
2
Coding for Erasures and Fountain Codes

A coordinate position in a received word is said to be an erasure if the
receiver is using a detection algorithm that is unable to decide which symbol
was transmitted in that position and outputs an erasure symbol such as E
rather than risk making an error, i.e., outputting an incorrect symbol. One
might describe an erasure as an error whose position is known. For binary
information symbols the two most common discrete memoryless channels
are shown in Figure 1.1, the binary erasure channel (BEC) and the binary
symmetric channel (BSC), introduced in Chapter 1. The symbols p and δ will
generally refer to the channel crossover probability for the BSC and erasure
probability for the BEC, respectively. Both symbols sometimes occur with
other meanings as will be noted. Each such channel has a capacity associated
with it which is the maximum rate at which information (per channel use)
can be sent through the channel error-free, as discussed in Chapter 1. The
subject of error-correcting codes arose to meet the challenge of realizing such
performance.

It is to be emphasized that two quite different channel error models are used
in this chapter. The BEC will be the channel of interest in the first part of
this chapter. Thus a codeword (typically of a linear code) is received which
contains a mix of correct received symbols and erased symbols. The job of the
code design and decoder algorithm is then to “fill in” or interpolate the erased
positions with original transmitted symbols, noting that in such a model the
unerased positions are assumed correct.

Codes derived for the BEC led to the notion of irregular distribution codes
where the degrees of variable and check nodes of the code Tanner graph, to
be introduced shortly, are governed by a probability distribution. These in turn
led to fountain codes, which is the interest of the last section of the chapter.
In such channels each transmitted packet is typically a linear combination
of information packets over some fixed finite field. The receiver gathers a

26

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

2.1 Preliminaries 27

sufficient number of transmitted packets (assumed without errors) until it is
able to retrieve the information packets by, e.g., some type of matrix inversion
algorithm on the set of packets received. The retriever then does not care which
particular packets are received, just that they receive a sufficient number of
them to allow the decoding algorithm to decode successfully. This is often
described as a “packet loss” channel, in that coded packets transmitted may be
lost in transmission due to a variety of network imperfections such as buffer
overflow or failed server nodes, etc. Such a packet loss situation is not modeled
by the DMC models considered.

While the two channel models examined in this chapter are quite different,
it is their common heritage that suggested their discussion in the same chapter.

2.1 Preliminaries

It is convenient to note a few basic results on coding and DMCs for future
reference. Suppose C = (n,k,d)q is a linear block code over the finite field
of q elements Fq , designating a linear code that has k information symbols
(dimension k) and (n − k) parity-check symbols and minimum distance d.
Much of this volume is concerned with binary-input channels and q = 2.

Suppose a codeword c = (c1,c2, . . . ,cn) is transmitted on a BEC and the
received word is r = (r1,r2, . . . ,rn) which has e erasures in positions E ⊂
{1,2, . . . ,n}, |E |= e. Then ri = E for i ∈ E for E the erasure symbol. The
unerased symbols received are assumed correct.

A parity-check matrix of the code is an (n − k) × n matrix H over Fq
such that

H · ct = 0tn−k

for any codeword c where 0n−k is the all-zero (n− k)-tuple, a row vector over
Fq . If the columns of H are denoted by h(i), i = 1,2, . . . ,n, then H · ct is
the sum of columns of H multiplied by the corresponding coordinates of the
codeword, adding to the all-zero column (n− k)-vector 0t . Similarly let He be
the (n−k)×e submatrix of columns of H corresponding to the erased positions
and ce be the e-tuple of the transmitted codeword on the erased positions. Then

He · cte = −yte

where yte is the (n − k)-tuple corresponding to the weighted sum of columns
of H in the nonerased positions, i.e., columns of H multiplied by the known
(unerased) positions of the received codeword.

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

28 2 Coding for Erasures and Fountain Codes

As long as e ≤ d − 1 the above matrix equation can be solved uniquely
for the erased word positions, i.e., ce. However, this is generally a task of
cubic complexity in codeword length, i.e., O(n3). The work of this chapter
will show how a linear complexity with codeword length can be achieved with
high probability.

This chapter will deal exclusively with binary codes and the only arithmetic
operation used will be that of XOR (exclusive or), either of elements of F2 or
of packets of n bits in F n2 . Thus virtually all of the chapter will refer to packets
or binary symbols (bits) equally, the context being clear from the problem of
interest.

It is emphasized that there are two different types of coding considered in
this chapter. The first is the use of linear block codes for erasure correction
while the second involves the use of fountain codes on a packet loss channel.

Virtually all of this chapter will use the notion of a bipartite graph to
represent the various linear codes considered, a concept used by Tanner in his
prescient works [37, 38, 39]. A bipartite graph is one with two sets of vertices,
say U and V and an edge set E, with no edges between vertices in the same
set. The graph will be called (c,d)-regular bipartite if the vertices in U have
degree c and those of V have degree d . Since |U |= n, then |V |= (c/d)n.
The U set of vertices will be referred to as the left vertices and V the right
vertices. Bipartite graphs with irregular degrees will also be of interest later in
the chapter.

There is a natural connection between a binary linear code and an (n−k)×n
parity-check matrix and a bipartite graph. Often the left vertices of the bipartite
code graph are associated with the entire n codeword coordinate positions and
referred to as the variable or information nodes or vertices. Equivalently they
represent the columns of the parity-check matrix. Similarly the (n − k) right
nodes or vertices are the constraint or check nodes which represent the rows
of the parity-check matrix. The edges of the graph correspond to the ones in
the check matrix in the corresponding rows and columns. Such a graphical
representation of the code is referred to as the Tanner graph of the code, a
notion that will feature prominently in many of the chapters.

The binary parity-check matrix of the code is an alternate view of the
incidence matrix of the bipartite graph. The following illustrates the Tanner
graph associated with the parity-check matrix for a Hamming (8,4,4)2 code
which is used in Example 2.3 shown also in Figures 2.1 and 2.3.

As a second graph representation of a binary linear code, it is equally
possible to have the left nodes of the graph as the k information nodes and
the (n− k) right nodes as the check nodes and this is the view for most of the
next section. As a matter of convenience this representation is referred to as the

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

2.1 Preliminaries 29

(a)

H =

0 0 0 1 1 1 1 0

0 1 1 0 0 1 1 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1

x1

x2

x3

x4

x5

x6

x7

x8

c1

c2

c3

c4

(b)

Figure 2.1 (a) The Hamming (8,4,4)2 code and (b) its Tanner graph

normal graph representation of a code in this work, although some literature
on coding has a different meaning for the term “normal.” The Tanner graph
representation seems more common in current research literature.

The next section describes a class of linear binary codes, the Tornado codes,
which use a cascade of (normal) bipartite graphs and a very simple decoding
algorithm for correcting erasures. To ensure the effectiveness of decoding it
is shown how the graphs in the cascade can be chosen probabilistically and
this development introduced the notion of irregular distributions of vertex/edge
degrees of the left and right vertices of each graph in the cascade. This notion
has proved important in other coding contexts, e.g., in the construction of
LDPC codes to be considered in Chapter 3.

Section 2.3 introduces the notion of LT codes, standing for Luby trans-
form, the first incarnation of the important notion of a fountain code where
coded packets are produced at random by linearly XORing a number of
information packets, according to a probability law designed to ensure efficient
decodability. That section also considers Raptor codes, a small but important
modification of LT codes that has been standardized as the most effective way
to achieve large downloads over the Internet.

The notion of Tornado codes introduced the idea of choosing random bipar-
tite graphs to effect erasure decoding. Such a notion led to decoding algorithms
of fountain codes where a file is comprised of randomly linearly encoded
pieces of the file. These decoding algorithms achieve linear complexity rather
than the normally cubic complexity associated with Gaussian elimination with
a certain probability of failure. As noted, there is no notion of “erasure”
with fountain codes as there is with Tornado codes. A significant feature of
these fountain codes is that they do not require requests for retransmission
of missing packets. This can be a crucial feature in some systems since such

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

30 2 Coding for Erasures and Fountain Codes

requests could overwhelm the source trying to satisfy requests from a large
number of receivers, a condition referred to as feedback implosion. This is the
multicast situation where a transmitter has a fixed number of packets (binary
n-tuples) which it wishes to transmit to a set of receivers through a network.
It is assumed receivers are not able to contact the transmitter to make requests
for retransmissions of missing packets. The receiver is able to construct the
complete set of transmitted information packets from the reception of any
sufficiently large set of coded packets, not a specific set. Typically the size
of the set of received packets is just slightly larger than the set of information
packets itself, to ensure successful decoding with high probability, leading to
a very efficient transmission and decoding process.

Most of the algorithms in the chapter will have linear complexity (in
codeword length or the number of information symbols), making them very
attractive for implementation.

2.2 Tornado Codes and Capacity-Achieving Sequences

The notion of Tornado codes was first noted in [7] and further commented on in
[2] with a more complete account in [10] (an updated version of [7]). While not
much cited in recent works they introduced novel and important ideas that have
become of value in LDPC coding and in the formulation of fountain codes. At
the very least they are an interesting chapter in coding theory and worthy of
some note.

For this section it is assumed transmission is on the BEC. Since only the
binary case is of interest the only arithmetic operation will be the XOR between
code symbols and thus the code symbols (coordinate positions) can be assumed
to be either bits or sequences of bits (packets). Any received packet is assumed
correct – no errors in it. Packets that are erased will be designated with a special
symbol, e.g., E (either a bit or packet) when needed.

Tornado codes can be described in three components: a cascade of a
sequence of bipartite graphs; a (very simple) decoding algorithm for each
stage, as decoding proceeds from the right to the left and a probabilistic design
algorithm for each of the bipartite graphs involved. As mentioned, the design
algorithm has proven influential in other coding contexts.

Consider the first bipartite graph B0 of Figure 2.2 with k left vertices,
associated with the k information packets and βk, β < 1, right nodes, the check
nodes (so each code in the cascade is a normal graph – one of the few places
in these chapters using normal graphs). It is assumed the codes are binary and,
as noted, whether bits or packets are used for code symbols is immaterial.

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

2.2 Tornado Codes and Capacity-Achieving Sequences 31

...

...

...

...

...

...

... ...· · · · · · · · ·

k
βk β2k

βmk
βm+1k

kβm+2

(1 − β)

(Numbers of nodes)

C(B0) C(B1) C(Bm) C0

Figure 2.2 The cascade construction of the Tornado code C(B0,B1, . . . ,Bm,C0) –
code rate = 1 − β, β ∈ (0,1), code length k/(1 − β). Graph edges are not shown
for clarity

For the sake of concreteness packets will be assumed. The parity-check matrix
could have been used here but the equivalent graph is more convenient. The
terms vertices and nodes are used interchangeably. The term packets will often
be used to emphasize the application of the ideas to general networks. For a
given set of information packets the check packets are a simple XOR of the
connected information packets. Note that the edges have not been included in
the figure of this cascade of graphs as it tended to obscure other aspects of
importance.

