LMS J. Comput. Math. 14 (2011) 232-237 © 2011 Author
doi:10.1112/S1461157010000288

A note on the triple product property for subsets of finite groups

Peter M. Neumann

ABSTRACT

The triple product property (TPP) for subsets of a finite group was introduced by Henry Cohn
and Christopher Umans in 2003 as a tool for the study of the complexity of matrix multiplication.
This note records some consequences of the simple observation that if (S1, S2, S3) is a TPP triple
in a finite group G, then so is (dSia, dS2b, dSsc) for any a, b, c,d € G.

Let s; := | S;] for 1 <4 < 3. First we prove the inequality s;(s2 + s3 — 1) < |G| and show some
of its uses. Then we show (something a little more general than) that if G has an abelian subgroup
of index v, then s18283 < 02\G|.

1. Introduction

Throughout this note, G will denote a non-trivial finite group, n will be its order |G|, and
S1, 52,53 will be subsets of sizes s1, s2, s3, respectively. Our interest is in the triple product
property (TPP) defined by Cohn and Umans in their lovely paper [1]. For any subset S C G,
let Q(S) denote the (right) quotient set of S:

Q(S) := {25 | 21, 12 € S}.
Then (57, Se, S3) is said to be a TPP triple (or to have the triple product property) if

71 €Q(51), 2 € Q(S2), 3 € Q(S3) and q1ez =1 = q1 = =gz = 1.

I shall speak of the group G realising the parameter triple (or, simply, abusing language a little,
the parameters) (s1, s2, $3). In this language (which is slightly different from that of Cohn and
Umans) the first two lemmas of [1] are:

if the group G realises the triple (s1, s2, s3), then it realises any permutation of this
triple;

if groups A and B realise triples (s1, s2,s3) and (t1, t2, t3), respectively, then any
extension of A by B realises the triple (sit1, sat2, s3t3).

At the end of their Lemma 3.1, Cohn and Umans also pointed out that:

if the group G is abelian and (S1, Sz, Ss) is a TPP triple, then the multiplication
map S1 X S2 x S3 — G must be injective and therefore s15283 < n.

We define §(G) to be the maximum of s1s283 over parameters (s1, s2, s3) of TPP triples
in G (in the context of the applications described by Cohn and Umans, such triples do better
than others). We will call this the TPP capacity of G. The triple (G, {1}, {1}) guarantees
that B(G) = n (with equality if G is abelian); it is not hard to see that B(G) < n3/? (see [1,
Lemma 3.1]). Related to the TPP capacity is the ratio G(G)/n, which I will denote p(G) and
call the TPP ratio of G. The pseudo-exponent «(G) of [1, Definition 3.1] is related to the
TPP capacity by the equation a(G) = 3logn/log 5(G) (and this makes sense, since we have
assumed that n > 1).

Briefly, the relevance of TPP triples in G and the pseudo-exponent «(G) to the computational
complexity of matrix multiplication is this (see [1, Theorem 2.3]). Let A and B be m x p and
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p X g matrices respectively over a field F', and let C':= AB, so that C' is an m X ¢ matrix
over F. Suppose that G has a TPP triple (S1, So, S3) of subsets as above, where s1 =m, ss = p,
s3 =¢q. The rows and columns of A may be indexed by S; and Sy respectively, those of B
by Sz and Ss, and those of C by S; and Ss. Thus A = (ast)sesy.teSss B = (btu)tes, uess, and
C = (Csu)ses, uess, where cgy, = Zt652 astbyqy. In the group algebra F'G let

A= Z ags t, B:= Z beot .

SES1,tESs teSs,u€eSs

As is easily checked, the TPP property of (Si, So, S3) implies that A B = deG Ag)g € FG,
where A(s7'u)=c,, for s €S, u € Ss. Therefore (see [1, Theorem 2.3]), one can read off
the matrix product from the group algebra product by looking at the coefficients of s~ 'u
with s € S1,u € S3. Now suppose that F' is algebraically closed and of characteristic 0. Let
dy, ds, . .., dy be the degrees of the irreducible matrix representations of G over F'. By standard
theorems of Maschke and Wedderburn (building on ingredients supplied by Molien, Frobenius,
Burnside, Schur and others — see [3]), there is an isomorphism

k
®:FG — P My, (F),
i=1
where My (F) is the algebra of d x d matrices over F. If
k

k
i=1 i=1 i=1
(where A;, B;,C; € My, (F)), then A;B; =C; for 1 <i<k. Thus, if R(m,p,q) denotes the
minimum number of numerical multiplications required to effect the matrix multiplication
A x B (so that certainly R(m, p, ¢) < mpq), and R(d) := R(d, d, d), then, using ®~* and picking
out coefficients of elements s~'u as above, we see that
k

