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Abstract

In this paper, we present a decomposition of the elements of a finite field and illustrate the efficiency of
this decomposition in evaluating some specific exponential sums over finite fields. The results can be
employed in determining the Walsh spectrum of some Boolean functions.
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1. Introduction

Let n = 2m be a positive even integer and F2n the finite field of order 2n. Let
Trn

1(x) =
∑n−1

i=0 x2i
be the trace function. The following exponential sums are useful

in determining the Walsh spectrum of some Boolean functions (see Section 2 for the
definitions).

p( µ) =
∑

a∈F2n \F2

χn

(
µ

a2m
+ a

a2 + a

)
, q( µ) =

∑
a∈F2n \F2m

χn

(
µ

a2 + a
a2m

+ a

)
,

qs( µ) =
∑

a∈F2n \F2m

χn

(
µ

(a2 + a)2s

a2m
+ a

)
, r(l) =

∑
a∈F2n

χn((a2m
+ a)L(a)).

Here, µ ∈ F2m , χn(x) = (−1)Trn
1(x), s is a positive integer with gcd(s,m) = d and L(x) =∑k

i=0 αix2ai
∈ F2m [x] is a linearised polynomial with coefficients in F2m . (See [1] for

details.)
These sums form a subset of a much larger class of exponential sums, also known as

Weil sums, of the form
∑

x∈Fq
χn( f (x)), where f (x) ∈ Fq[X]. The problem of explicitly

evaluating Weil sums is usually difficult. Results giving estimates for the absolute
value of a Weil sum are accessible and there are many examples (see for example
[4–7, 9–14, 18]). We also refer the reader to [16] for an overview of the field.
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For cryptographic systems, the method of confusion and diffusion is used as a
fundamental technique to achieve security. Confusion is reflected in nonlinearity of
certain Boolean functions describing the cryptographic transformation. For security
of the system, high nonlinearity of these Boolean functions is desirable. The Walsh
spectrum is used to measure this property of Boolean functions and its computation
usually involves exponential sums over finite fields.

In this note, we will explicitly evaluate some of the related exponential sums. By
using a new representation of elements of F22m , rather than polar decomposition, we
show that all the aforementioned exponential sums can be reduced to exponential sums
over a smaller subfield. The main contributions of the paper are to provide this new
representation of elements of finite fields and to prove the following theorems.

Theorem 1.1. Let km( µ) denote the Kloosterman sum. For every µ ∈ F∗2m ,

p( µ) =
∑

a∈F2n \F2

χn

(
µ

a2m
+ a

a2 + a

)
= −2 − (1 + km( µ))2,

q( µ) =
∑

a∈F2n \F2m

χn

(
µ

a2 + a
a2m

+ a

)
= −2mχm( µ).

Theorem 1.2. Suppose that m is odd and gcd(s,m) = 1 and let ( 2
m ) denote the Jacobi

symbol. Let (2s + 1)−1 denote the least positive integer s′ satisfying s′(2s + 1) ≡
1 (mod 2m − 1) . Then:
(1) qs( µ) = −2m if and only if Trm

1 (µ(2s+1)−1
) = 0;

(2) if Trm
1 (µ(2s+1)−1

) = 1, there is an h ∈ F2m such that µ(2s+1)−1
= h2s

+ h2m−s
+ 1 and

qs( µ) = 2m
(
χm(h2s+1 + h)

( 2
m

)
2(m+1)/2 − 1

)
.

Theorem 1.3. For every L(x) =
∑k

i=0 αix2ai
∈ F2m [x],

r(l) = 2m
∑

u∈F2m

χm(uL(u)) = 2m
∑

u∈F2m

χm

( k∑
i=0

αiu2ai +1
)
.

The paper is organised as follows. Section 2 covers notation and preliminaries. In
Section 3, we present the proof of Theorems 1.1–1.3. In Section 4, a generalisation of
the new representation of the elements of finite fields of any extension degree is given
and some more applications are proposed. In addition, we prove the following results.