To show how decoding could take place on such a graph, consider the first
graph on the right of the cascade, C0, and assume for the moment that all
check packets (the furthest right nodes) have been received without erasures
and consider the following simple decoding algorithm [7, 10].

Algorithm 2.1 Given the value of a check packet and all but one of its
neighbor information packets, set the missing information packet to the XOR
of the check packet and its neighbors.

Thus to decode, one searches for a check node at each stage of the decoding
satisfying the criterion – namely that only one of its neighbor variable nodes is
erased, and decodes that packet, finding the value of the missing information
packet. That information packet is then XORed with its neighbor check
packets. Each stage proceeds similarly. For the decoding to be successful, there
must exist suitable check nodes of degree one at each stage of the decoding

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

32 2 Coding for Erasures and Fountain Codes

until all variable (information) packets for that stage are found – which are
then the check nodes for the next (left) stage of the graph.

This first code in the cascade (on the left) is designated as C(B0) and
consists of the k left information packets and βk right check packets. The
next bipartite graph in the cascade will consist of the βk left nodes (the check
packets of C(B0) and the “information packets” of C(B1)) and β2k check
packets on these for some fixed β. This stage of the “code” will be designated
as C(B1). The process of constructing the cascade continues, each graph
consisting of the previous check nodes and constructing a new set of check
nodes of size β times that of the set of left nodes. The cascade components are
designated C(Bi),i = 0,1, . . . ,m. Each stage of the cascade has kβi left nodes
and kβi+1, i = 0,1,2, . . . ,m check nodes. The cascade is concluded with
a conventional block code C0 which is assumed to be a simple conventional
erasure-correcting code with kβm+1 left nodes and kβm+2/(1 − β) check
nodes, capable of correcting any fraction of β erasures with high probability.
This code is not specified further – any of a number of standard codes will
suffice. The whole cascade is designated as C(B0,B1, . . . ,Bm,C0) (see Figure
2.2). As mentioned, the edges of the graph have been omitted as they would
tend to obscure the simple process involved. The code has k information
packets and

m+1∑
i=1

kβi + kβm+2/(1 − β) = kβ/(1 − β), β ∈ (0,1)

check packets and hence the overall code has rate 1 − β.
To decode this code one starts at the extreme right graph/code C0. It is

assumed this ordinary erasure-correcting code is strong enough to correct
all erasures in its parity checks. At each stage of decoding, as it progresses
from right to left, it will be assumed the check nodes are all determined.
Applying the above decoding algorithm, the variable node values of C0 can
be determined as long as there is a check node satisfying the criterion noted
for the decoding algorithm, i.e., that all but one of its neighbor variables are
determined. If all such variable nodes of C0 are determined, one proceeds
to decoding C(Bm), all of whose check nodes (variable nodes of C0) are
now known. Applying the decoding algorithm to these determines its variable
nodes – assuming the supply of suitable check nodes is not exhausted prior to
completion. The process continues to the left. The decoding is successful only
if each stage is successful, i.e., at each stage a suitable check node is always
available with high probability until all information nodes for that stage are
determined.

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

2.2 Tornado Codes and Capacity-Achieving Sequences 33

The problem remains as to how to choose the component graphs in this
cascade (i.e., the variable/check node connections) so that the algorithm will
complete with high probability.

The above assumed a graph representation for each stage of the code in
what has been designated as the normal form with information nodes on the
left and check nodes on the right. It is clear that there are equivalent versions
of the decoding algorithm for a Tanner graph representation of a code, with the
n codeword symbols (information and check symbols) on the left and (n− k)
check symbols associated with the nodes on the right (a single stage only),
with erasures randomly occurring possibly in both variable and check nodes.
Much of the recent work on coding uses the Tanner graph representation and a
modification of the above discussion for such graphs might be as follows:

Algorithm 2.2 Identify the received codeword symbols (or packets) (with
erasures) with the n variable (left) nodes and associate a register with each
of the (n − k) check nodes on the right, each initially set to the all-zero
packet. XOR the value of each nonerased variable node to its check neighbors
and delete those variable nodes and edges emanating from them – thus only
variable nodes that have been erased remain at this stage. If there is a check
node of degree one, transfer its contents to its variable node neighbor, say v,
and then XOR this value to the check neighbors of v and remove all associated
edges. Continue in this manner until there are no check nodes of degree one.
If decoding completes, the values of the variable nodes are the decoded word.
If at any stage before completion, there are no check nodes of degree one the
algorithm fails (there are still edges left in the graph).

This algorithm can be adapted for use with the cascade structure of a
Tornado code. In both of the algorithms, decoding will be successful only if
there is a sufficient number of suitable right nodes of degree one at each stage
until completion. Thus the problem of designing each stage of the decoding
algorithm to ensure this condition with high probability is of importance.
Henceforth only one stage of the graph is of interest and the Tanner graph
description of the binary linear code is assumed. The connection to the normal
graph representation of interest above is immediate.

Example 2.3 Consider a parity-check matrix of a (8,4,4)2 extended Ham-
ming code:

H =

⎡⎢⎢⎣
0 0 0 1 1 1 1 0
0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

⎤⎥⎥⎦

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

34 2 Coding for Erasures and Fountain Codes

Check
registers

�1
0

0

0

E

1

0

0

E

1

0

E

0

0

0

0

c4

c3

c2

c1 1

0

0

1

�

E

1

0

0

1

1

0

E

E

1

0

0

1

1

0

0

1

0

0

1�

Decoded
word

1

1

0

0

1

1

0

0

Check
registers

Received
word

E

1

0

0

E

1

0

E

(a) (b) (c) (d)

Figure 2.3 Decoding the triple erasure-correcting extended Hamming (8,4,4)2
code

As a code of distance 4 it is capable of correcting three erasures. Suppose the
codeword c = (0,0,1,1,0,0,1,1) is transmitted on a BEC and the received
word is y = (E,0,1,E,0,0,1,E) is received. The decoding process is shown
in Figure 2.3.

Algorithms where messages are passed on graph edges are termed message-
passing algorithms. When the messages reflect a belief on the bit values
involved they are termed belief propagation (BP) algorithms. A Gaussian
elimination (GE) decoding algorithm is where decoding is achieved by solving
a matrix equation via matrix reduction, involving received symbols and
information symbols (packets). Such decoding algorithms are often optimum
achieving a minimum probability of error – hence a maximum-likelihood (ML)
algorithm – but suffer from a much higher complexity, oftenO(n3), than BP. In
BP algorithms it is quite possible that the system of equations to be solved is of
full rank – hence possesses a unique solution, yet the BP decoding algorithm
fails because there is no appropriate check node. Hence BP algorithms are
generally not ML.

Decoding algorithms that achieve linear decoding complexity are sought.
For successful decoding of the Tornado codes it is necessary for there to
be at least one suitable check node at each iteration and the analysis of the
algorithm to compute the probability of complete decoding involves computing
the probability of there being such a check node at each stage of decoding
until completion. The construction of graphs that allow for such an analysis
is needed – an overview of the following innovative approach of [11] that
achieves this goal is discussed.

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

2.2 Tornado Codes and Capacity-Achieving Sequences 35

For a graph edge, define its left (resp. right) degree to be i if it is connected
to a variable (resp. check) node of degree i. Thus all edges incident with
a degree i vertex (either variable or check) are of edge degree i. Define a
pair of degree sequences, (λ1, . . . ,λm) for the left (variable) nodes and right
(ρ1, . . . ,ρm) for the right check nodes, with λi the fraction of edges with left
degree i and ρi the fraction of edges with right degree i. It is convenient for
the analysis to follow to define two polynomials

λ(x) =
∑
i

λix
i−1 and ρ(x) =

∑
i

ρix
i−1.

The exponents of (i − 1) rather than i in these polynomials are an artifact
of the analysis. Graphs with these edge degree fractions will be denoted (λ,ρ)
distribution graphs or equivalently Cn(λ,ρ). Thus by a Cn(λ,ρ) graph is meant
some incarnation of a bipartite graph with some n variable nodes with these
edge distributions. One can think of choosing a graph uniformly at random
from this ensemble of graphs for analysis.

The case of (dv,dc) biregular bipartite discussed previously corresponds to
λ(x) = xdv−1, ρ(x) = xdc−1.

If E is the number of edges in the bipartite graph (previously used to
indicate a coordinate position containing an erasure) then the number of left or
variable nodes of degree i is given by Eλi/i and the total number of variable
nodes is then E

∑
i λi/i, with similar comments for check nodes. The average

left degree of nodes in the graph is

aL = 1
/(∑

i

λi/i

)
= 1
/(∫ 1

0
λ(x)dx

)
and the average right degree is

aR = 1
/(∑

i

ρi/i

)
= 1
/(∫ 1

0
ρ(x)dx

)
.

The code rate is given by

R = k

n
= 1 − (n− k)

n
≥ 1 − E

∑
i ρi/i

E
∑
i λi/i

= 1 − aL

aR
= 1 −

∫ 1
0 ρ(x)dx∫ 1
0 λ(x)dx

with equality only if the check equations are linearly independent.
Our goal will be to determine conditions on these two-degree distributions

that ensure, with high probability, the availability of degree one check nodes
at each stage of decoding to allow the decoding algorithm to complete. Before
considering this problem, it is noted that given such degree distributions it is

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

36 2 Coding for Erasures and Fountain Codes

not difficult to give a random graph construction with such distributions, as
follows.

To construct a Tanner graph corresponding to a code of length n = k +
m, m = n − k and dimension k the number of left variable nodes is n and
the number of check right nodes is m. Decide on an appropriate number of
graph edges E which is the total number of 1’s in the parity-check matrix and
is proportional to the complexity of the proposed decoding algorithm. For a
given (λ(x),ρ(x)) distribution the number of left (resp. right) nodes of degree
i is Eλi/i (resp. Eρi/i). For the sake of argument assume all such quantities
are integers. To construct a bipartite graph with the given edge distributions,
imagine an array consisting of four columns of nodes, the first column is the
set of n variable (codeword nodes) and the fourth column corresponding to
the m check nodes. The second and third columns each have E nodes. From
each left variable node of degree i, designate, for each i, Eλi/i variable (first
column) nodes to be of degree i and generate i edges emanating from each
of them terminating in a total of Eλi (disjoint) nodes in the second column.
Similarly for each right check node of degree i, designate, for each i, Eρi/i
nodes to be of degree i and generate i edges from each of them terminating in a
total of Eρi (disjoint) nodes in the third column. The second and third columns
each contain E nodes and so far are of degree one. A random permutation of
order E is generated to join nodes in the second and third columns. The nodes
in the first and fourth columns are now joined (in the sense of edges between
them) and the nodes in the second and third columns can be deleted. There is
a small probability that this procedure might generate a bipartite graph with
multiple edges between nodes in the first and fourth columns. These may be
removed and the effect on the probabilistic analysis is minimal. Similarly there
is a probability the associated parity-check matrix will not be of full rank.