R(m,p,q) <Y R(d;).
i=1
In particular, since R(d;) < d?, if Y d? < mpgq, then, once an isomorphism ® has been pre-
calculated, it would be possible to multiply m X p and p x ¢ matrices with fewer than mpq
numerical multiplications.

Thus (in considerably simplified form), the Cohn-Umans strategy is to find (if possible
— and that this is possible is proved in [2]) groups for which the TPP capacity satisfies
B(G) < §'(G), where & (G) := > R(d;) or, perhaps more simply but less usefully, 3(G) < §(G),
where 0(G):=>_d?. More precisely, for non-abelian G define v(G) by the equation n =
Aimax (G) (&) where dpax(G) :=max{d; | 1 <i < k}. Then certainly v(G) > 2. If a(G) < v(G),
then for the exponent w of matrix multiplication one has w < a(G)(y(G) — 2)/(v(G) — a(G))
(see [1, Corollary 4.2]). What is wanted therefore is groups G for which the right side of this
inequality is as small as possible. The ideal would be to get it close to 2. This would require a(G)
to be only slightly larger than 2 and (v(G) — 2)/(7(G) — a(G)) to be only slightly larger than 1.
Thus it requires a balancing act: we need groups G where §(G) = n2=¢ and Amax(G) = n3—e:
with €1, 2 small and positive; the condition that a(G) < v(G) requires that €1 < 3e9; moreover,
the bound for w can be cast in the form (1 — &1/3e5)w < 2, and therefore we want €1 /¢ to be
small.

In this note we leave the representation theory and the applications to the complexity of
matrix multiplication to one side (though both are implicit in one form or another). Our aim
is merely to record the following very simple observation and some more-or-less immediate
consequences of it. The first consequence has as a corollary a bound for §(G) that slightly
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improves the bound B(G) < n3/2 due to Cohn and Umans. The second has as a consequence
the fact that if G has an abelian subgroup of index v then 3(G) < v?n, which may be compared
with the simple fact that if G has an abelian subgroup of index v then dpy.x(G) < v.

2. An elementary observation

OBSERVATION 2.1. Let (S1, S2,S3) be a TPP triple in the group G. If a, b, c,d € G, then
(dSya, dSsb, dSsc) is a TPP triple in G.

That (S1a, Sab, Szc) is a TPP triple is immediate since Q(Sg) = Q(S) for any S C G and any
g € G. Also, (5S¢, Sg, S) is a TPP triple for any a € Aut G, and so (dS1d~1, dSad™t, dS3d 1)
is a TPP triple, and therefore so is (dS7, dS3, dSs).

We will call the TPP triple (S1, Sa, S3) basicif 1 € S; N S2 N Ss. It is an immediate corollary
of the above proposition that any TPP triple is translation-equivalent to a basic one. Note that
if (S1, Sa, S3) is a basic TPP triple, then so is any one of the triples obtained by permutation
of its entries. Note also that if (S, Sz, S3) is a basic TPP triple and ¢ # j, then S; N S; = {1}.

3. Inequalities

Our first application of Observation 2.1 is to the proof of some simple inequalities.

OBSERVATION 3.1. Let (s1, s2, s3) be the parameters of a TPP triple in G. Then

s1(sa+s3—1)<n, sa(s1+s3—1)<n and s3(s;+s2—1)<n.

Proof. By Observation 2.1, any TPP triple with parameters (s1, s2, s3) is translation-
equivalent to a basic TPP triple (Si,S2,53) with the same parameters. I claim that
the map S; x (So U S3) — G given by (s,z)+— s~ 'z is injective. Suppose that si, sy € S,
T1, T2 € SoUS3, and sl_lxl = 52_1322, that is, 5231_13:1%2_1 =1. If 21, x5 both lie in Sy, then
we choose z € S3 and write this equation as szsflxlxglzz’l =1; if 1, x5 both lie in S5, then
we choose y € So and write the equation as 3231_1yy’1x1x2_1 = 1; if (without loss of generality)
x1 €Sy and x2 € S3, then we define y:=1¢€ Sy and z:=1¢€ S5 (possible since the triple is
assumed to be basic) and write the equation as sys7 a1y 'zzy ' = 1. In all cases, it follows
that sy = s and o = x1, and so the map described above is injective, as was claimed.

