
The Formation of Binary Stars
fA U Symposium, Vol. 200, 2001
H. Zinnecker and R. D. Mathieu, eds.

Impulsively Triggered Binary Star Formation

Anthony P. Whitworth

Department of Physics fj Astronomy, Cardiff University, Wales, UK

Abstract. We discuss the important roles which impulsive processes
seem likely to play in the formation of binary star systems and higher
multiples. On the basis of numerical simulations and theoretical consid-
erations, we show (i) that when a dense layer is produced by a cloud/cloud
(or clump/clump) collision, or a dense shell is swept up by an expand-
ing nebula (HII Region, Stellar-Wind Bubble or Supernova Remnant),
fragmentation leads to the formation of small-N subclusters of massive
protostellar discs, including many wide binaries; (ii) that impulsive inter-
actions between these protostellar discs are frequent and can lead to an
hierarchical cascade, spawning new protostellar discs in closer binary sys-
tems, plus some escapers. This cascade is particularly effective if there is
continuing infall replenishing the protostellar discs. The binaries formed
have a wide range of separations and orbital eccentricities, and the Mass
Function of the new protostars has an exponent ~ - 1 .

1. Introduction

The interstellar medium is a chaotic and violent environment. Nowhere is this
more true than in regions of star formation, where the non-linear interplay of self-
gravity and magneto-hydrodynamics - moderated by complex thermal, chemi-
cal and radiative effects - converts diffuse gas clouds (n ~ 103 cm-3 ) into stars

(n ~ 1024 cm-3 ) . It has long been realized (Opik 1953) that dynamical processes
are likely to play an important role in triggering star formation. Cloud/cloud
collisions produce dense shock-compressed layers which, if they can cool radia-
tively fast enough, fragment into gravitationally unstable cores. Similarly, ex-
panding nebulae (HII Regions, Stellar-Wind Bubbles and Supernova Remnants)
sweep up dense shock-compressed shells which then fragment in the same man-
ner (Whitworth et al. 1994a). On a galactic scale, star formation triggered by
expanding nebulae is presumed to be the basis of sequentially self-propagating
star formation and flocculence; and star formation triggered by cloud/cloud col-
lisions is presumed to make a major contribution to the enhanced star formation
rates seen in interacting galaxies.

In Section 2, I shall describe the phenomenology of layer fragmentation,
and explain (a) how it produces small-N subclusters of massive and extended
protostellar discs, and (b) why it is a very general mechanism (i.e. relevant to a
wide range of initial conditions). In Section 3, I shall discuss how these small-N
subclusters evolve, and in particular the consequences of collisions between pro-
tostellar discs in the dense subcluster environment. It turns out that collisions
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between massive protostellar discs can be quite prolific in creating new smaller
protostellar discs, and delivering them into closer orbits with a wide range of
eccentricities. Moreover, the process can repeat itself hierarchically, populating
ever closer orbits - at least down to a few tens of AU, i.e, the peak in the
distribution of binary separations. This mechanism will be particularly effec-
tive if, as seems likely, the discs are replenished by continuing infall. We posit
that the wide range of observed binary properties (mass ratios, separations and
eccentricities) and the high proportion of triples, quadruples and even higher
multiples amongst pre-Main-Sequence stars point unequivocally to a chaotic
origin in an environment which bears no resemblance to the well-ordered (and
too predictable) world of the Standard Model, i.e. inside-out collapse from a
singular isothermal sphere (Shu, Adams & Lizano 1987).

2. Cloud/Cloud Collisions and the Formation of Multiple Protostel-
lar Discs

We have simulated cloud/cloud collisions using SPH (Chapman et al. 1992; Pon-
gracic et al. 1992; Turner et al. 1995; Whitworth et al. 1995; Bhattal et al. 1998).
The clouds are modelled as truncated self-gravitating isothermal spheres, con-
tained by a hot, low-density interclump medium. Individually they are stable.
However, if they collide at quite modest Mach No., M ~ 10, and if radiative
cooling quickly reduces the post-shock sound-speed below the pre-shock sound-
speed, then the resulting shock-compressed layer fragments while it is still con-
fined by the ram-pressure of the inflowing gas (i.e. when only the front parts of
the colliding clouds have been shocked, and the back parts have yet to enter the
layer). We are here using the term sound-speed to mean an effective sound-speed
which represents both thermal pressure and magneto-hydrodynamic turbulent
support.

It has been suggested (comment from RI Klein at meeting), on the basis
of very accurate simulations using AMR, that cloud/cloud collisions at finite
impact parameter and low Mach No. will lead to shredding of the clouds, rather
than the formation and subsequent fragmentation of a layer. However, Klein's
simulations represent interstellar clouds as a smooth inviscid fluid, whereas real
interstellar clouds have a wealth of internal structure - sometimes described as
fractal - and hence a very high effective viscosity (Whitworth 2001, in prepa-
ration). Therefore the Klein simulations are not relevant to the situation with
which we are concerned here, and the layer fragmentation which we model is
physically realistic.

