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THE CENTRALISER OF THE INJECTIVE TENSOR PRODUCT

W E N D W E R N E R

The aim of this note is to obtain an intrinsic product formula for the centraliser
of the injective tensor product of a couple of Banach spaces, Z(X®€Y) . More
precisely, we are going to prove that

Z(X®CY) = Cb(Zx/ZxxkZY/dY).

Here, the spaces Zx/Sx a n d Zy/dr depend only on X and Y, respectively, and
Xjt denotes the topological k-product.

A counterexample used to demonstrate that the Jb-product cannot be avoided
serves also as an answer to a question posed by W. RueC and D. Werner concerning
the behaviour of M-ideals on X®,Y.

1. INTRODUCTION

Let X be a Banach space, Bx its unit ball and denote by ex K the set of extreme
points of some subset K C X. Suppose for the moment that X is a real space and put

Z(X) := {T e L(X) | Vp e ex Bx, 3aT{p) £R T'p = aT(p)p}.

In the operator norm, Z(X) is a commutative C*-algebra. (For the definition in the
complex case see the following section.)

The aim of the present note is to obtain an intrinsic product formula for Z(X®eY) ,
that is, an expression which does not resort to any properties of the injective tensor
product as such. More precisely, we are going to show that the equation

Z(X®eY) = Cb(Zx/dxXkZY/dY),

holds within the frame of Banach algebras. Here, the spaces ZxfSx and

depend only on X and Y, respectively, and x* denotes the topological k-product

A related formula was obtained in [24], where it was shown that
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358 W. Werner [2]

Here, the closure has to be taken with respect to the strong operator topology on the
space X®eY. For a different approach to this result see [3]. (For some similar results
in more special situations the reader is referred to [3, 5, 13, 14, 22, 23] where, however,
sometimes a slightly different notation is used.)

Let us indicate the source of interest in Z(X). First, its subalgebras appear quite
naturally whenever X is represented as a space of (all continuous) sections in a Banach
bundle, and in fact the whole algebra gives rise to such a representation which in some
sense is maximal. (See [4]; in light of this property of Z(X), the above equation can be
used to obtain a maximal bundle representation of the injective tensor product without
any of the restrictions on the involved Banach spaces as in [3] — but we won't touch
this here.) The interest in Banach bundles in turn is manifold, see for example [4, 9,
11]. In [6] this concept has recently become a tool in the biholomorphic classification
of domains in infinite dimensional Banach spaces. (Note, however, that the pertinent
definitions frequently differ.) Second, in the theory of non associative Banach algebras,
Z(A) quite often provides a concept of centroid, which seems to be more manageable
than the pure algebraic definition. For a more recent application of this sort see [17].
For the question of how Z(X) looks like in some more concrete examples, the reader is
referred to the following section.

Let us explain how this paper is organised: The following section collects some
necessary notation as well as two auxiliary results. To one of them, a theorem of
Stone-Weierstrafi type, we briefly sketch some further applications. In the third section
we state and prove our main theorem. We finally present an example in Section 4
that serves for two purposes: First, it provides a counterexample to a more ambitious
conjecture in connection with the main result. On the other hand, it answers a question
of W. Ruefi and D. Werner posed in [20].

2. NOTATION AND USEFUL RESULTS

We begin with

DEFINITION 1: The Banach algebra Mult X consists of all those operators T for

which each p G ex Bxi is an eigenvector of T' with eigenvalue ax(p) •

Those T G Mult X that possess a natural adjoint in Mult X, that is for which

there exists T* G Mult X with ar* (p) = <*T(P) for all p G ex Bx>, are said to belong

to the centraliser, denoted by Z(X).

Clearly, when A* is a real space, both algebras coincide. Note that both algebras

are function algebras and that Z(X) is a Ciif-space for a suitable compact K. For a

more detailed presentation of this topic see [4].

Suppose that X is a closed subspace of CQL, the space of all continuous functions
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on the locally compact space L vanishing at infinity, and let

MuH(X,C0L) := {/ G ChL \ fX C X},

Z(X,CaL) := {f G Mult(X,C0L) \ J G MuU(X,C0L)}.

We further denote by
$(X,C0L)

the set of equivalence classes which are obtained by

/ ~ Jfc «=» /(/) = /(Jb) V/ G Z{X, C0L).

The reader should observe that Z(X,C0L) is always a closed subalgebra of Z(X).
Furthermore, when X is canonically embedded into the space CQZX, where Zx '•=
exBx,

w \ {0}, then Z(X) = Z(X,COZX) as well as $(X,COZX) = $x- A result
similar to the following can be found in [10, Theorem 13.2].

THEOREM 2 . Let X be a closed subspace of C0L. Then f G CQL belongs to X

if and only if

The proof of this theorem is nothing but a slight modification of the argument
Glicksberg gave in order to prove Bishop's version of the classical Stone-Weierstrafi
theorem (see for example [10]), and in fact, if X is a function algebra then Theorem 2
reduces to Bishop's theorem. (Note that in this case fix is the maximal antisymmetric
decomposition of X 's Shilov boundary.) We therefore omit it. Instead, let us see what
is going on for special spaces:

COROLLARY 3 .