Then |S1(S2US3)|=s1(s2+s3—1), and so s1(s2+ s3 —1) <|G|=n. The other two
inequalities follow by cyclic permutation of the members of the TPP triple.

ExaMPLES. It is easy to see from these inequalities that if n = 60, then 5(G) < 180. There
is a TPP triple with parameters (5, 5, 5) in the alternating group Alt(5), namely

Spi=((12345)), Sp:=((13452)), S3:=((124))U((345)),

and therefore B(Alt(5)) > 125. It would be interesting to know if there are triples with
parameters (6, 6, 4), (6,5, 5), or (6,6, 5) in Alt(5) — or, indeed, in any other group of order 60.
Mr Sandeep Murthy has attempted to compute the answers, but he has found his search
space too large. For example, even for the ‘smallest’ case (6,6,4), where one may assume
using Observation 2.1 that (S, Se, S3) is basic, and moreover that |S; N Alt(4)] >2 and
|S2 N Alt(4)] > 2, the search space has size several times larger than the set of all disjoint
triples of subsets of sizes 4, 4, 3 in a set of size 48, and even a very crude back-of-an envelope
estimate shows this to be larger than 104,

The inequalities of Observation 3.1 tell us that if G is a group that realises the parameter
triple (5, 5, 5), then n > 45. Groups of orders 45, 47, 49,51, 53, and 59 are abelian, so cannot
realise (5,5,5). Groups of orders 46 and 50 have an abelian subgroup of index 2 and in
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these cases it is easy to see that there can be no TPP triple with parameters (5,5, 5). Thus,
the smallest n such that there is a group of order n realising the triple (5,5,5) is one of
48,52, 54, 55, 56, 57, 58, and 60. It could be quite interesting to pin it down precisely.

COROLLARY 3.2. For any finite group G (of order n, recall) the TPP capacity satisfies

1+vItsn)®
oy (LT’

Proof. Let (m, p, q) be the parameters of a TPP triple of subsets of G such that 8(G) = mpq.
From the proposition, we know that

m(p+qg—1)<n, pm+qg—1)<n, gm+p—1)<n.

Consider the following optimisation problem:
for a given real number d > 3, find real numbers a, b, c maximising the product abc
subject to the six constraintsa > 1,b>1,c>1, and
alb+c—-1)<d, bla+c—1)<d, cla+b-1)<d.

I claim that its solution is a = b= ¢ =z, where z(2z — 1) =d.

Without loss of generality, we may suppose that a > b > ¢ > 1. Suppose for the moment that
b>c. Let h:=%(b— c) and consider the triple (a,b — h, ¢+ h), that is (a, 5(b+ c), 3(b+ ¢)).
It is clear that this satisfies the first four of the constraint inequalities. Furthermore,

ib+c)a+ib+ic—1)—blatc—1)=1(b—-c)(b—c—2a+2)<0,

since b+ 2 < 2a + c¢. Therefore, %(b +c) (a + %b + %c — 1) <b(a+c¢—1)<dand so it satisfies
also the fifth and sixth inequalities. But ia(b +¢)? > abc by the AM-GM Inequality. What
this shows is that if b > ¢, then the product abc is not maximised. Thus, to maximise, we
require that b = ¢ (given the assumption that a > b > ¢). Now a very similar proof shows that to
maximise abc, we require that a = b= c. And then, if z := a = b = ¢, we maximise abc provided
that we maximise  subject to the condition that x(2x — 1) < d. This of course requires that
x(2z —1)=d.

We have now shown that if x is the positive root of the equation z(2x — 1) =n, then
B(G) < x3. Thus,

sy < (L)

as the lemma states.

Crudely, the corollary tells us that 3(G) < (3n)*/2 + O(n), which is a small improvement on
the observation by Cohn and Umans that 5(G) < n®/? (see [1, Proof of Lemma 3.1]).