Theorem 1.4. Let q be an odd prime power, L1(x) =
∑s−1

i=0 βixqmi
∈ Fqn [x] and L(x) =

Trn
m(x). Then∑

x∈Fqn

χn(L1(x)Trn
m(x))

=

{
q(s−1)m + q(s−1)mG(η, χm)η(s)χn(L1(λ0)) if L1(ker(Trn

m)) ⊆ ker(Trn
1),

q(s−1)m otherwise.
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Here, χn(x) is the canonical additive character of Fqn , η is the quadratic character of
Fqm with η(0) defined as 0, λ0 is a fixed element satisfying Trn

m(λ0) = 1 and G(η, χm) is
the Gaussian sum.

Theorem 1.5. Let n = sm, q be an odd prime power and L(x) =
∑s−1

i=0 αixqmi
∈ Fqm [x].

If dimFqm (ker(L)) = s − 1 and L(1) , 0, then

∑
x∈Fqn

χn

( s−1∑
i=0

αixqmi+1
)

= q(s−1)m(1 + G(η, χm)η(s/L(1))).

2. Notation and preliminaries

2.1. Boolean functions. Let n be a positive integer and F2n be the finite field with 2n

elements. A Boolean function on F2n is a {0, 1}-valued function from F2n to F2.
For any positive integer n and for any positive integer k dividing n, the trace function

from F2n to F2k , denoted by Trn
k , is the map

Trn
k(x) = x + x2k

+ x22k
+ · · · + x2n−k

.

In particular, the absolute trace over F2 is the function Trn
1(x) =

∑n−1
i=0 x2i

corresponding
to k = 1. Recall that, for every integer k dividing n, the trace function satisfies the
transitivity property [16], that is, for all x ∈ F2n ,

Trn
1(x) = Trk

1(Trn
k(x)). (2.1)

2.2. Walsh transform of Boolean functions. Let f be a Boolean function from F2n

to F2. For every element a ∈ F2n , the Walsh (Hadamard) transform of f at the point a
is defined by

W f (a) =
∑
x∈F2n

(−1) f (x)+Trn
1(ax).

The set {W f (a) | a ∈ F2n} is called the Walsh spectrum of f .
The Walsh spectrum is a powerful mathematical tool to measure the nonlinearity of

a Boolean function (see [2, 3] for details).

2.3. Polar decomposition. Let n = 2m. Denote the subgroup of (2m + 1)th roots
of unity in F2n by S, that is, S = {z ∈ F2n | z2m+1 = 1}. For every x ∈ F∗2n = F2n \ {0},
there is a unique polar decomposition of x as x = yz, where y ∈ F∗2m and z ∈ S. In
fact, y = x(2m+1)2m−1

and z = x(2m−1)2m−1
. Write x = x2m

. For every x ∈ F∗2n , x ∈ F2m if
and only if x = x and x ∈ S if and only if x = x−1. It is evident that for every x ∈ F∗2n ,
x + x, xx ∈ F2m and x/x, x/x ∈ S. Note that x 7→ x is an isomorphism of the finite
field F2n .
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2.4. Kloosterman sums. For a, b ∈ F2m , the Kloosterman sum is defined by

km(a, b) =
∑

x∈F∗2m

(−1)Trm(ax+bx−1).

It is easy to check that km(a, b) = km(ab, 1) = km(1, ab). For simplicity, write km(a) =

km(a, 1) = km(1, a). The Kloosterman sum km(a, b) can be calculated recursively. That
is, if we define

k(s)
m (a) =

∑
γ∈F∗2ms

χ(s)(aγ + γ−1), a ∈ F2m ,

where χ(s) is the lifting of χ(x) = (−1)Tr(x) to F2ms , then

k(s)
m (a) = −k(s−1)

m (a)k(1)
m (a) − 2mk(s−2)

m (a),

where we put k(0)
m (a, b) = −2 and k(1)

m (a) = k(a). (See [16, Ch. 5] for details.)