(i) A C*-algebra A is commutative if and only if its centroid separates the
points in the w* -closure of the set of pure states of A.

(ii) A compact convex set K in a LCTVS is a Bauer simplex if and only if
the order bounded operators on A(K) separate the points in ex K.

(iii) Denote by (Zx)a the quotient space obtained from identifying points of
the form 7p with \-y\ = 1. Then X is a Co-space if and only if Z(X)
separates the points of (Zx)a •

Let us briefly sketch the proofs : For (i), one has to use the fact that for C7*-algebras
Z(A) coincides with the centroid of A, [12]. In the unital case, this is of course a special
case of Theoreme 11.3.1 in [7]. To see why (ii) holds, one has to take into account that
an operator T on A(K) is order bounded if and only if T G Z(A(K)), see [1, II
Section 7], and that the Bauer simplices represent precisely the sets M*(C) for some
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compact space C [1, II Section 4]. The statement of (iii), the proof of which follows
readily from Theorem 2 and [15, p.218], should be compared to the central results of
[18] and [21], where two other classes of i^-preduals are classified in a similar way. To
see this connection (and for the sake of preparing the counterexample announced in the
introduction), we need

THEOREM 4 . ([2]) Denote by (exJ?_y;)a the space obtained from ex Bx, by

identifying points of the form -fp with \f\ = 1, p € ex Bxi. Tien the sets of the form

(ex Bx, D J°)a,

where J runs through the M-ideals of X, form the closed sets of a topology called the
structure topology of X.

Recall that a subspace J of a Banach space X is called an M-ideal, if and only if

for some subspace J* of X'

X' =

The point here is that the functions or (introduced in Definition 1) correspond to the
bounded structurally continuous functions (see [4, Chapter 3]). Now, in [18] the L1-

preduals with the property that the elements of Z(X) separate the points of (ex Bxi)a

have been characterised, whereas in [21] it was shown that a Banach space is G-space
if and only if (ex Bxi)a is Hausdorff.

Let us finally point out that the version of the Stone-Weierstrafi theorem which is
valid in the context of function modules on some compact space K (see for example
[11]), can also be obtained using Theorem 2.

The reason we are interested in Theorem 2 at this place is

COROLLARY 5 . Denote by $x the set of equivalence classes on Zx defined by

p ~ q <=> $'p = $ ' , V$ G Z(X).

The algebra Z(X,CQL) consists exactly of those f € CbL which are constant on each

We have to fix some further notation: Let T be a Hausdorff space. The space
k(T) is the set T together with the topology in which a set is open if and only if its
intersection with the compact subsets of T is (relatively) open. k(T) belongs to the
class of A;-spaces, which means that its topology is generated by the compact subsets
of k(T). In the same vein, the mapping

k(f) : k(T,) ^ k(T2)

https://doi.org/10.1017/S0004972700029841 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700029841


[5] Injective tensor product 361

differs from / : T\ —» T2 by change of topologies only, and it is continuous whenever /

is. We will also follow the convention to write

The most exhaustive reference on this topic known to the author is [8]. The following
lemma contains the topological ingredients of the proof of Theorem 7. Since we couldn't
locate one in the literature, we include a proof.

LEMMA 6 . Suppose that T\<2 are Hausdorff spaces, that T\ is locally compact,

and that there are given equivalence relations Ril2 on Ti<2 with appertaining quotient

maps irit2 such that Ti/Ri is Hausdorffand the space (7\ x T2)/(Ri x ^ ) is a k-space.

Then

(Ti x T2)/{R1 x i?2) S T1/R1xkT2/R2,

where the homeomorphism is given by k(H) with

Here, [• • • ] refers to the formation of equivalence classes in either of the equivalence
relations.

PROOF: By definition of the respective topologies, H and hence k(H) are contin-
uous. Thus we are left with showing that the map k(H)~ = k(^H~1^ is continuous,
which is the same as showing that H~1 is continuous when restricted to compact sub-
sets K of Ti/Ri x T2/R2 . By assumption on Ti/Ri, we may think of K as having the
form K = K\ x K2 with Ki compact in Ti/Ri. Denote by ni2 the quotient mapping
that belongs to the relation .Ri x R2 on 2\ x T2. By [8, 3.3.28],

is a quotient map and so the continuity of J J " 1 ^ follows from the fact that

is continuous. D

3. MAIN THEOREM AND PROOF

THEOREM 7 . For Banach spaces X and Y we have

4{X®eY) = C \&x/-5
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where the (algebraic) isomorphism between these spaces can be chosen so that the

operator ^T,Ti®Si, whichisin Z(X®eY}, may be identified with the map J^a^®*^-

Note that the quotient spaces involved need not be completely regular. Therefore
the Gelfand space of Z(X®eY) has to be written

where QT denotes the complete regulaxisation of T, which in our case is nothing but
the weak CbT topology of T.