It is noted again that for such graphs with edge distributions, the central
question is how to choose the distributions λ(x) and ρ(x) in order to have the
previous algorithm complete the decoding with high probability? Equivalently
how to choose the distributions so that, with high probability, there is at least
one degree one check node at each stage of the decoding. A formal analysis
involving the use of martingales and differential equations is given in [7, 10]
and will be commented on later. The following informal argument is instructive
and gives an idea as to why the condition on the degree distributions developed
arises [9].

Consider an edge e joining variable node v and check node ci−1 with
left edge degree i and right edge degree j . Consider the graph generated by
variable node v and all paths emanating from v with the first edge e for �
iterations, with one iteration being one traverse from a variable node to a check

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

2.2 Tornado Codes and Capacity-Achieving Sequences 37

node and back again to another variable node. If the girth of the graph is greater
than 4�, this graph will be a tree and all variable nodes encountered when
traversing from v to the variable nodes (the leaves of the graph) at level 0 will
have been erased on the channel independently, each with probability δ.

Let p� be the probability that a variable node is not resolved (its value is not
known) by level �. A recursion is developed for p�+1 and a condition found
on the two edge distributions that ensures these probabilities are decreasing
as the algorithm continues. The implication is that if the conditions stated
remain satisfied as the number of iterations increases, the probability will
vanish implying successful decoding. Suppose all variable node neighbors of
check node ci−1 are resolved. Since each such node has the same probability
of being resolved at level �, the probability they are resolved is (1 − p�)j−1.
The probability the edge e has right degree j is ρj and the probability that at
least one such neighbor of ci−1 is unresolved is

1 −
∑
j

ρj (1 − p�)(j−1) = 1 − ρ(1 − p�)

(hence the reason for the (i − 1) exponent in the polynomial definition). Now
the variable node v at iteration �+ 1 will be unresolved only if all i − 1 check
nodes of v at lower level in the tree have at least one lower-level variable node
unresolved and since each edge joining v to these lower-level check nodes has
left degree i with probability λi , the probability the variable node v remains
unresolved at level �+ 1 is

p�+1 = δ
∑
i

λi(1 − ρ(1 − p�))(i−1) = δλ(1 − ρ(1 − p�)) (2.1)

where p0 = δ, the erasure probability on the channel, the initial condition
that variable node v was unresolved (received as an erasure). Thus [28]
successful decoding gives the condition that the probability a variable node
being unresolved decreases with the level:

p�+1 = δλ(1 − ρ(1 − p�)) < p�. (2.2)

Thus as the number of iterations � increases the probabilities will tend to 0
and decoding will be successful if the condition holds. In other words, finding
edge distributions λ(x) and ρ(x) that satisfy this condition will, with some
probability, assure the completion of the decoding algorithm.

Alternatively, replacing p� by a variable x, if neighborhoods of a variable
node of depth � are trees (which assures the independent erasure condition
holds), and if

δλ(1 − ρ(1 − x)) < (1 − ε)x, 0 < x < δ,

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

38 2 Coding for Erasures and Fountain Codes

then after � iterations the probability a variable node is unresolved is at most
(1 − ε)�δ. Thus edge distributions ρ(x) and λ(x) are sought that, for a given
erasure channel δ, satisfy the condition

δλ(1 − ρ(1 − x)) < x, 0 < x < δ (2.3)

so that with high probability, decoding on a BEC channel with erasure
probability at most δ will be successful, i.e., the probabilities the nodes are
unresolved decrease with iterations.

Notice that as a polynomial with positive coefficients λ(x) is an increasing
function on (0,1) and hence is invertible and letting x = δλ(1 − y) the
condition can be written as

ρ(1 − δλ(1 − y)) ≥ 1 − λ−1(λ(1 − y)) = y on (0,1) (2.4)

and the equivalent (dual) condition to Equation 2.3 is [29]

ρ(1 − δλ(1 − y)) > y, 0 < y < 1.

Equivalently by letting y = ρ−1(1 − x) this equation can be written as

δλ(1 − ρ(y)) < 1 − y, y ∈ [0,1) (2.5)

(which is also obtained by substituting y = 1 − x in Equation 2.3). Degree
distributions that satisfy these conditions for as large a value of δ as possible
are sought, where δ is the probability of erasure on the channel. Thus with
high probability, for (λ(x),ρ(x)) distributions that satisfy these conditions, the
decoding will complete for as high a channel erasure probability as possible.
Indeed, distributions that result in a δ satisfying a code rate R = 1 − δ achieve
capacity on a BEC.

The informal development for the condition in Equation 2.3 can be made
formal. The approach in [7, 8, 10, 23, 24] is outlined. Let �(i)t and r(i)t be the
fraction of left (resp. right) edges at stage (time) t of the algorithm of degree
i, where by fraction is meant the actual number of left (resp. right) divided
by the original total number of edges E. A discrete time differential equation
is developed in terms of the degree distributions and solved. In particular it is
shown ([10], proposition 1) that the fraction of degree one right edges is

r1(x) = δλ(x)[x − 1 + ρ(1 − δλ(x))]

where x is defined via dx/dτ = −x/e(τ) where e(τ) is the fraction of edges
remaining at time τ . Thus the decoding continues as long as r1(τ) > 0 which
leads to the proposition:

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

2.2 Tornado Codes and Capacity-Achieving Sequences 39

Proposition 2.4 ([10], proposition 2) Let B be a bipartite graph that is chosen
at random with edge degree distributions λ(x) and ρ(x). Let δ be fixed so that

ρ(1 − δλ(x)) > 1 − x, x ∈ (0,1]. (2.6)

For all η > 0 there is some k0 such that for all k ≥ k0, if the k (left) message
bits of C(B) are erased independently with probability δ, then with probability
at least 1 − k2/3 exp(− 3

√
k/2) the recovery algorithm terminates with at most

ηk message bits erased.

Notice the proposition only gives an upper bound on the number of erasures
remaining after the algorithm terminates.

The result can be used to determine suitable distributions to ensure there
is at least one check node available of degree one for the completion of the
algorithm. Returning to Tornado codes, the following conclusion can be shown
as a condition on the degree distributions:

Theorem 2.5 ([10], theorem 2) Let k be an integer and suppose that

C = C(B0, . . . ,Bm,C0)

is a cascade of bipartite graphs where B0 has k variable nodes. Suppose each
Bi is chosen at random with edge degrees specified by λ(x) and ρ(x) such that
λ1 = λ2 = 0 and suppose that δ is such that

ρ(1 − δλ(x)) > 1 − x, 0 < x < 1.

Then, if at most a δ-fraction of the coordinates of an encoded word in C are
erased independently at random, the erasure-decoding algorithm terminates
successfully with probability 1 −O(k−3/4) and does so in O(k) steps.

The O(k) complexity follows from the fact the average node degree is
a constant. Recall that if the probability of an erasure on the BEC is δ,
the capacity of the channel, the maximum rate at which information can be
transmitted through the channel reliably, is R = 1 − δ, or conversely, the
maximum-erasure rate that a code of rate R may be used reliably on a BEC is
δ = 1 − R. The following result shows this:

Theorem 2.6 ([10], theorem 3) For any rate R with 0 < R < 1, any ε with
0 < ε < 1 and sufficiently large block length n, there is a linear code and a
decoding algorithm that, with probability 1 − O(n−3/4), is able to correct a
random (1 − R)(1 − ε)-fraction of erasures in time proportional to n ln(1/ε).

Note that this result achieves the goal of a linear-time (in code length)
decoding algorithm. Thus the challenge is to devise a distribution pair

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

40 2 Coding for Erasures and Fountain Codes

(λ(x),ρ(x)) such that the rate R of the corresponding code (the related
bipartite graph) is such that the code is able to correct a fraction of 1 − R
erasures, asymptotically on average. Distribution pairs that achieve this
relationship are referred to as capacity-achieving sequences.

The average node degrees on the left and right, aL and aR , were shown to be

aL =
(∑

i

λi/i

)−1

and aR =
(∑

i

ρi/i

)−1

.

The following theorem is of interest:

Theorem 2.7 ([27], theorem 1) Let G be a bipartite graph with distributions
(λ(x),ρ(x)) and let δ be a positive number such that

δλ(1 − ρ(1 − x)) ≤ x, 0 < x ≤ δ.

Then

δ ≤ aL

aR
(1 − (1 − δ)aR).

It is also of interest to note ([27], lemma 2) that if λ and ρ are polynomials
satisfying the above with the above notation, then δ ≤ ρ′(1)/λ′(1). Thus the
distribution pair determines the rate of the code and this result determines a
bound on how close it will be to achieving capacity in the sense it gives a
bound on the erasure-correcting capability of the code. In addition it is of
interest to find good degree distributions so as to yield as large a value of
erasure probability δ as possible.

We return to the notion of a Tornado code which is a cascade of graphs
each of whose distributions satisfy the above conditions. They are referred to
as Tornado [2] as in practice it often occurs that as the substitution process
progresses (recovery of variable nodes by check nodes of degree one), the
decoding process typically proceeds slowly until the resolution of one more
variable node results in the whole set of variable nodes being resolved quickly.

To summarize, the arguments that led to the conditions Equations 2.3 and
2.4 say that under certain conditions on the edge distributions, the probability
of a node not being resolved by a certain iteration decreases with the number
of iterations and hence tends to zero and to complete decoding. The results
depend only on edge distributions and hence can apply also to the Tanner
graph representation of a code. The decoding algorithm is equivalent to that
of Tornado codes and, as noted, the crucial property is to have check nodes of
degree one with high probability at each iteration, which the stated edge degree
distributions tend to fulfill.

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

2.2 Tornado Codes and Capacity-Achieving Sequences 41

The fact that the differential equation/martingale approach to the decoding
problem and this rather different approach leads to the same conditions is an
interesting confirmation of the results.

Examples of Capacity-Achieving Distributions

Numerous works give examples of pairs of distributions (λ(x),ρ(x)) that
satisfy the above conditions. Recall that the average left and right degrees of a
graph with edge distributions (λ(x),ρ(x)) are 1/

(∑
i λi/i

)
and 1/

(∑
i ρi/i

)(
or 1/

∫ 1
0 λ(x)dx and 1/

∫ 1
0 ρ(x)dx

)
. The rate R of the code is at least

1−
(∫ 1

0 ρ(x)dx/
∫ 1

0 λ(x)dx
)

(depending on the corresponding matrix having

linearly independent rows). It can be shown [28] that for given (λ(x),ρ(x))
distributions satisfying condition of Equation 2.3, δ is always less than or
equal to 1 − R for R the rate of the resulting code derived from the edge
distributions. For the formal definition of a capacity-achieving sequence we
use the following:

Definition 2.8 ([28], section 3.4) An edge distribution sequence (λ(x),ρ(x))
is called capacity achieving of rate R if

(i) the corresponding graphs give rise to codes of rate at least R;
(ii) for all ε > 0 there exists an η0 such that for all η > η0 we have

λ(1 − ρ(1 − x)) < x for x ∈ (0,(1 − R)(1 − ε))

where η is the length of the probability distributions λ and ρ.