2.5. A decomposition of elements of F2n related to an affine subspace. Let n = 2m
and set

E = {λ ∈ F2n | λ2m
+ λ = 1}.

Then E is an affine subspace of F2n/F2. For every x ∈ F∗2n \ F2m , there is a unique pair
(u, λ) ∈ F∗2m × E such that x = uλ. If x ∈ F2m , we just write x = u. We claim that this
decomposition is unique. Define a map τ : F2n → F∗2m × E; if there are u1, u2 ∈ F

∗
2m and

λ1, λ2 ∈ E satisfying u1λ1 = u2λ2, then

1 = λ1 + λ1 = (u2/u1)(λ2 + λ2) = u2/u1,

which implies that u1 = u2 and λ1 = λ2. Counting the image number of the map τ leads
to the desired statement. Under this decomposition, the following two facts are easily
verified.
Fact (i). Suppose that x ∈ F2n \ F2m and x = uλ, u ∈ F∗2m , λ ∈ E. Then Trn

1(x) = Trm
1 (u).

Proof. By (2.1), Trn
1(x) = Trm

1 (Trm
n (uλ)) = Trm

1 (u(λ + λ)) = Trm
1 (u). �

Fact (ii). The map σ : E → F2m given by λ 7→ λλ is two-to-one. The image set is
precisely the set of elements in F2m of trace one.

Proof. It is obvious that there are two elements λ1, λ2 ∈ E satisfying λ1λ1 = λ2λ2 = a
for some a ∈ F2m if and only if λ1, λ2 are the two distinct roots of the equation

X2 + X + a = 0. (2.2)

Now (2.2) has two distinct roots in F2n \ F2m if and only if Trm
1 (a) = 1. Moreover, for

any a ∈ F2m with trace one, λ is a root of the equation (2.2) if and only if λ is also a
root of the equation. Thus, λ + λ = 1 and λ ∈ E. �

In the next section, we will show that this new representation of elements in F22m is
an effective tool in evaluating some exponential sums over finite fields.
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3. Proof of Theorems 1.1–1.3

3.1. The evaluation of p( µ). For the first exponential sum, we compute

p( µ) =
∑

a∈F2n \F2

χn

(
µ

a2m
+ a

a2 + a

)
= 2m − 2 +

∑
a∈F2n \F2m

χn

(
µ

a2m
+ a

a2 + a

)
.

For any a ∈ F2n \ F2m , let a = uλ, where u ∈ F∗2m , λ ∈ E. Then∑
a∈F2n \F2m

χn

(
µ

a2m
+ a

a2 + a

)
=

∑
u∈F∗2m ,λ∈E

χn

(
µ
(1
λ

+
1

λ + u

))
=

∑
u∈F∗2m ,λ∈E

χm

(
µ
( 1

λλ
+

1

λλ + u2 + u

))
.

By Fact (ii),∑
u∈F∗2m ,λ∈E

χm

(
µ
( 1

λλ
+

1

λλ + u2 + u

))
= 2

∑
v∈F2m ,Trm

1 (v)=1

χm

(
µ

v

) ∑
u∈F∗2m

χm

(
µ

v + u2 + u

)
= 2

∑
v∈F2m ,Trm

1 (v)=1

χm

(
µ

v

)(
χm

(
µ

v

)
+ 2

∑
u∈F∗2m \{v},Trm

1 (u)=1

χm

(
µ

u

))
.

Since

χm

(
µ

v

)
+ 2

∑
u∈F∗2m \{v},Trm

1 (u)=1

χm

(
µ

u

)
= χm

(
µ

v

)
− 2χm

(
µ

v

)
+ 2

∑
u∈F2m ,Trm

1 (u)=1

χm

(
µ

u

)
= χm

(
µ

v

)
− 2χm

(
µ

v

)
+

∑
u∈F2m

χm

(
µ

u

)
(1 − χm(u))

= −χm

(
µ

v

)
−

∑
u∈F2m

χm(u + µ/u)

= −1 − χm

(
µ

v

)
− km( µ),

it follows that∑
a∈F2n \F2m

χn

(
µ

a2m
+ a

a2 + a

)
= −2(1 + km( µ))

∑
v∈F2m ,Trm

1 (v)=1

χm

(
µ

v

)
− 2

∑
v∈F2m ,Trm

1 (v)=1

1

= −(1 + km( µ))2 − 2m.

