faithful. However, E_{H}^{r} is always faithful. This is because $E_{1}: A \rtimes_{r} G \rightarrow A$ and $E_{2}: A \rtimes_{r} H \rightarrow A$ evaluations at the identity of G are faithful (cf. [13]), and $E_{2} \circ E_{H}^{r}=E_{1}$.

Notation 3.3. If $t \in G$ and $a \in A$, then $\lambda_{t, a}$ is the element of $l^{1}(G, A)$ which is a at t and zero elsewhere. Let \mathscr{E}_{H} (respectively \mathscr{E}_{H}^{r}) be the Hilbert $A \rtimes H$-module (respectively the Hilbert $A \rtimes_{r} H$-module) associated with E_{H} (respectively E_{H}^{r}) as in Remark 2.5 .

Theorem 3.4. Let G be a discrete group acting on a unital C*-algebra A and let H be a subgroup of G. Then, the following are equivalent :
(i) $[G: H]<\infty$,
(ii) E_{H} has finite index,
(iii) E_{H}^{r} has finite index.

Proof. (i) implies (ii): If $G=g_{1} H \cup g_{2} H \cup \cdots \cup g_{n} H$, then it is easy to show that $\left\{\lambda_{g_{i}, I}: i=1,2, \ldots, n\right\}$ with I the identity of A is a basis for E_{H} and that ind $E_{H}=\sum_{i} \lambda_{g_{i},}^{*} \lambda_{g_{i}, I}=[G: H] \lambda_{e, I}$.
(ii) implies (i): If ind E_{H} were finite, then by [15, Proposition 1.7.2], $\mathscr{K}\left(\mathscr{E}_{H}\right)$ contains the identity operator. In the notation of $[10,6], \mathscr{E}_{H}$ is just the rigged space Z on [6, p. 92]. Hence by [6, Theorem 2.4], \mathscr{E}_{H} is isomorphic to $(A \rtimes H) \otimes l^{2}(G / H)$ as Hilbert $A \rtimes H$-modules. Hence $\mathscr{K}\left(\mathscr{E}_{H}\right)$ is $*$-isomorphic to $(A \rtimes H) \otimes K\left(l^{2}(G / H)\right.$. If $K\left(\mathscr{E}_{H}\right)$ were unital, then it follows that $l^{2}(G / H)$ must be finite dimensional. Hence G / H is a finite set.
(iii) implies (i): In this case the proofs of [6, Lemma 2.3] and [6, Theorem 2.4] can be used to prove that \mathscr{E}_{H}^{r} is isomorphic to $\left(A \rtimes_{r} H\right) \otimes l^{2}(G / H)$ as Hilbert modules over $A \rtimes_{r} H$. Now the argument given in the non-reduced case can be repeated. This completes the proof of the theorem.

Proposition 3.5. Let A, B and C be C^{*}-algebras with the same unit. Let E : $B \rightarrow A$ and $F: C \rightarrow B$ be faithful conditional expectations. Then $E \circ F: C \rightarrow A$ has finite index if and only if E and F have finite indices.

PROOF. If $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$, and $\left\{v_{1}, \ldots, v_{m}\right\}$ are respectively bases for F and E, then the set $\left\{u_{i} v_{j}: i=1, \ldots, n ; j=1, \ldots, m\right\}$ is a bases for $E \circ F$. Conversely, suppose that $E \circ F$ has finite index. Then, $E \circ F$ is faithful and by [15, Proposition 1.7.2], E has finite index. It remains to show that F has finite index. Let $\pi: B \rightarrow$ $\mathscr{L}\left(\mathscr{E}_{E}\right)$ be the $*$-representation given by left multiplication. Form the tensor product $\mathscr{E}_{F} \otimes_{B} \mathscr{E}_{E}$. Then $\mathscr{E}_{F} \otimes_{B} \mathscr{E}_{E}$, and $\mathscr{E}_{E \circ F}$ are Hilbert A-modules. We show that the A-valued inner products on the dense subset $C \otimes_{B} B(=C)$ of $\mathscr{E}_{F} \otimes \mathscr{E}_{F}$ and the dense subset C of $\mathscr{E}_{E \circ F}$ coincide. Let $b_{1}, b_{2} \in B$ and $c_{1}, c_{2} \in C$. Then,

$$
\begin{aligned}
\left\langle c_{1} \otimes b_{1}, c_{2} \otimes b_{2}\right\rangle & =\left\langle b_{1}, \pi\left(\left\langle c_{1}, c_{2}\right\rangle\right) b_{2}\right\rangle=\left\langle b_{1}, F\left(c_{1}^{*}, c_{2}\right) b_{2}\right\rangle \\
& =E\left(b_{1}^{*} F\left(c_{1}^{*}, c_{2}\right) b_{2}\right)=E\left(F\left(b_{1}^{*} c_{1}^{*} c_{2} b_{2}\right)\right) \text { as } b_{1}^{*} b_{2} \in B \\
& =E \circ F\left(\left(c_{1}, b_{1}\right)^{*}\left(c_{2} b_{2}\right)\right)=\left\langle c_{1} b_{1}, c_{2} b_{2}\right\rangle
\end{aligned}
$$