The fragmentation of a shock-compressed layer produced by two colliding
clouds has a well defined phenomenology. Moreover, this phenomenology is
generic, in the sense that it applies also to clump/clump collisions (i.e. collisions
between clumps within a single cloud), to collisions between transient sheet-
like structures of the sort that arise in models of interstellar turbulence (e.g.
Vazquez-Semadeni et al. 1996), and to shells swept up by expanding nebulae
(Whitworth et al. 1994b). In particular we note the following general features.

(i) The layer usually has angular momentum, and is therefore usually tum-
bling end-over-end. For example, a collision between two clouds of mass M
at relative velocity v and finite impact parameter b has angular momentum

https://doi.org/10.1017/S0074180900225023 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900225023


Impulsively Triggered Binary Star Formation 35

L r-v M b /\ v, so the resulting layer tumbles about L, i.e, about an axis in the
plane of the layer and perpendicular to the approach velocity.

(ii) The layer fragments due to motions in the plane of the layer, first into
a network of filaments with mean separation AJ r-v as(M/Gps)1/2 (where as and
Ps are the effective sound-speed and density in the layer), and then into cores
distributed along the filaments at intervals r-v AJ. This evolutionary pattern is a
generic property of gravitational fragmentation.

(iii) Because the layer is confined by ram-pressure, the separation between
the cores AJ is markedly greater than the thickness of the layer ~z, AJ r-v

Ml/2~z, so the cores are quite massive and quite well separated, and they
evolve independently for some time. We identify an individual core as the raw
material from which a subcluster will form.

(iv) The cores accrete anisotropically, i.e, mainly along the filaments out
of which they have just condensed; and the filaments are tumbling, because
they are part of a layer which is tumbling. Consequently the material accreting
onto a core has steadily increasing specific angular momentum, so the core spins
up, becomes rotationally unstable, and breaks up into a small-N subcluster of
rotationally supported protostellar discs. The main instability leading to the
fragmentation of an accreting core is one in which a rapidly spinning primary
protostellar disc develops spiral arms; the spiral arms then sweep up matter
until they become self-gravitating and detatch from the primary to produce a
secondary. Core break-up is also helped by the fact that the material flowing in
along the filaments tends to be lumpy already before it arrives.

The idea that tumbling filaments play a key role in binary formation was
first suggested by Zinnecker (1989) and subsequently explored using SPH sim-
ulations by Bonnell et al. (1991) and by Nelson & Papaloizou (1993). The
phenomenology of cloud/cloud collisions explains how such tumbling filaments
might be realized rather frequently in nature.

3. Impulsive Interactions between Protostellar Discs

The internal evolution of an isolated protostellar disc has been studied in great
detail (e.g. Laughlin, & Rozyczka 1996; Nelson et al. 1998; Adams, Ruden,
& Shu 1989). Ultimately the 2nd Law of Thermodynamics inexorably drives
a redistribution of angular momentum, and eventually most of the mass loses
angular momentum and collects in the centre to form a star, while most of
the angular momentum is carried by a low-mass residual disc (Lynden-Bell &
Pringle 1974). This disc may then spawn a planetary system. In massive discs
the redistribution of angular momentum is probably due to non-axisymmetric
gravitational instability and the resulting gravitational torques. In low-mass
(Toomre-stable) discs, redistribution of angular momentum may be due to the
Balbus-Hawley magneto-hydrodynamic instability (Balbus & Hawley 1991).

However, in the crowded environment of a dense small-N subcluster of pro-
tostellar discs, this relatively secular internal evolution has to compete with
impulsive perturbations, i.c, collisions and tidal interactions with other proto-
stellar discs and with naked stars. Such interactions can greatly accelerate the
dissipation of a protostellar disc, both by perturbing the disc and thereby speed-
ing up accretion onto the central star, and by breaking the disc up into smaller
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Figure 1. A coplanar collision between two discs with antiparallel
spins. The filament swept up between the two discs fragments into
numerous condensations, many of which survive as companions to the
original protostars; one is ejected. The contours represent constant
column-density at 5 x 1023 H2 cm-2 , 1024 H2 cm-2 , 2 x 1024 H2 cm-2 ,

etc.

protostellar discs. We explore the possible outcomes of such interactions in this
section.

We have used SPH to simulate collisions between two protostellar discs, and
between a single protostellar disc and a naked star (Boffin et al. 1998; Watkins
et al. 1998a,b). The protostellar discs in our simulations consist initially of a
0.5 M 0 central star surrounded by an extended (1000 AU) massive (0.5 M 0 ) disc.
The naked stars have a mass of 1 M0 . Our results are easily scaled to different
masses. The individual discs are stable, in the sense that, if evolved in isolation
for several rotation periods they do not develop gravitational instabilities, and
the changes in their surface-density profiles (~ ex R-1) are slow. Therefore the
fragmentation which occurs when they interact must be due to their interacting.