Therefore,

p( µ) =
∑

a∈F2n \F2

χn

(
µ

a2m
+ a

a2 + a

)
= −2 − (1 + km( µ))2.
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3.2. The evaluation of q( µ). It is evident that

q( µ) =
∑

a∈F2n \F2m

χn

(
µ

a2 + a
a2m

+ a

)
=

∑
u∈F∗2m ,λ∈E

χn(µ(uλ2 + λ))

=
∑

u∈F∗2m ,λ∈E

χm(µ(u + 1)) = −2mχm( µ).

3.3. The evaluation of qs( µ). It is easy to see that

qs( µ) =
∑

a∈F2n \F2m

χn

(
µ

(a2 + a)2s

a2m
+ a

)
=

∑
u∈F∗2m ,λ∈E

χm(µ(u2s+1−1 + u2s−1))

= 2m
∑

u∈F∗2m

χm(µ(u(2s−1)(2s+1) + u2s−1)).

If m is odd and gcd(s,m) = 1, then gcd(2s + 1, 2m−1) = gcd(2s−1, 2m−1) = 1 and

qs( µ) =
∑

a∈F2n \F2m

χn

(
µ

(a2 + a)2s

a2m
+ a

)
= 2m

∑
u∈F∗2m

χm(µ(u(2s−1)(2s+1) + u2s−1))

= 2m
∑

u∈F∗2m

χm(µ(u2s+1 + u)).

The last exponential sum is a special case of

C(s)
m (a, b) =

∑
x∈F2m

χm(ax2s+1 + bx), a, b ∈ F2m .

Lemma 3.1 [15]. If m is odd and gcd(s,m) = 1, then

C(s)
m (1, 1) =

( 2
m

)
2(m+1)/2 =

{
2(m+1)/2 if m ≡ ±1 (mod 8),
−2(m+1)/2 if m ≡ ±3 (mod 8),

where ( 2
m ) is the Jacobi symbol.

If m is odd and gcd(s,m) = 1, then x 7→ x2s+1 is a permutation on L =: F2m .

Lemma 3.2 [8]. If m is odd and gcd(s,m) = 1, then:
(1) C(s)

m (a, b) = C(s)
m (1, b/a(2s+1)−1

);
(2) C(s)

m (1, a) = C(s)
m (1, a2) for all a ∈ L;

(3) C(s)
m (1, a) = 0 if and only if Trm

1 (a) = 0;
(4) if Trm

1 (a) = 1, then there is an h ∈ L such that a = h2s
+ h2m−s

+ 1 and

C(s)
m (1, a) = χm(h2s+1 + h)C(s)

m (1, 1) = χm(h2s+1 + h)
( 2
m

)
2(m+1)/2.
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Lemma 3.3. For a positive integer l, let

Tl(x) = x + x2 + x4 + · · · + x2l−1
.

Then, for every positive integer k and every h ∈ F2m ,

Trm
1 (u3 + u) = Trm

1 (h2k+1 + h) and χ(u3 + u) = χ(h2k+1 + h),

where u = Tk(h). Moreover, if k is odd, then

Trm
1 (u3) = Trm

1 (h2k+1).

Proof. Since u = Tk(h), Trm
1 (u) = kTrm

1 (h) and

Trm
1 (u3) = Trm

1 ((Tk(h))3) = Trm
1 (Tk(h)Tk(h2))

= Trm
1

((
h +

k−1∑
i=1

h2i
)( k−1∑

i=1

h2i
+ h2k

))
= Trm

1

( k−1∑
i=1

h2i+1 +

k−1∑
i=1

h2i
+ h2k+1 +

k−1∑
i=1

h2i+2k
)

= Trm
1 (h2k+1) + (k − 1)Trm

1 (h) + Trm
1

( k−1∑
i=1

h2i+1 +

k−1∑
i=1

h2i+2k
)
.