Example 2.9 The first example of such distributions, cited in numerous
works (e.g., [2, 10, 27, 28, 29]) is referred to as heavy-tailed/Poisson sequences
for reasons that will become clear.

Let D be a positive integer (that will be an indicator of how close δ can be
made to 1 −R for the sequences obtained). Let H(D) =∑D

i=1 1/i denote the
harmonic sum truncated at D and note that for large D, H(D) ≈ ln(D). The
two distributions parameterized by the positive integer D are

λD(x) = 1

H(D)

D∑
i=1

xi/i and ρD(x) = eμ(x−1) (D terms).

Here μ is the solution to the equation

1

μ
(1 − e−μ) = 1 − R

H(D)

(
1 − 1

D + 1

)

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

42 2 Coding for Erasures and Fountain Codes

and such edge distributions give a code of rate at least R and note the average
left degree is aL = H(D)(D + 1)/D and

∫ 1
0 λD(x)dx = (1/H(D))(1 −

1/(D + 1)). The right degree edge distribution is the truncated Poisson
distribution. It can also be established that

δλD(1 − ρD(1 − x)) = δλD(1 − e−μx)
≤ −δ
H(D)

ln(e−μx)

= δμx

H(D)
.

For the right-hand side of the last equation to be at most x it is required that

δ ≤ H(D)/μ
(δ is the largest erasure probability possible on the channel possible for the
conditions) which can be shown to be equal to

(1 − R)(1 − 1/(D + 1))/(1 − e−μ).
That this pair of distributions satisfies condition

(1 − R)(1 − 1/D)λD(1 − ρD(1 − x)) < x, 0 < x < (1 − R)(1 − 1/D),

is shown in [28]. (Note: Such codes are referred to as Tornado codes there in
contrast to the definition of such codes used here.)

Example 2.10 Another example from [27, 28] is the following: Recall the
general binomial theorem

(x + y)α =
∞∑
j=0

(
α

j

)
xjyα−j

for α any real or complex number and the fractional binomial coefficients are
given by (

α

n

)
= α(α − 1) · · · (α − (n− 1))/n! .

Consider the right regular graphs with the check nodes all of degree a, for a
positive integer a ≥ 2 and the distributions

λa,n(x) =
∑n−1
k=1

(
α
k

)
(−1)k+1xk

1 − n(α
k

)
(−1)k+1

and ρa(x) = xa−1

where α = 1/(a− 1) is real, positive and noninteger. Notice that the fractional
binomial coefficients alternate in sign for α < 1 and hence the coefficients
of the distribution λa,n are positive. It is convenient to introduce a parameter

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

2.2 Tornado Codes and Capacity-Achieving Sequences 43

ν such that 0 < ν < 1 by n = ν−1/α (ignoring integer constraints). It is
shown in ([27], proposition 2 and theorem 2), that for the code rate defined as
R = 1 − aL/aR and aR = a = (α + 1)/α

δ

1 − R ≥ 1 − να+1/α = 1 − νaR .

As ν < 1 this suggests δ ≈ 1 − R for large aR , approaching capacity.
The properties of these distributions and the sense in which they are

asymptotically optimal and satisfy the conditions such as Equation 2.3 or 2.4
is discussed in [27]. Notice in this case the graphs are right regular – all right
check nodes of the same degree.

Example 2.11 A variety of techniques have been developed to determine
capacity-achieving sequences, including a linear programming approach and
density evolution, a method used effectively in the analysis of LDPC codes
(e.g., see [10, 34] and Chapter 3).

As an example, the following distribution pair given in [34] was found using
density evolution:

λ(x) = 0.29730x + 0.17495x2 + 0.24419x5 + 0.28353x19

ρ(x) = 0.33181x6 + 0.66818x7

The Example 2.10 is interesting in that one is able to construct good
sequence pairs with one of the pair being a monomial, i.e., all right nodes
have the same degree (right regular). However, it is shown in [7] that sequence
pairs which are both monomials (hence biregular graphs) perform poorly.

The relationship of these results on the BEC to those obtained for other
channels, most notably the BIAWGN using belief propagation as discussed
in Chapter 3, is of interest. To briefly note the approach taken there, the pdf
p� of the log likelihood ratios (LLRs) (not the same p� used in the previous
analysis) passed during the decoding process with the code graph described
by the distribution pair (λ(x),ρ(x)) satisfied the recursion (Equation 3.28 of
Chapter 3) is shown there to satisfy

p� = p0 ⊗ λ(�−1(ρ�(p�−1))), � ≥ 1

where ⊗ indicates convolution and � is an operator introduced in Chapter 3
that gives the pdf of it argument. It should be noted the arguments in that
chapter will be likelihood ratios as messages passed on the decoding graph
and these are random since they depend on received random messages.

Applying this equation to the erasure channel, the pdf [28] is a two-point
mass function with a mass of p� at 0 and mass 1 − p� at ∞. Performing the

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

44 2 Coding for Erasures and Fountain Codes

convolutions with such mass functions in the above equation can be shown to
yield the result

p� = δλ(1 − ρ(1 − p�−1))

where, as before, δ is the channel erasure probability. This is essentially the
Equation 2.2 obtained by very different means, an interesting confirmation.

2.3 LT and Raptor Codes

The formulation of the Tornado codes of the previous section introduced
(at least) two novel ideas: the notion of deriving edge probability distributions
to generate bipartite code graphs where certain simple decoding algorithms
could prove effective. In a sense to be discussed these ideas led to the notion
of fountain codes.

To initiate the discussion, consider the following simple situation. A server
has k information packets of data of some fixed number of bits to be
downloaded over a network to a large number of users. The users are interested
in receiving a complete set of the k packets. Packets can be XORed. One
possibility to achieve this download is to simply forward the packets on the
Internet with each user obtaining the packets in some order. However, due to
imperfections in the Internet such as buffer overflow or node servers failing,
it is likely some users will miss one or several of the packets leading to the
requirement of some feedback mechanism to the source where each user is able
to request retransmission of their missing packets. This can lead to inefficient
operation and congestion (implosion) on the network.

A more interesting possibility is for the server to first code, each coded
packet consisting of the XOR of a random selection of information packets.
This notion will be the basis of fountain codes.

Consider first a (not very efficient) case of random fountain coding where
each of the k information packets is included in the formation of a coded packet
with a probability of 1/2 independently and transmitted on the Internet, i.e., the
coder chooses uniformly at random a selection of information packets, XORs
them together to form a coded packet which is transmitted on the network.

A user now must gather a sufficient number of any of the coded packets to
allow the solution of the set for the original information packets. In effect the
user must gather a set of (k +m) coded packets for m a small positive integer
to allow for a full-rank random k×(k+m)matrix equation to be formed which
is necessary to guarantee solution. The fact that any of the coded packets can
be used is a positive feature of the scheme. However, solving for the original

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

2.3 LT and Raptor Codes 45

k information packets involves the solution of a k × (k + m) binary random
matrix, say by Gaussian elimination, an operation that is O(k3) in complexity
which, since k might easily on the order of several thousand be far higher than
is typically of interest. By Equation A.8 of Appendix A the probability such a
matrix is of full rank,Qk,k+m (hence solvable by Gaussian elimination), is

0.999 < Qk,k+10 < 0.999 + ε, ε < 10−6.

Such codes are generally referred to as fountain codes for the obvious reason.
They are also referred to as rateless codes as their design involves no particular
rate in the sense of the design of block codes.

A possible remedy to the large complexity of the Gaussian elimination
decoding argument might be as with the Tornado codes and form a coding
graph in the obvious manner. The headers of the coded packets contain the
information as to which information packets were XORed to form the coded
packet allowing the code graph to be formed consisting of information nodes
on the left corresponding to information packets (nodes) and code packets
(nodes) on the right. There is an edge between an information packet and a
code packet if the information packet is involved with the formation of the
code packet. The following decoding algorithm is as for Tornado codes.

Algorithm 2.12 If there is a coded node of degree 1, XOR the contents of the
coded node to the neighbor information node thus resolving that information
node. XOR this information node to its other neighbor coded nodes and delete
all edges involved (decreasing the number of unresolved information nodes by
one and the number of coded nodes not yet used by at least one).

This algorithm is simple with linear decoding complexity. Notice that if the
k × (k + m) matrix formed, corresponding to the graph, is of full rank (k),
Gaussian elimination is guaranteed to provide a solution for the k information
packets. On the other hand the decoding algorithm above, while very simple
with linear complexity, is unlikely to run to completion and will almost
certainly fail.

The remedy for this situation is not to choose the packets for XORing to
form a coded packet uniformly at random but rather formulate a probability
distribution for the number of information packets to be XORed, much as for
a single section of the Tornado code algorithm, so that with high probability,
the previous simple decoding algorithm will be successful, i.e., at each stage
of decoding find a check node of degree one all the way to completion. With
such a distribution the simple (linear complexity) decoding algorithm can be
used rather than the computationally expensive Gaussian elimination. This is
the genius behind the LT (Luby transform) [6] fountain codes discussed below.

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

46 2 Coding for Erasures and Fountain Codes

LT Codes

The approach of Tornado codes and capacity-achieving sequences of the
previous section suggests the following possibility [6, 31]. As above, assume
there are k information packets to be coded (to give coded packets). A discrete
probability distribution (the literature typically uses �(x) for this distribution,
a convention which is followed here)

�i, i = 1,2, . . . ,k,
k∑
i=1

�i = 1, �(x) =
k∑
i=1

�ix
i

is to be chosen and used in the following manner to form coded packets: for
each coded packet, the distribution is first sampled – if d is obtained (with
probability �d , d ∈ [k]) – then d distinct information packets are chosen
uniformly at random from among the k and XORed together to form a coded
packet to be transmitted on the network. The choice of packets is stored in
the coded packet header. The process is repeated as required. As noted, such a
coding process is referred to as a fountain code or as a rateless code since there
is no specific rate associated with the process of forming coded words. It is the
form of the distribution that restores the complexity of decoding to linear and
makes the above decoding algorithm effective.