We have simulated interactions for a range of periastra and relative orien-
tations of the spin and orbital angular momenta. In all cases the result is to
speed up the dissipation of the discs, (i) by exciting tidal density waves which
transport angular momentum and thereby accelerate accretion onto the central
star; (ii) by unbinding the outer disc; and (iii) by causing large parts of the disc
to condense into new protostars. Some of these new protostars get cannibalized
by other more massive protostars, some remain bound to the original protostars,
some of them become bound to one another, and some are ejected.

In approximately coplanar encounters (i.e. with the spins and orbital angu-
lar momenta approximately parallel or antiparallel) the main mechanism trig-
gering the formation of additional protostars is shock compression. The disc ma-
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Figure 2. An hierarchical quadruple system formed by the collision
of two massive protostellar discs. The collision was colpanar, and the
spins were aligned, but this is not critical. The contours represent
constant column-density at 5 x 1023 H2 cm-2 , l024 H2 cm-2 , 2 x 1024

H2 cm-2 , etc.
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terial is shunted up into a dense filament which then fragments gravitationally
to produce new protostars (see Figures 2 and 3). We note that protostellar discs
of the sort we are modelling are quite plump, and so approximately coplanar
collisions do not require a very precise alignment. Some of the fragments formed
are short-lived because they get swallowed by the original protostars, some are
captured into binary and higher multiple systems, and a few are ejected. These
ejecta might be the origin of the diaspora of Weak-Line T Tauri Stars detected
around nearby young associations, and of the free-floating brown dwarves in the
Pleiades (Bouvier et al. 1998).

In non-coplanar encounters, the main mechanism triggering the formation of
additional protostars is mutual tidal perturbation of the discs. This excites high
amplitude spiral arms which sweep up material until they become sufficiently
massive to be self-gravitating, at which stage they detach and condense out.

In our simulations, the orbits of the binary systems created have semi-major
axes up to ten times smaller than the periastron of the initial encounter. Their
eccentricities are distributed fairly uniformly between 0 and 0.9, in accordance
with observations of young binary systems - excepting those very close systems
which have been able to circularize by tidal interaction. The Mass Function
of the newly-formed protostars has exponent r- - 1, extending down into the
Brown Dwarf domain. This is compatible with the exponent inferred observa-
tionally for low-mass stars and Brown Dwarves in clusters (e.g. Luhman et al.
2000). However, we should emphasize that this Mass Function would have to
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be be combined with the masses of the primary protostars and then convolved
with the mass-distribution of cores and the efficiency of star formation in a core
to obtain the overall Initial Mass Function.

If the spins and orbits of the discs are randomly orientated with respect
to one another, each encounter generates on average 1.2 new protostars. If-
as seems more likely, given the mechanism for creating small-N subclusters de-
scribed in the previous section - the spins and orbits are approximately parallel,
the number of new protostars per encounter increases to 2.2.

This process of interacting protostellar discs spawning new protostellar discs
can repeat itself in an hierarchical cascade populating ever smaller orbits, at
least down to a few tens of AU. Since the binary systems in our simulations
are normally created with a circumbinary disc produced by wrapping tidal tails
around themselves, the possibility exists to harden many binaries still further.
These processes will be particularly effective if - as again seems likely, indeed
inescapable - there is continuing infall to replenish the protostellar and cir-
cumbinary discs. The evolution will then also be influenced by the competitive
accretion process studied in detail by Bonnell et al. (1997).

4. Conclusion

Impulsive interactions between interstellar clouds or clumps are likely to play an
important role in triggering and propagating star formation, by producing shock-
compressed layers which then fragment to produce dense small-N subclusters of
protostellar discs. The fragmentation of shells swept up by expanding nebulae
produces small-N subclusters of protostellar discs in a similar manner

In the dense subcluster environment, violent interactions between these
discs can produce additional protostars, with many being born in binary systems,
and these binary systems having a wide range of separations and eccentricities.
If infall continues to replenish the protostellar and circumbinary discs, then the
mechanism can operate hiearchically to populate a wide range of binary orbits.

We do not concur with the assertion (e.g. Elmegreen 2000) that interactions
between protostars cannot be important if the Initial Mass Function is the same
in high-density and low-density star forming regions. Firstly, the interaction
cascade can be scale-free over a large range. Indeed, given all the complex
thermodynamics between the scale of cores and the scale of stars (viz. the
switch from molecular-line cooling to optically thin cooling by dust, to optically
thick cooling by dust, and the switch from magnetically coupled to magnetically
decoupled and back again) a cascade process of the type described here is an
attractive and essentially scale-free way to ensure a linear mapping from core
masses into stellar masses. Secondly, the size-distribution of the subclusters
within which such interactions occur may be approximately universal, with the
overall density of the star-formation environment being determined by the mean
separation between subclusters. Thirdly, a large fraction of protostars has discs
with diameters ~ 100 AU and "viscous" lifetimes ~ 105 years, and a large
fraction is born in eccentric binary systems with separations s; 30 AU and orbital
periods s, 100 years. Unless these two fractions represent two independent modes
of star formation - which seems unlikely, since they are routinely found in the
same star-formation regions - frequent interactions are inevitable.
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