Since

Trm
1

( k−1∑
i=1

h2i+2k
)

= Trm
1 (h1+2k−1

+ h1+2k−2
+ · · · + h1+2) = Trm

1

( k−1∑
i=1

h2i+1
)
,

we see that Trm
1 (u3 + u) = Trm

1 (h2k+1 + h) and thus χ(u3 + u) = χ(h2k+1 + h). �

Using Lemma 3.2(3) and (4), we also obtain the following result.

Theorem 3.4. Suppose that k and m are odd and gcd(k,m) = 1. Then, for every v ∈ F2m ,

C(k)
m (1, v2k

+ v + 1) = C(1)
m (1, v2 + v + 1). (3.1)

Consequently,
C(k)

m (1,Tk(v)) = C(1)
m (1, v). (3.2)

Proof. Let h ∈ F2m with a = h2k
+ h2m−k

+ 1, where h is the same element as in
Lemma 3.2(4). Then

C(k)
m (1, a) = χ(h2k+1 + h)

( 2
m

)
2(m+1)/2.

Put ρ(a) = u2 + u2m−1
+ 1. By Lemma 3.2(4) with k = 1,

C(1)
m (1, ρ(a)) = χ(u3 + u)

( 2
m

)
2(m+1)/2.
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Thus, we obtain
C(k)

m (1, a) = C(1)
m (1, ρ(a)). (3.3)

Substituting h2k
for h, we have a = h + h22k

+ 1 and ρ(a) = Tk(h2k+1
) + Tk(h2k−1

) + 1.
Thus, a = h + h2k

+ (h + h2k
)2k

+ 1 = Tk(h + h2) + (Tk(h + h2))2k
+ 1 = v + v2k

+ 1 and
ρ(a) = Tk(h2k+1

+ h2k−1
) + 1 = (Tk(h + h2) + Tk(h + h2)2)2k−1

+ 1 = (v + v2 + 1)2k−1
, where

v = Tk(h + h2). From (3.3) and Lemmas 3.3 and 3.2(2),

C(k)
m (1, v + v2k

+ 1) = C(1)
m (1, (v + v2 + 1)2k−1

) = C(1)
m (1, v + v2 + 1).

Since k is odd, Tk is a permutation on F2m . For v ∈ F2m , v + v2k
+ 1 and v + v2 + 1 are

invariant under the transformation v 7→ v + 1, so that

C(k)
m (1, v + v2k

+ 1) = C(1)
m (1, v + v2 + 1).

For the proof of (3.2), notice that when Trm
1 (v) = 0, C(k)

m (1, Tk(v)) = C(1)
m (1, v) = 0. If

Trm
1 (v) = 1, then Tk(v2 + v + 1) = v + v2k

+ 1 shows that (3.2) is equivalent to (3.1).
This completes the proof. �

Remark 3.5. (1) Lemma 3.1 is a direct consequence of (3.2) by taking v = 1 and
utilising [4].
(2) Lemma 3.2 gives an explicit determination of

∑
u∈F∗2m

χm(µ(u2s+1 + u)) and its
spectrum.

3.4. The evaluation of r(l). A direct computation shows that

r(l) = 2m +
∑

a∈F2n \F2m

χn((a2m
+ a)L(a)) = 2m +

∑
λ∈E,u∈F∗2m

χn(uL(λu))

= 2m +
∑

λ∈E,u∈F∗2m

χm(uL(u(λ + λ))) = 2m +
∑

λ∈E,u∈F∗2m

χm(uL(u))

= 2m
∑

u∈F2m

χm(uL(u)) = 2m
∑

u∈F2m

χm

( k∑
i=0

αiu2ai +1
)
.