The receiver gathers slightly more than k, say k + ε(k) (to be discussed),
coded packets from the network and forms the bipartite graph with k informa-
tion packet nodes (considered as initially empty registers), on the left, denoted
x1,x2, . . . ,xk (to be determined by the decoding algorithm) and k + ε(k)

received coded packets on the right, denoted y1,y2, . . . ,yk+ε(k).
The problem is to choose the distribution �(x) to have the probability the

decoding algorithm is successful – runs to completion. Clearly at least one
check node of degree one is required at each stage of decoding until all infor-
mation symbols are found. If this is not the case the decoding algorithm fails.
Clearly a balance is needed in the sense a sufficient supply of degree one coded
nodes is required at each stage to make the decoding algorithm robust and suc-
cessful while too many degree one nodes will make it inefficient and give poor
performance. The analysis is somewhat intricate and the reader is referred to [6,
31, 33] for details. The essence of the results is described here without proofs.

To discuss the situation further, the behavior of the algorithm as it iterates –
at each stage finding a coded node of degree one, transferring the coded packet
associated with such a node to the connecting information node and then
XORing that packet to all neighbor check nodes and removing the information
node and all its edges. The terms “node,” “symbol” and “packet” are used
interchangeably.

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

2.3 LT and Raptor Codes 47

Some definitions are needed. The number of coded symbols gathered for
decoding, beyond the number of information symbols, is termed the overhead
of the decoding algorithm. Thus if k(1 + εk) coded packets are used the
overhead is kε. A simple argument ([33], proposition 2.1) shows that if an
ML decoder is to succeed with high probability for an overhead fraction ε that
tends to zero with k, then�1 has to converge to zero. At stage i of the algorithm
define the output ripple (or simply ripple) as the set of coded nodes of degree
one. At this stage, since one information symbol (packet) is released at each
stage of the algorithm, there are k − i undecoded (or unresolved) information
nodes remaining at stage i. A coded node is said to be released at stage i + 1
if its degree is greater than one at stage i and equal to one at step i + 1. To
calculate the probability [30, 31, 33] a coded node of initial degree d is released
at stage i + 1 it is assumed the original neighbor nodes of a coded node are
chosen with replacement – convenient for the analysis and having little effect
on the code performance. The probability a coded node, originally of degree d,
has only one neighbor at stage i + 1 among the k − (i + 1) information nodes
not yet recovered and that all of its other (d − 1) information node neighbors
are in the set of recovered information nodes is

d

(
k − (i + 1)

k

)(
i + 1

k

)d−1

(this is where the choosing with replacement assumption appears).
Another way of viewing this formula is to reverse the situation and suppose

the set of variable (information) nodes resolved at the i-th iteration is Vi,
| Vi |= i and at the (i + 1)-st iteration is Vi+1 ⊃ Vi, | Vi+1 |= i + 1. We
ask what is the probability the edges of a constraint (coded) node c of original
degree d are chosen so it is released at the (i + 1)-st iteration with these sets
of resolved variable nodes. Thus at iteration i there are at least two variable
(information) neighbors of c unresolved and at iteration i + 1 there is only
one unresolved – c is in the output ripple at that stage. There are d ways of
choosing the edge from c that will be unresolved at the (i + 1)-st iteration and

the probability it is unresolved then is
(

1 − i+1
k

)
. For the constraint node c to

be released at the i-th iteration it has (d − 1) edges attached to resolved nodes
at the (i + 1)-st iteration but not all of these were resolved at the i-th iteration.
The probability of this is((

i + 1

k

)d−1

−
(
i

k

)d−1
)

.

Thus, as in the above formula, the probability a coded node, originally of
degree d, is released at stage i + 1 of the decoding is approximately

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

48 2 Coding for Erasures and Fountain Codes

d

(
1 −

(
i + 1

k

))((
i + 1

k

)d−1

−
(
i

k

)d−1
)

.

Multiplying this expression by �d and summing yields

Pr(output symbol is released at stage i + 1)

=
(

1 − i + 1

k

)(
�′
(
i + 1

k

)
−�′

(
i

k

))
.

Recalling the approximation for a smooth continuous function (like polynomi-
als) f ′′(x) ≈ (f ′(x +�)− f ′(x)

)
/� for small � it is clear that

�′
(
i + 1

k

)
−�′

(
i

k

)
≈ 1

k
�′′
(

1

k

)
and the expected number of coded nodes released at step i + 1 is n times this
amount (n = k + ε(k), the number of coded packets collected)

n

k

(
1 − i + 1

k

)
�′′
(
i

k

)
. (2.7)

If one sets x = i/k, if the probability the last coded symbol is released at
stage k + ε(k) = n is one, this is equivalent to the equation

(1 − x)�′′(x) = 1, 0 < x < 1

which, with the required condition that �(1) = 1, has the solution

�(x) =
∑
i≥2

xi

i(i + 1)
.

This is referred to as the limited degree distribution [33]. Clearly this distribu-
tion is useless for our purpose since it produces no coded nodes of degree
one and decoding could not start. In addition, the distribution is infinite –
the needed distribution should produce no coded nodes of degree greater
than k, the number of information nodes assumed. The analysis, however, is
instructive. The following modified distribution is suggested [6]:

Definition 2.13 The (ideal) soliton distribution is defined as

�soli =
{

1
k
, i = 1

1
i(i−1), i = 2,3, . . . ,k.

(2.8)

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

2.3 LT and Raptor Codes 49

The term soliton arises in a refraction problem in physics with similar
requirements. The distribution is associated with the polynomial

�sol(x) = x

k
+

k∑
i=2

xi

(i − 1)i
.

That this is a distribution (probabilities sum to unity) follows readily by an
induction argument or by observing that 1/(i(i − 1)) = 1/(i − 1)− 1/i.

Notice that this distribution has a coded node of expected degree

k∑
i=1

i�soli = 1

k
+

k∑
i=2

i
1

i(i − 1)
=

k∑
i=1

1

i
≈ ln(k)

which is the first k terms of the harmonic series which is well approximated by
ln(k) for large k. This is the minimum possible to give a reasonable possibility
of each information node being involved with at least one coded node in the
following sense. The problem is equivalent to throwing n balls (the coded
nodes) into k cells (the information nodes) and asking for the probability
there is no empty cell (although with replacement). This is just one less the
probability at most (k − 1) cells are occupied which is

1 −
(
k

k − 1

)(
k − 1

k

)n
.

If it is wished to have a probability of 1 − α to have no cell empty (all
information nodes covered) is

1 − α = 1 − k
(

1 − 1

k

)n
or

(
1 − 1

k

)n
= α

and in the limit

lim
k−→∞

(
1 − 1

k

)k·(n/k)
−→ exp (−n/k) ≈ α/k or n ≈ k log(k/α).

Thus for the encoding process to cover each information symbol at least once
with probability at least 1−α, the average degree of the approximately k coded
nodes must be at least log(k/α).

As discussed below, the ideal soliton distribution will prove to be unsatis-
factory for several reasons. One problem is that the variance of the number
of coded nodes in the ripple at each stage of the decoding is so large that
the probability there is no node of degree one at each stage is too high.
Nonetheless it does have some interesting properties. If the probability that
a coded node of initial degree i is released when there are L information nodes
remaining unrecovered is denoted r(i,L) and r(L) is the overall probability of
release [6],

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

50 2 Coding for Erasures and Fountain Codes

r(L) =
∑
i

r(i,L).

Then for the ideal soliton distribution it is shown ([6], proposition 10) that
r(L) = 1/k and the probability a coded node is released at each stage of
decoding is r(L) = 1/k, i.e., the probability of release is the same at each
stage of decoding.

For the following let η (δ in [6], used for erasure probability here) be the
target probability the decoding algorithm fails to complete decoding. In an
effort to improve the performance of the ideal soliton distribution the robust
soliton distribution was proposed, defined as follows ([6], definition 11):

Definition 2.14 The robust soliton distribution denoted �rs is defined
using the ideal Soliton distribution and the function τi as follows. Let R =
c
√
k ln(k/η) for a constant c > 0 and define

τi =
⎧⎨⎩
R/ik for i = 1,2, . . . ,k/R − 1
R ln(R/η)/k for i = k/R
0 for i = k/R + 1, . . . ,k.

Then the robust soliton distribution is

�rsi = (�soli + τi)/β, i = 1,2, . . . ,k (2.9)

for the normalizing constant β =∑k
i=1(�

sol
i + τi).

The rationale for this distribution is that it tends to maintain the size of the
ripple, the number of coded nodes of degree one at each stage of decoding,
preventing the size to fall to zero at any stage before the end – which would
lead to decoding failure.

The distribution chosen for the formation of the coded packets is critical
for performance of the decoding algorithm. The relationship between the
distribution and the number of extra coded packets (beyond the number of
information packets k) required to achieve a given error probability (the
probability the decoding fails to complete) is complex. For the Robust Soliton
distribution it is shown ([6], theorems 12 and 17) that for a decoder failure
probability of η an overhead of K = k + O(√k · ln2(k/η)) is required and
that the average degree of a coded node is O(ln(k/η)) and that the release
probability when L information nodes have not been covered is of the form
r(L) ≥ L/((L − θR)K),L ≥ R for some constant θ and R as in the above
definition.

It has been observed above the average degree of a coded node under the
Robust Soliton distribution is O(log(k)) (for constant probability of decoding
error η) and hence each coded symbol requires O(log(k)) operations to

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

2.3 LT and Raptor Codes 51

produce it and the decoding operation is of complexity O(k log(k)). For very
large k a decoder with linear complexity would be more desirable and this will
be possible with the Raptor codes discussed in the next section.

The literature on the analysis of aspects of decoding LT codes is extensive.
The references [4, 13] are insightful. A detailed analysis of the decoding error
probability is given in ([31], section 3).

Shokrollahi [30] defines a reliable decoding algorithm as one that can
recover the k information symbols from any set of n coded symbols and errs
with a probability that is at most inversely polynomial in k, i.e., a probability
of the form 1/kc. Recall the overhead of a decoding algorithm is the number
of coded symbols beyond k needed to achieve the target probability of error.
A random LT code is one with a uniform distribution on the choice of
information symbols to combine for a coded symbol. This corresponds to the
choice of the distribution

�(x) = (1 + x)k · (1/2k)
and corresponds to the random analysis given earlier in this section. It can be
shown ([30], propositions 1 and 2) that for any LT code with k information
symbols there is a constant c such that the graph associated with the decoder
has at least ck log(k) edges and that any random LT code with k information
symbols has an encoding complexity of k/2 and ML decoding is a reliable
decoder with an overhead of O(log(k)/k). ML is Gaussian elimination for the
k × (k +O(log(k)/k)) matrix formed at the decoder with complexity O(k3).
As noted previously in general BP (the algorithm described above) is not ML –
indeed it is possible that ifK coded symbols are gathered that the k×K matrix
can be of full rank k (for which ML decoding would be successful) and yet the
BP algorithm fail to completely decode (run out of coded nodes of degree one
before completing). However, the low computational requirements of the BP
decoding algorithm and its error performance are impressive.