The above computation shows that the mapping $c \otimes_{B} b \rightarrow c b$ from $C \otimes_{B} B$ to C extends to an isomorphism of $\mathscr{E}_{F} \otimes_{B} \mathscr{E}_{E}$ onto $\mathscr{E}_{E \circ F}$ as Hilbert A-modules. If $E \circ F$ has finite index, then $\mathscr{E}_{E \circ F}$ and hence $\mathscr{E}_{F} \otimes_{B} \mathscr{E}_{E}$ is a finitely-generated projective A-module (cf. [15, Proposition 1.3.4]). Hence we are in the situation of Proposition 1.5. Since π is faithful (cf. 2.5) there exist $u_{1}, u_{2}, \ldots, u_{n} \in \mathscr{E}_{F}$ such that $1_{\mathscr{E}_{F}}=\sum_{i=1}^{n} \theta_{u_{i}, u_{i}}$. As $E \circ F$ has finite index, C is closed in $\|\cdot\|_{E \circ F}$ and clearly $\|x\|_{E \circ F} \leq\|x\|_{F}, x \in C$. Hence C is closed in $\|.\|_{F}$ and $\mathscr{E}_{F}=C$. This means that $u_{1}, \ldots, u_{n} \in C$ and hence F has finite index with basis $\left\{u_{1}, \ldots, u_{n}\right\}$.

Theorem 3.6. Let H be a subgroup of the discrete group G and let

$$
\begin{aligned}
& \tilde{E}: B \rtimes G \rightarrow A \rtimes G \\
& E_{H}: A \rtimes G \rightarrow A \rtimes H
\end{aligned}
$$

be as defined in Remark 2.6 and Remark 3.2. Then $E_{H} \circ \tilde{E}$ has finite index if and only if E has finite index, and $[G: H]<\infty$. Moreover, ind $E_{H} \circ \tilde{E}=[G: H]$ ind E. The same results hold in the reduced case.

Proof. If E has finite index, then by Theorem 2.8, \tilde{E} has finite index and ind $\tilde{E}=$ ind E. If $[G: H]$ is also finite, then by Theorem 3.4, E_{H} has finite index with ind $E_{H}=[G: H] \lambda_{e, I}$, which is an element of the center of $B \times G$. Hence, by $[15$, 1.7.1] $E_{H} \circ \tilde{E}$ has finite index and we have:

$$
\text { ind } E_{H} \circ \tilde{E}=\left(\text { ind } E_{H}\right)(\text { ind } \tilde{E})=[G: H](\text { ind } E) .
$$

Conversely, suppose that $E_{H} \circ \tilde{E}$ has finite index. Then by Proposition 3.6, E_{H} and \tilde{E} have finite index. Hence, Theorem 3.4 and Theorem 2.8 imply that $[G: H]<\infty$ and E has finite index.

Acknowledgement

I am most grateful to George Skandalis for his helpful suggestions and discussions. I also thank Hong-Sheng Yin for many useful conversations. Part of this work was done while I was visiting the University of Waterloo. I wish to thank Ken Davidson for his warm hospitality.

References

[1] B. Blackadar, 'Subalgebras of C^{*}-algebras', J. Operator Theory 14 (1985), 374-350.
[2] H. Choda, 'A correspondence between subgroups and subalgebras in a C^{*}-crossed product', Proc. Sympos. Pure Math. 38 Part I (Amer. Math. Soc., Providence, 1982), 375-377.
[3] M. D. Choi, 'A simple C^{*}-algebra generated by two finite order unitaries', Canad. J. Math. 31 (1979), 867-880.
[4] A. Connes, 'An analogue of the Thom isomorphism for crossed products of a C^{*} algebra by an action of R^{\prime}, Adv. Math. 39 (1981), 31-55.
[5] P. Green, 'The local structure of twisted covariance algebras', Acta Math. 140 (1978), 191-250.
[6] -, 'The structure of imprimitivity algebras', J. Funct. Anal. 36 (1980), 88-104.
[7] V. Jones, 'Index for subfactors', Invent. Math. 72 (1983), 1-25.
[8] G. G. Kasparov, 'Hilbert C^{*}-modules: theorems of Stinespring and Voiculescu', J. Operator Theory 4 (1980), 133-150.
[9] -_, 'Equivariant KK-theory and the Novikov Conjecture', Invent. Math. 41 (1988), 141-201.
[10] G. Pedersen, C*-algebras and their automorphism groups (Academic Press, London, 1979).
[11] M. Pimsner and S. Popa, 'Entropy and index for subfactors', Ann. Sci. Écol. Norm. Sup. 19 (1986), 57-106.
[12] M. Rieffel, 'Induced representations of C^{*}-algebras', Adv. Math. 13 (1974), 176-257.
[13] J. Tomiyama, Invitation to C^{*}-algebras and topological dynamics (World Scientific, Singapore, 1987).
[14] H. Umegaki, 'Conditional expectation on operator algebras', Tôhoku Math. J. 6 (1954), 358-362.
[15] Y. Watatani, Indexfor C^{*}-subalgebras, Mem. Amer. Math. Soc. 424 (Amer. Math. Soc., Providence, 1990).

Department of Mathematics and Statistics
University of Saskatchewan
106 Wiggins Road
Saskatoon, SK S7N 5E6
Canada
e-mail: khoshkam@math.usask.ca

[^0]: (C) 1996 Australian Mathematical Society $0263-6115 / 96 \$$ A2.00 +0.00