4. Extensions

In the previous section, we provided a representation of elements in finite fields of
characteristic two. It is shown that this decomposition leads to an effective recursive
method for computing some exponential sums by reducing the computation to a
smaller subfield. By a slight modification, this method generalises to finite fields of any
characteristic. Let n = sm and L(x) =

∑s−1
i=0 αixqmi

∈ Fqn [x] be a linearised polynomial
with coefficients in Fqn . Denote

Ea = {x ∈ Fqn : L(x) = a}, a ∈ Fqm .

It is easily seen that Ea is an affine subspace of Fqsm (viewed as an Fqm -vector space)
and, for a, b ∈ F∗qm ,

Ea ∩ Eb = ∅ for a , b and Ea = aE1 = {aλ : λ ∈ E1}.

https://doi.org/10.1017/S0004972715000301 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972715000301


40 X. Cao and G. Xu [9]

Furthermore, if dimFqm (ker(L)) = s − 1, then Fqn =
⋃

a∈Fqm Ea since the cardinality of
the right-hand side is qmqm(s−1) = qn. This is an alternative explanation of the new
decomposition proposed in Section 2.

Proposition 4.1. With the notation as above, if dimFqm (ker(L)) = s − 1, then, for every
x ∈ Fqn \ ker(L), there is a unique decomposition

x = uλ, u ∈ Fqm , λ ∈ E1.

Proof. After the previous remarks, we only need to prove the uniqueness of the
decomposition. If there are elements x ∈ Fqn \ ker(L), u1, u2 ∈ Fpm , λ1, λ2 ∈ E1

satisfying
x = u1λ1 = u2λ2,

then
0 , L(x) = u1L(λ1) = u2L(λ2).

But L(u1) = L(u2) = 1, so we have u1 = u2 and then λ1 = λ2. �

In order to apply Proposition 4.1, we need to find linearised polynomials whose
kernel has dimension s − 1. We have the following lemma.

Lemma 4.2 [17]. Let n = sm, {α1, α2, . . . , αs} be a basis of Fqsm viewed as a vector
space over Fqm and L(x) =

∑s−1
i=0 aixqmi

∈ Fqn [x] be a linearised polynomial over Fqn .
Then there exist s elements β1, β2, . . . , βs ∈ Fqn such that

L(x) = Trn
m( β1x)α1 + Trn

m( β2x)α2 + · · · + Trn
m( βsx)αs.

Moreover, dimFqm (ker(L)) = k if and only if rankFqm {β1, β2, . . . , βs} = s − k for 0 ≤ k ≤ s.
Furthermore, every d-dimensional subspace of Fs

qm can be obtained in this way.

By Lemma 4.2, it is easy to find a linearised polynomial whose kernel has
dimension s − 1. In particular, if L(x) = Trn

m(x), then dimFqm (ker(L)) = s − 1.
The following two results are applications of the new decomposition.

Theorem 4.3. Let q be an odd prime power, L1(x) =
∑s−1

i=0 γixqmi
∈ Fqn [x] and L(x) =

Trn
m(x). Then∑

x∈Fqn

χn(L1(x)Trn
m(x))

=

{
q(s−1)m + q(s−1)mG(η, χm)η(s)χn(L1(λ0)) if L1(ker(Trn

m)) ⊆ ker(Trn
1),

q(s−1)m otherwise.

Here, χn(x) is the canonical additive character of Fqn , η is the quadratic character of
Fqm with η(0) defined as 0, λ0 is a fixed element satisfying Trn

m(λ0) = 1 and G(η, χm) is
the Gaussian sum.
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Proof. Note that∑
x∈Fqn

χn(L1(x)Trn
m(x)) =

∑
x∈ker(L)

χn(L1(x)Trn
m(x)) +

∑
x∈Fqn \ker(L)

χn(L1(x)Trn
m(x)).

For the first sum, since dimFqm (ker(L)) = s − 1,

∑
x∈ker(L)

χn(L1(x)Trn
m(x)) = q(s−1)m.