The implication of these comments is that it will not be possible to have
a reliable LT decoder and achieve linear time encoding and decoding. The
development of the Raptor codes of the next section shows how this goal can
be achieved by a slight modification of LT codes.

Raptor Codes

The idea behind Raptor codes (the term is derived from RAPid TORnado)
is simple. It was observed that decoding failures for LT codes tend to occur
toward the end of the decoding process when there are few information
symbols left unresolved. This suggests introducing a simple linear block

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

52 2 Coding for Erasures and Fountain Codes

erasure-correcting code to correct the few remaining erasures after the LT
decoding fails.

For Raptor codes the k information symbols/packets are first precoded with
an efficient simple (easy to decode) linear block erasure-correcting Cn =
(n,k,d)2 code and then these n packets are LT coded. Note this introduces
(n − k) parity packets – i.e., the parities of the code Cn are formed across
the k information packets. For decoding, some n(1 + ε) of the LT coded
packets are gathered for LT decoding, as before. Using the LT decoding on the
precoded bits, the decoding might (typically) stall with a few uncoded packets
left undecoded (no more coded nodes of degree one in the ripple). These can
then be decoded with the linear erasure-correcting code Cn. It is also desired
to have linear coding and decoding complexity and because of the reduced
requirements on the LT decoding, this will be possible. Recall from the above
discussion that a reliable decoding algorithm for LT codes must have at least
O(log k) information node degrees and an overhead of O(log(k)/k).

Much of the development and commercial deployment of Raptor codes
is due largely to the work of Michael Luby and Amin Shokrollahi and their
colleagues although the key idea behind them was independently found in the
work of Maymounkov [15, 16]. Both of the papers [30] and [15] are important
reading.

A Raptor code then has parameters (k,Cn,�(x))where Cn is a binary linear
(n,k,d)2 erasure-correcting code and �(x) is a distribution on n letters. For
simplicity� is used in the remainder of this chapter or�D when the parameter
D is needed. The coordinates of the code Cn will be an (n,k,d)2 code and will
produce n intermediate packets from the k information packets and (n − k)
parity packets. This code is not specified further – as noted its requirements
are minimal in that a variety of simple codes, capable of correcting a few
erasures with linear complexity, can be used. It is used essentially to correct
a few erasures if the LT decoding leaves a few nodes unresolved (viewed as
erasures) toward the end of its decoding process. That is, if the LT decoding
does not quite complete to the end, leaving a few unresolved packets, the code
Cn completes the decoding, treating the unresolved packets as erasures. The
output of the LT code will be referred to as the coded packets and (n,�D(x))
LT coding, as before.

It will be important to recognize that while LT codes cannot have linear
decoding complexity, using the LT decoding process with an appropriate dis-
tribution to decode up to a few remaining erasures can have linear complexity.

As before, a reliable decoding algorithm for the Raptor code will have a
probability of error of inverse polynomial form, 1/kc for some positive con-
stant c. Such codes will be analyzed with respect to their space requirements,

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

2.3 LT and Raptor Codes 53

overhead and cost or complexity. The two extremes of such codes are the LT
codes where C is the trivial (k,k,1)2 code and the precode only (PCO) code
where there is no LT code. The decoding cost of such a code is the expected
number of arithmetic operations per information symbol. The overhead of
the code is the number of coded symbols beyond k needed to recover all
information symbols. The Raptor code (k,Cn,�D(x)) is thought of in terms
of three columns of nodes or symbols (the left part of the previous figure):

• a left column of k information packets (associated with information
packets);

• a middle column of intermediate packets consisting of the k information
packets and (n− k) check packets computed using the linear
erasure-correcting code Cn = (n,k,d)2;

• a right column of N = n(1 + ε) coded packets consisting of LT coding of
the intermediate packets using the distribution �D(x).

A representation of the Raptor encoder/decoder is shown in Figure 2.4.
In analyzing Raptor codes it will be assumed ([30], proposition 3) the

precode Cn can be encoded with complexity βk for some constant β > 0 and
that there is an ε > 0 such that Cn can be decoded over a BEC with erasure
probability 1 −R(1 + ε) with high probability with cost/complexity γ k. With
such assumptions Raptor codes will be designed with constant encoding and
decoding cost per symbol (hence both of overall complexity O(k)), and their
space consumption is close to one and their overhead close to zero.

k
information

packets

n

intermediate
packets

n(1 + ε)
LT coded

received packets

n LT decoded
intermediate

packets
with erasures

k decoded
information

packets

Cn encode
= (n,k,d)2

⇒

LT encode

⇒
(n,�D(x))

⇒

LT decode

⇒

Cn decode

⇒

Raptor encoder Raptor decoder

Figure 2.4 Basic structure of a Raptor code (k,Cn,�D(x)) system – encoder/
decoder – graph edges not shown for clarity

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

54 2 Coding for Erasures and Fountain Codes

We discuss the section VI of [30] on Raptor codes with good asymptotic
performance. The arguments needed to achieve linear encoding and decoding
require a delicate balancing of parameters.

The distribution used for the LT coding ([30], section VI) is a slightly
modified ideal soliton:

�D(x) = 1

μ+ 1

(
μx +

D∑
i=2

xi

i(i − 1)
+ xD+1

D

)
=

D∑
i=1

�ix
i (2.10)

where μ = (ε/2) + (ε/2)2 and D = �4(1 + ε)/ε�. That this is in fact a
distribution is seen by observing

D∑
i=2

1

i(i − 1)
=

D∑
i=2

(
1

i − 1
− 1

i

)
= 1 − 1

D

and hence it is a distribution for any positive number μ and positive integer
D > 2. It will be shown later that for constant D this distribution will yield
coded nodes with constant average degree (as opposed to being a function of
k) which allows the overall algorithm to have a linear complexity. With this
distribution we have:

Lemma 2.15 ([30], lemma 4) There exists a positive real number c (depending
on ε) such that with error probability at most e−cn any set of (1 + ε/2)n + 1
LT coded symbols with parameters (n,�D(x)) are sufficient to recover at least
(1 − δ)n intermediate symbols via BP decoding where δ = (ε/4)(1 + ε).

The proof of this important lemma is straightforward although it requires
some interesting manipulations. Some discussions are given to assist – the
lemma itself is not proved.

The right-degree node (packet) distribution is by assumption �D(x) and
hence the right edge degree distribution is

ω(x) = �
′
D(x)

�
′
D(1)

.

Recall there are n input (intermediate – or left nodes for this argument)
nodes to the LT coding process and N = (1 + ε/2)n + 1 coded (right) nodes
for the decoding. To compute the left edge degree distribution ι(x), let α be the
average degree of an output node (LT coded) node which is α = �′

D(1). Let u
be a left node andw an output (right) node. The probability that u is a neighbor
of w, since on average w has α input neighbors, is α/n. Assuming each output
node has this same probability of having u as a neighbor independently, on
average the degree of u will have a binomial distribution, i.e., the probability
u has degree � is given by

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

2.3 LT and Raptor Codes 55

(
N

�

)(α
n

)� (
1 − α

n

)N−�
, N = n(1 + ε/2)+ 1

and the generating function of the degree distribution of the left input nodes
is thus

L(x) =
N∑
�=0

(
N

�

)(
α

n

)�(
1 − α

n

)N−�
x� =

(
1 − α(1 − x)

n

)N
. (2.11)

The edge distribution is ι(x) where ι(x) = L′(x)/L′(1) and

ι(x) =
(

1 − α(1 − x)
n

)(1+ε/2)n
.

For these edge distributions Equation 2.5 is equivalent to the condition that

ι(1 − ω(1 − x)) < 1 − x for x ∈ [0,1 − δ].
Since limn→∞(1−b/n)n −→ exp(−b) and that for 0 < b < m, (1−b/m)m <
exp(−b) then

ι(1 − ω(1 − x)) =
(

1 − α

n

�
′
D(1 − x)
�

′
D(1)

)(1+ε/2)n

< exp

(
−α
n

�
′
D(1 − x)
�

′
D(1)

(1 + ε/2)n
)

< exp(−(1 + ε/2)�′
D(1 − x)), since α = �′

D(1).

The above condition then reduces to showing that

exp
(
− (1 + ε/2)�′

D(x)
)
< 1 − x, x ∈ [0,1 − δ]. (2.12)

To establish this inequality using the form of �
′
D(x) of Equation 2.10 is a

technical development [10], which completes the proof of Lemma 2.15.
The analysis implies ([31], p. 79) that, asymptotically, the input ripple (the

expected fraction of input symbols connected to LT coded symbols of degree
one when a fraction of input symbols that have been recovered is x), is given by

1 − x − exp
(
− (1 + ε)�′

D(x)
)

. (2.13)

The analysis of [9] further gives the fact that if x0 is the smallest root
of Equation 2.13 in [0,1), then the expected fraction of input symbols not
recovered at the termination of the decoding process is 1 − x0. Thus if
distributions are designed so that x0 is maximized then [30] the associated
Raptor codes will have an average coded node degree of O(log(1/ε)) a linear

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

56 2 Coding for Erasures and Fountain Codes

decoding complexity ofO(k log(1/ε)) and a decoding error probability which
decreases inversely polynomial in k.

The conditions on the choice of erasure-correcting code Cn are simple:

(i) The rate of Cn is at least (1 + ε/2)(1 + ε).
(ii) The BP decoder for Cn used on a BEC can decode to an erasure

probability of δ = (ε/4)/(1 + ε) (which is half the capacity) and has
linear decoding complexity.

The details are omitted. The key theorem for Raptor codes is the following:

Theorem 2.16 ([30], theorem 5) Let ε be a positive real number, k an integer,
D = �4(1 + ε)/ε�, R = (1 + ε/2)/(1 + ε), n = k/R and let Cn be a block
erasure code satisfying the conditions above. The Raptor code (k,Cn,�D(x))
has space consumption 1/R, overhead ε and cost O(log(1/ε)) with respect to
BP decoding of both the precode Cn and LT code.

Lemma 2.15 shows the LT code with these parameters is able to recover at
least a fraction of (1 − δ) of the intermediate symbols and the erasure code is,
by assumption and design, to correct this fraction of erasures to recover the k
information symbols. It remains to show the cost is linear in k. The average
degree of coded nodes is (from Equation 2.10)

�
′
D
(1) = 1

μ+1

(
μ+

D−1∑
i=1

1
i
+ D+1

D

)
= 1 +H(D)/(1 + μ) = 1 + ln

(
1
ε · 4(1 + ε)

)
+ 1 = ln

(
1
ε

)
+O(ε)

where the standard upper bound on the truncated Harmonic series H(D) ≤
ln(D)+ 1 has been used. Thus the cost of encoding the LT code is O(ln(1/ε))
per coded symbol which is also the cost of LT decoding and also the cost of
decoding the code Cn by assumption. Notice the overhead of the LT code is
approximately ε/2.