PROOF: In the following we shall make use of the fact that Zx^ y
 = Zx <8> Zy,

which follows from results in [19] and [16]. Our proof consists mainly in showing that

To show this, observe first that for p G Zx and / G X®eY

belongs to Y. Analogously, /* belongs to X for each q G ZY • Representing }

as a space of bounded continuous functions on Zx~ y we may define $ p with p G Zx

as above. We have for e G X with p(e) = 1

$px = $(p, )p(e)y() = [§(e ® y)}p

and so, by the Bishop-Phelps Theorem, $ p G Mult Y. Since $ p = (#) we also have

$ p G Z(Y). In the same way, $« G Z(X) for all q G Y. Now let £1)2 <8>*7i,2 G F<g> G G

3x ® 3V • Then

*(6 ® m) = *t,(i7i) - *ft(i7») = *«(6) = *«(6) - *(6 ®i»)

and thus, each $ G Z(A"®ey) is constant on F ®G. On the other hand, by definition

of 5x a n d 5y , two different sets F\ ® G\ and F2 ® G2 in 3x ® -SY a r e separated by

elements 2 ® * G £(X) ® Z(y) C Z(X®ey) , which settles our claim.

To finish the proof, let T and TTX denote the quotient maps from Zx x ZY to

Zx ® Zy and from Zx to Zx/^x, respectively. Clearly, the quotient topologies on

^x% y/^X® y induced by irx£ Y
 a n ^ nx® Y ° T comcide, and because

nX9tY
 0T = r x x 7 r y >

we may use Lemma 6 to obtain (note that the class of Jb-spaces is stable under the
formation of quotient mappings)

%Y -

By Corollary 5 we are done. D

The following corollary is essentially known (combine Example 5 on page 155 of
[4] with Theorem 4.5 of [3]).
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COROLLARY 8 . Suppose that X and Y are dual spaces. Then

Z(X®eY) = Z{X)®eZ(Y).

PROOF: TO keep this proof within reasonable limits, we adopt the notation of [4,
Chapter 4]. It is not very difficult to see that a maximal function module representation
of a Banach space X can be obtained by putting Kx := Zx/'Sx, Kx := P^x >
choosing the fibre above F G ^x to be X\p (this is in fact a Banach space) and to be
{0} elsewhere, and, finally, letting ||z(F)|| = | |Z|F| | . Theorem 5.13 of [4] then shows
that in each dual space X there is an element e G X such that

But {F G Zx/dx I ||X|FII ^ a } is compact for all x G X and for each a > 0 and
hence, Zx/dx 1S compact. The conclusion follows from this. U

Observe that in the above proof we have essentially profited from the compactness
of the space Zx/$x • With a similar reasoning, the above proof transfers to the case
of A(K)-spa.ces and unital C*-algebras.

4. AN EXAMPLE

Let us first observe that in general the statement of Corollary 4.2 is wrong : When-
ever L\t2 are locally compact spaces, then

x L2)

x 0L2).

However, these two spaces are known to be different in general [8, 3.12.21].
The following example shows that one cannot dispose of the index k in the state-

ment of Theorem 7: Let X = {/ G C0R | nf(n) = / ( I ) Vn £ N}. We have
Zx = {±6k | k 6 E } and so Z{X) = {/ G CbR | / |N = constant}. It is also

straightforward to check that X®eX = {/ G C0K2 | mnf(m,n) - / (1 ,1 )} as well as

Z{X®eX) = C 6 R 2 / N 2 . We will show that C 6 R 2 /N 2 ^ C ^ K / N ) 2 . To this end, denote

for m,n G N by Dm,n the (open) disk with radius (m + n )~ centered at (rn,n). Let

/ be any function / G C6R2 that vanishes on R2 \ Um n=i Dm,n anc^ attains the value

1 on N2 . Since a neighbourhood of N always contains a set of the form 53j,€iij]a/i,&/i[

with (i G]aM,6,j[, / cannot be continuous when it is considered as a function on (R/N) .

Pursuing the above example a little further, we arrive at
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PROPOSITION 9 . In general, the structure topology on I e x 5 v j ; v ) i<

the product of the structure topologies of (ex Bx)a
 ant^ (e x By)a •

This gives an answer to a question posed in [20]. Note that, as an equation of sets,
we always have

(ex -Bjfg Y) — (ex Bx)a x (ex

PROOF: In fact, since the space X constructed above is a G-space, one can use

[21, Theorem 97] and the fact that

exBx, ={±6k\keR\{2,3,...}}

to see that (ex Bxi)a provided with the structure topology is homeomorphic to R/N.
But then

(ex Bx,)a x (ex Bx,)o £ (ex # ( ; f g t X

since the latter space provided with the structure topology is homeomorphic with

R2/N2. D
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