For the second sum, we use the decomposition x = uλ, u ∈ Fqm , λ ∈ E1:

L1(x)Trn
m(x) = uL1(λ)uTrn

m(λ) = u2L1(λ)

and ∑
x∈Fqn \Fqm

χn(L1(x)Trn
m(x)) =

∑
u∈Fqm

χn(u2)
∑
λ∈E1

χn(L1(λ)).

Here,
∑

u∈Fqm χn(u2) =
∑

u∈Fqm χm(su2) = G(η, χm)η(s) by [16, Theorem 5.33] since
χm(x) is the canonical additive character of Fqm . For the sum

∑
λ∈E1

χn(L1(λ)), let λ0 be
a fixed element in E1. Then E1 = λ0 + E0 = {λ0 + x : x ∈ E0}. Thus,

∑
λ∈E1

χn(L1(λ)) =

χn(L1(λ0))
∑

x∈E0
χn(L1(x)). If there is an element x0 ∈ Fqn such that Trn

m(x0) = 0 and
Trn

1(L1(x0)) , 0, then

χn(L1(x0))
∑
x∈E0

χn(L1(x)) =
∑
x∈E0

χn(L1(x0 + x)) =
∑
x∈E0

χn(L1(x)),

which implies that
∑
λ∈E1

χn(L1(λ)) = 0; if Trn
1(L1(x)) = 0 for every x ∈ E0, then∑

λ∈E1
χn(L1(λ)) = q(s−1)mχn(L1(λ0)). The desired result follows. �

Theorem 4.4. Let n = sm, q be an odd prime power and L(x) =
∑s−1

i=0 aixqmi
∈ Fqm [x]. If

dimFqm (ker(L)) = s − 1 and L(1) , 0, then

∑
x∈Fqn

χn

( s−1∑
i=0

aixqmi+1
)

= q(s−1)m(1 + G(η, χm)η(s/L(1))).

Proof. It is obvious that∑
x∈Fqn

χn

( s−1∑
i=0

aixqmi+1
)

=
∑
x∈Fqn

χn(xL(x)) =
∑

x∈ker(L)

χn(xL(x)) +
∑

x∈Fqn \ker(L)

χn(xL(x)).

The first sum is equal to q(s−1)m. Using the new decomposition,

∑
x∈Fqn \ker(L)

χn(xL(x)) =
∑

u∈Fqm ,λ∈E1

χn(uλL(uλ)) =
∑

u∈Fqm ,λ∈E1

χn(u2λ).
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Since λ ∈ E1, we have L(λ) = 1 and

s = Trn
m(1) = Trn

m(L(λ)) = L(1)Trn
m(λ).

Thus,
χn(u2λ) = χm(Trn

m(u2λ)) = χm(u2Trn
m(λ)) = χm(u2s/L(1)).

By [16, Theorem 5.33] again,∑
u∈Fqm ,λ∈E1

χn(u2λ) =
∑
λ∈E1

∑
u∈Fqm

χm(u2s/L(1)) = q(s−1)mG(η, χm)η(s/L(1)).

This completes the proof. �

Remark 4.5.
(1) The determination of the quadratic Gaussian sum is well known and the exponential
sums evaluated in Proposition 4.4 have been extensively studied (see for example [4–
7, 9, 11–14, 18]), but our approach is different.
(2) Under the restrictions of Theorem 4.4, Lemma 4.2 implies that L(x) = aTrn

m(x) for
an element a ∈ Fqm . Thus, the exponential sum in question is∑

x∈Fqn

ζ
Trm

1 (aTrn
m(x)2)

p , (4.1)

where ζp is a primitive pth root of unity. To the authors’ knowledge, the exponential
sum in (4.1) has not been investigated before. A more challenging problem is to
calculate the following exponential sum:∑

x∈Fqn

ζ
Trm

1 (aTrn
m(x)r)

p ,

where r ≥ 3 is a positive integer.
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