It is noted again that the linear encoding/decoding here is achieved by
relaxing the condition that the LT have a high probability of complete
decoding – it is sufficient to achieve almost complete decoding and complete
the task with the linear code. This allows the average graph degree to be
constant rather than linear in log(k).

It has been observed [11] that if the graph that remains of the LT decoding
algorithm above when it stalls (all constraint node degrees greater than 1) is
a good enough expander graph, then a hard decision decoding algorithm can
proceed and with high probability complete the decoding process – thus all
errors can be corrected. A brief informal explanation of this “expander-based
completion” argument is given as it will also apply to certain LDPC arguments.

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

2.3 LT and Raptor Codes 57

A bipartite graph has expansion (α,β) if for all variable node subsets S of
size at most α, the set of neighbor constraint nodes is at least β |S |. For such
codes/graphs the following two simple decoding algorithms are proposed [36]:

Algorithm 2.17 (Sequential decoding) If there is a variable node that has
more unsatisfied constraint neighbors than satisfied, flip the value of the
variable node. Continue until no such variable exists.

Algorithm 2.18 (Parallel decoding) In parallel, flip each variable node that
is in more unsatisfied than satisfied constraints and repeat until no such nodes
exist.

It can be shown ([11], lemma 2, [36], theorems 10 and 22) that if the
graph remaining after LT decoding as discussed above is an (α,β) and is a
good enough expander (β > 3/4 + ε), then the above parallel and sequential
decoding algorithms will correct up to αn errors in linear time, n the number
of variable nodes. Comments on the probability the remaining graph will be
such an expander are given in [11] – and hence this switching of decoding
algorithms after the LT decoding will lead to complete decoding.

A brief interesting heuristic discussion of the analysis of the decoding
performance of Raptor codes from ([30], section VII) is given. The interme-
diate and coded edge degree distributions have been noted as ι(x) and ω(x),
respectively. Let pi+1 be the probability an edge in the decoding graph is of
right degree one at iteration i. The analysis of Section 2.2 shows that

pi+1 = ω(1 − ι(1 − pi)) (2.14)

and it is desired to design the distribution �(x) such that this quantity
decreases. Equation 2.11 giving the binomial moment generating function
(mgf), for large n, can be approximated with the standard Poisson mgf

ι(x) = exp(α(x − 1))

where α is the average degree of an input node. This function is also the input
node degree distribution since it is easily verified that

ι(x) = ι
′
(x)

ι
′
(1)

.

This analysis required the tree involved to have no cycles and the variables
involved being independent. Let ui denote the probability that an input symbol
is recovered at step i of the LT decoding algorithm. Then given an unresolved
input node of degree d (note input node degrees only change when the node is
resolved), then

ui = 1 − (1 − pi)d

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

58 2 Coding for Erasures and Fountain Codes

and averaging over the input degree distribution gives

ui = 1 − ι(1 − pi) = 1 − exp(−αpi).
Hence pi = − ln(1 − ui)/α.
From this relation and Equation 2.14 write

pi+1 = ω(1 − exp(1 − (1 − pi))) = ω(1 − exp(−αpi))
= ω(1 − exp(−α{− ln(1 − ui)}/α)) = ω(1 − (1 − ui))
= ω(ui)

and so, since αω(x) = (1 + ε)�′
D(x) it is argued [30, 31, 33] that, for k(1 +

ε) coded (output) nodes the expected fraction of symbols in the input ripple
is given, when the expected fraction of input nodes that have already been
recovered is x, by

1 − x − exp
(
− (1 + ε)�′

D(x)
)

.

It is further argued this fraction should be large enough to ensure continued
operation of the decoding algorithm to completion and it is suggested as a
heuristic that this fraction satisfy

1 − x − exp
(
− (1 + ε)�′

D(x)
)
≥ c
√

1 − x
k
, x ∈ [0,1 − δ], δ > c/

√
k.

Probability distributions that satisfy this criterion are found to be similar to the
Soliton distribution for small values of d and give good performance.

This has been a heuristic overview of aspects of the performance of Raptor
codes. The reader is referred to the literature for more substantial treatments
on both the performance analysis and code design using such techniques as
density evolution and linear programming, in [4, 5, 7, 8, 10, 11, 13, 14, 14, 18,
19, 21, 22, 24, 27, 29, 30, 31, 33, 34, 40].

The remainder of the section considers aspects of Raptor codes that prove
important in their application, including the notion of inactivation decoding,
the construction of systematic Raptor codes and their standardization.

Inactivation Decoding of LT Codes

It has been noted that BP decoding of LT codes is very efficient but is clearly
not ML since it is possible to construct a situation where the decoding process
will not complete due to the lack of degree one nodes, yet the decoding
matrix formed from the information symbols and received coded symbols is
of full rank – and hence ML, which is Gaussian elimination, would yield the
unique solution. For a k × (k +m) matrix, ML would have complexity O(k3)

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

2.3 LT and Raptor Codes 59

which for the file and symbol sizes considered here, would be far too large.
Inactivation decoding seeks to combine the two techniques in a manner that
can significantly decrease the overhead and probability of failing to decode for
a slight increase of decoding complexity. It takes advantage of the efficiency
of the BP decoding and the optimality of ML decoding to yield an efficient
version of an ML algorithm.

The following description of the inactivation decoding procedure is slightly
unconventional but intuitive. Consider a first phase of BP decoding on the
bipartite graph representing n coded symbols (received, known) and k informa-
tion symbols whose values are sought. To start with, the bipartite graph of the
set of k unknown information nodes (registers) is on the left and n = k(1 + ε)
received coded nodes (registers) is on the right. A coded node of degree one
is sought and if found, its value is transferred to the attached information node
and its value is then added (XORed) to all its right neighbors. The associated
edges involved are all deleted. The process continues until no coded node of
degree one is available. In this case suppose a coded symbol of degree two is
available (in a well-designed LT code this will often be the case). Referring to
Figure 2.5, suppose the register associated with the node contains the symbol
ri3 . If the information nodes that are neighbors are u and v, then create a
variable x1 (an inactivation variable) and assign a variable ri3⊕x1 to u and x1 to
v. The variable value ri3 ⊕x1 is then added symbolically to all coded neighbors
of u and x1 to all neighbors of v and the BP process is continued as though
the value of the variables are known. The process is shown in Figure 2.5.
The process continues and each time no node of degree one is available, a

unknown
information

packets

received
coded

packets
ri1

ri2

ri3

ri4

ri5

x1 ⊕ ri3

x1

unknown
information

symbols

received
coded

symbols
x1 ⊕ ri2 ⊕ ri1

x1 ⊕ ri2

ri3

ri2 ⊕ ri4

x1 ⊕ ri5

x1 ⊕ ri3

x1

Figure 2.5 One stage of inactivation decoding

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

60 2 Coding for Erasures and Fountain Codes

sufficient number of variables are introduced to allow the process to continue.
At the end of the process each information node is ”resolved” – although many
may contain unknown variables. Typically the number of unknown variables
is small. Suppose z inactivation variables have been introduced. Using the
original received values of the right nodes and the values assigned to the
information nodes, it is possible then to set up a linear relationship between
the nodes on the left containing inactivation variables and the known received
values on the right. These equations can then be solved, a process equivalent
to solving a z × z matrix equation of complexity O(z3). If the original
received nodes are equivalent to a full-rank system, the process is guaranteed
to be successful and is ML. However, since the number of inactivation
variables is typically quite small, this use of a combination of BP and ML
is typically far more efficient than performing ML on the original received
variables.

The above discussion gives an intuitive view of inactivation decoding. More
efficient versions are found in the literature, including [1, 12, 20, 33] as well
as the original patent description in [26].

Systematic Encoding

There are many situations where a systematic Raptor code is beneficial, i.e. one
that with the usual Raptor coding produces the original information symbols
among the coded output symbols. A natural technique might be to simply
transmit all the information symbols first and then the usual Raptor coded
symbols. This turns out not to be a good idea as it gives very poor error
performance and requires large overheads to make it work at all. A convincing
mathematical proof that this is so is given in [31].

A brief description of the more successful approach of [30] is noted.
The terminology of that work is preserved except we retain our notation
of information, intermediate and coded symbols/packets for consistency. As
before a packet is viewed as a binary word of some fixed length and the only
arithmetic operations employed will be the XOR of words or packets of the
same length. The approach is to determine a preprocessing of the information
packets in such a way as to ensure the original information packets are among
the Raptor encoded packets. Thus the Raptor encoding method, and the impact
of the distribution derived, is not disturbed ensuring that its promised efficiency
is retained. The process is somewhat involved.

First consider the usual Raptor encoding. Let x = (x1,x2, . . . ,xk) denote
the k information packets and consider the Raptor code (k,Cn,�D(x)). Let G

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

2.3 LT and Raptor Codes 61

be a binary (fixed) n× k generator matrix of the precode Cn assumed to be of
full rank.

To initiate the process k(1 + ε) LT encoded vectors are generated by sam-
pling �D(x) this number of times to combine packets (n-tuples chosen ran-
domly from F2

n) to generate the (k,�D(x)) coded vectors v1,v2, . . . ,vk(1+ε).
It will be assumed the n-tuples vi1,vi2, . . . ,vik are linearly independent over
F2. Let A be the k × n matrix with these independent n-tuples as rows and let
R = AG, an invertible k × k matrix.

To encode the k information packets x = (x1,x2, . . . ,xk), a vector whose
i-th component ([30], algorithm 11) is the information packet xi . Compute the
vector yt = (y1,y2, . . . ,yk)

t = R−1xt and encode these packets via the Cn
code as u = (u1,u2, . . . ,un) where ut = G · yt . From the packets vj (vectors)
introduced above compute the inner products

zi = vi · ut = (vi,1,vi,2, . . . ,vi,k) ·

⎡⎢⎣u1
...

uk

⎤⎥⎦ , i = 1,2, . . . ,k(1 + ε)

which are the output packets. Notice that from the generating process for the
packets vj this last operation is a (k,�D(x)) LT coding of the coded packets
uj . Further packets zk(1+ε)+1,zk(1+ε)+2 . . . are formed by (k,�D(x)) coding
of the uj packets. Thus these output packets are LT codings of the yj packets.

The point of the process is to notice that the output packet zij = xj,j =
1,2, . . . ,k. To see this ([30], proposition 12) note that since R = A · G and
Ryt = xt . Then A · Gyt = A · ut = xt . By construction of the matrix A, the
j -th row is vij and hence this last equation gives the inner product

vij · xt = xj, j = 1,2, . . . ,k.

Thus the Raptor code is systematic.
To decode the zj,j = 1,2, . . . ,k(1 + ε) one uses the usual decoding

procedure for the (k,Cn,�D(x)) code to yield the packets y1,y2, . . . ,yk and
then compute xt = R · yt for the original information packets.

It is important to note that the point of this process is to retain the optimality
of the distribution of the LT process, yet have certain coded outputs as the
input information packets. Of course the process requires the preprocessing of
information packets regarding the matrix R and systematic row indices to be
known to receivers. The process can be made efficient and is incorporated into
many of the standards of Raptor codes. More details on the process are given
in [30] which also contains a complexity analysis. Additional information is in
the patents regarding these techniques [26, 32, 35].

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

62 2 Coding for Erasures and Fountain Codes

Standardized Raptor Codes

Raptor codes have been adopted in a large number of mobile and broadcast and
multicast standards. These are discussed extensively in the monograph [33].
Two versions of Raptor codes are available commercially, the Raptor version
10, or R10 code and the RaptorQ code. Both are systematic and use versions
of inactivation decoding. The R10 code supports blocks of up to 8,192 source
symbols per block and up to 65,536 coded blocks. It achieves a probability of
failure of 10−6 with only a few blocks of overhead across the entire range of
block sizes. It is described in detail in [25].

The RaptorQ code is designed for a much wider range of applications and
achieves faster encoding and decoding with good failure probability curves. It
supports blocks of up to 56,403 source symbols and up to 16,777,216 coded
blocks. It uses the observation that the rank properties of random matrices
are superior in the sense of achieving full rank for much lower overheads.
The field of 256 elements, F256 is used for this code which is described in
[17], although the reference [33] gives an excellent description of both of these
codes.

Other Aspects of Fountain Codes

The term “online codes” has also been used [15] for the term “fountain
codes.” Additionally [3] it has been used to describe decoders for fountain
codes that adapt to changing conditions of the channel and decoder and are
thus able to achieve better performance. It requires some method to measure
states and transmission back to the encoder, an important consideration in
implementation.

The performance of similar techniques on other channels such as the BSC
for error correction remains an interesting possibility.

Comments

The chapter has traced the progress in the remarkable development of erasure-
correcting and lost packet codes/fountain codes with linear encoding and
decoding complexity. The notion of choosing the parity checks accord-
ing to a probability distribution in order to ensure, with high probability,
a particular decoding algorithm completes, is novel and surprising. The
success of both the theoretical and practical developments techniques is
impressive.

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

References 63

References

[1] Blasco, F.L. 2017. Fountain codes under maximum likelihood decoding. CoRR,
abs/1706.08739v1. arXiv:1706.08739v1,2017.

[2] Byers, J.W., Luby, M., Mitzenmacher, M., and Rege, A. 1998. A digital fountain
approach to reliable distribution of bulk data. Pages 56–67 of: Proceedings of the
ACM SIGCOMM ’98. ACM, New York.

[3] Cassuto, Y., and Shokrollahi, A. 2015. Online fountain codes with low overhead.
IEEE Trans. Inform. Theory, 61(6), 3137–3149.

[4] Karp, R., Luby, M., and Shokrollahi, A. 2004 (June). Finite length analysis of LT
codes. Page 39: Proceedings of the IEEE International Symposium on Information
Theory, June 2004. ISIT.

[5] Kim, S., Lee, S., and Chung, S. 2008. An efficient algorithm for ML decoding
of raptor codes over the binary erasure channel. IEEE Commun. Letters, 12(8),
578–580.

[6] Luby, M.G. 2002. LT codes. Pages 271–280 of: Proceedings of the 43rd Annual
IEEE Symposium on Foundations of Computer Science.

[7] Luby, M.G., Mitzenmacher, M., Shokrollahi, M.A., Speileman, D., and Stenman,
V. 1997. Practical loss-resilient codes. Pages 150–159 of: Proceedings of the
Twenty-Ninth Annual ACM Symposium on the Theory of Computing. ACM, New
York.

[8] Luby, M.G., Mitzenmacher, M., Shokrollahi, M.A., and Spielman, D. 1998.
Analysis of low density codes and improved designs using irregular graphs. Pages
249–258 of: Proceedings of the Thirtieth Annual ACM Symposium on the Theory
of Computing. ACM, New York.

[9] Luby, M.G., Mitzenmacher, M., and Shokrollahi, M.A. 1998. Analysis of random
processes via And-Or tree evaluation. Pages 364–373 of: Proceedings of the
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (San Francisco,
CA, 1998). ACM, New York.

[10] Luby, M.G., Mitzenmacher, M., Shokrollahi, M.A., and Spielman, D.A. 2001.
Efficient erasure correcting codes. IEEE Trans. Inform. Theory, 47(2), 569–584.

[11] Luby, M.G., Mitzenmacher, M., Shokrollahi, M.A., and Spielman, D.A. 2001.
Improved low-density parity-check codes using irregular graphs. IEEE Trans.
Inform. Theory, 47(2), 585–598.

[12] Lzaro, F., Liva, G., and Bauch, G. 2017. Inactivation decoding of LT and Raptor
codes: analysis and code design. IEEE Trans. Commun., 65(10), 4114–4127.

[13] Maatouk, G., and Shokrollahi, A. 2009. Analysis of the second moment of the LT
decoder. CoRR, abs/0902.3114.

[14] Maneva, E., and Shokrollahi, A. 2006. New model for rigorous analysis of LT-
codes. Pages 2677–2679 of: 2006 IEEE International Symposium on Information
Theory.

[15] Maymounkov, P. 2002. Online codes. Technical report. New York University.

[16] Maymounkov, P., and Mazières, D. 2003. Rateless codes and big downloads.
Pages 247–255 of: Kaashoek, M.F., and Stoica, I. (eds.), Peer-to-peer systems
II. Springer, Berlin, Heidelberg.

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009283403.003

64 2 Coding for Erasures and Fountain Codes

[17] Minder, L., Shokrollahi, M.A., Watson, M., Luby, M., and Stockhammer, T. 2011
(August). RaptorQ forward error correction scheme for object delivery. RFC
6330.

[18] Oswald, P., and Shokrollahi, A. 2002. Capacity-achieving sequences for the
erasure channel. IEEE Trans. Inform. Theory, 48(12), 3017–3028.

[19] Pakzad, P., and Shokrollahi, A. 2006 (March). Design principles for Raptor codes.
Pages 165–169 of: 2006 IEEE Information Theory Workshop – ITW ’06 Punta del
Este.

[20] Paolini, E., Liva, G., Matuz, B., and Chiani, M. 2012. Maximum likelihood
erasure decoding of LDPC codes: Pivoting algorithms and code design. IEEE
Trans. Commun., 60(11), 3209–3220.

[21] Pfister, H.D., Sason, I., and Urbanke, R.L. 2005. Capacity-achieving ensembles
for the binary erasure channel with bounded complexity. IEEE Trans. Inform.
Theory, 51(7), 2352–2379.

[22] Rensen, J.H.S., Popovski, P., and Ostergaard, J. 2012. Design and analysis of LT
codes with decreasing ripple size. IEEE Trans. Commun., 60(11), 3191–3197.

[23] Richardson, T.J., and Urbanke, R.L. 2001. The capacity of low-density parity-
check codes under message-passing decoding. IEEE Trans. Inform. Theory, 47(2),
599–618.

[24] Richardson, T.J., Shokrollahi, M.A., and Urbanke, R.L. 2001. Design of capacity-
approaching irregular low-density parity-check codes. IEEE Trans. Inform. The-
ory, 47(2), 619–637.

[25] Shokrollahi, A., Stockhammer, T., Luby, M.G., and Watson, M. 2007 (October).
Raptor forward error correction scheme for object delivery. RFC 5053.

[26] Shokrollahi, A.M., Lassen, S., and Karp, R. 2005 (February). Systems and
processes for decoding chain reaction codes through inactivation. US Patent
6856263. www.freepatentsonline.com/6856263.html.

[27] Shokrollahi, M.A. 1999. New sequences of linear time erasure codes approaching
the channel capacity. Pages 65–76 of: Applied algebra, algebraic algorithms and
error-correcting codes (Honolulu, HI, 1999). Lecture Notes in Computer Science,
vol. 1719. Springer, Berlin.

[28] Shokrollahi, M.A. 2000. Codes and graphs. Pages 1–12 of: In STACS 2000
(invited talk), LNCS No. 1770.

[29] Shokrollahi, M.A. 2001. Capacity-achieving sequences. Pages 153–166 of:
Codes, systems, and graphical models (Minneapolis, MN, 1999). The IMA
Volumes in Mathematics and Its Applications, vol. 123. Springer, New York.

[30] Shokrollahi, M.A. 2006. Raptor codes. IEEE Trans. Inform. Theory, 52(6),
2551–2567.

[31] Shokrollahi, M.A. 2009. Theory and applications of Raptor codes. Pages 59–89
of: MATHKNOW – Mathematics, applied sciences and real life. Modeling,
Simulation & Analysis (MS&A), vol. 3. Springer, Milan.

[32] Shokrollahi, M.A., and Luby, M. 2004 (April). Systematic encoding and
decoding of chain reaction codes. US Patent WO 2004/034589 A2.
www.freepatentsonline.com/y2005/0206537.html

[33] Shokrollahi, M.A., and Luby, M. 2009. Raptor codes. Pages 213 – 322 of:
Foundations and trends in communications and information theory, vol. 6. NOW
Publishers.

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

http://www.freepatentsonline.com/6856263.html
http://www.freepatentsonline.com/y2005/0206537.html
https://doi.org/10.1017/9781009283403.003

References 65

[34] Shokrollahi, M.A., and Storn, R. 2005. Design of efficient erasure codes with
differential evolution. Springer, Berlin Heidelberg.

[35] Shokrollahi, M.A., Lassen, S., and Karp, R. 2005 (February). Systems and
processes for decoding chain reaction codes through inactivation. US Patent
20050206537. www.freepatentsonline.com/y2005/0206537.html.

[36] Sipser, M., and Spielman, D.A. 1996. Expander codes. IEEE Trans. Inform.
Theory, 42(6, part 1), 1710–1722.

[37] Tanner, R.M. 1981. A recursive approach to low complexity codes. IEEE Trans.
Inform. Theory, 27(5), 533–547.

[38] Tanner, R.M. 1984. Explicit concentrators from generalized N -gons. SIAM
J. Algebraic Discrete Methods, 5(3), 287–293.

[39] Tanner, R.M. 2001. Minimum-distance bounds by graph analysis. IEEE Trans.
Inform. Theory, 47(2), 808–821.

[40] Xu, L., and Chen, H. 2018. New constant-dimension subspace codes from
maximum rank distance codes. IEEE Trans. Inform. Theory, 64(9), 6315–6319.

https://doi.org/10.1017/9781009283403.003 Published online by Cambridge University Press

http://www.freepatentsonline.com/y2005/0206537.html
https://doi.org/10.1017/9781009283403.003