The equality s1(s2 + s3 — 1) =n can certainly hold. The above analysis shows, however,
that if (S, Sa, S3) is proper in the sense that min{si, s2, s3} > 2, then it would require that
$1 = max{sy, S2, $3}. We assume in what follows that our TPP triple is proper.

EXAMPLES. The dihedral group of order 6k has a TPP triple with parameters (2k, 2, 2)
(see [1, Proposition 7.6]) for which equality holds.

The three subgroups ((123)), ((124)), ((12)(34)) in Alt(4) form a TPP triple with
parameters (3, 3, 2) for which equality holds.

Let G := Sym(2), where €2 := [1..m], choose k € Q such that 2 <k <m — 1, let S := Stab(k),
the stabiliser of k, let T:=((12...k)), and let U:=((kk+1...m)). Then (S,T,U) is a
TPP triple in G. To see this, note that since S, T,U are subgroups the TPP condition is
simply that if stu =1 with s€ S, teT,ue U, then s=t=wu=1. (Although 1 is being used
both as a member of [1..m] and as the identity in the group G, the context should make
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clear which meaning is relevant at each point.) Then ks =k and so kst =kt =r for some
r € in the range 1 <r < k. If r <k then ru=1r and so k= kstu =, which is false. Thus
r = k. This entails that kt =k and so t=1. Then su=1, so k= ksu= ku, whence u=1,
so also s=1. Therefore, (S,7,U) is a TPP triple, as claimed. Its parameters are
((m =1, k,m — k+ 1) and so for this triple we have the equality s1(s2 + s3 — 1) =m! =n.

This last example is essentially due to Mr Sandeep Murthy, who showed me the case m = 5.
It is rather disturbing. I had hoped that there might exist some number m such that if
min{si, s, s3} > m then it would be the case that sj(ss + s3) <n. The example shows this
conjecture to be false. I suspect however that stronger inequalities than those of Observation 3.1
should be true when min{sy, sz, s3} and max{si, s2, s3} are not too far apart. Or, perhaps,
if s1s9s3 > nlogn. For example, it seems quite possible that under some such condition the
inequalities

s1(s2+83)<n, Sa2(s1+s3)<n and s3(s1+s2)<n

should hold. Although only a very small improvement on Observation 3.1, this would probably
be worth having (if it is true), since its proof should involve insights leading to more significant
advances. It would immediately lead to the bound B(G) < (3n)*/? for sufficiently large n
(n > 30 would almost certainly suffice), which, though not a great improvement on the bound
given above, is at least a little more agreeable.

4. Subgroups of small index

Observation 2.1 may also be used to derive a relationship between the TPP capacity of the
group G and that of a subgroup H.

OBSERVATION 4.1. Let H be a subgroup of the finite group G and let v:= |G : H|. Then
B(G) < v3B(H). Consequently, for the TPP ratios we have p(G) < v?p(H).

Proof. Let (S, T,U) be a TPP triple in G with parameters (m, p, ¢) such that 5(G) = mpq.
Let the distinct right cosets of H in G be H, Hxs, ..., Hz,. By Observation 2.1 we may
independently right-translate each of S, T, U as necessary and assume that

[SNH|>|SNHz;|, |[TNH|>|TNHxl, [UNH|>|UNHz

for 1<i<wv. Let S;:=SNH, T':=TNH, Uy:=UNH, and let my:= |5, p1 :=|T1|,
¢1 :=|U1|. Then (Sy,T1,U;) is a TPP triple of subsets of H with parameters (mi, p1,q1)-

Now
v

m:|S\:Z|SﬂH;Ei|<v|SﬁH|,
i=1
that is, m < wvm;y. Similarly, p < vp; and ¢ < vg;. Therefore,

B(G) = mpq < v3mapign <v*B(H),

as required.
Translating this into a statement about the TPP ratio of the groups in question, we see that

8@ _ )
P& =Tar S o

= 'UQP(H)v
as claimed.

COROLLARY 4.2. If there is an abelian subgroup H of index v in the finite group G (whose
order, recall, is n), then 3(G) < v?n and p(G) < v?.
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For, by the observation at the end of the proof of Lemma 3.1 in [1], since H is abelian
B(H) = |H| and p(H) = 1.

In [2, Section 2] Cohn, Kleinberg, Szegedy and Umans exhibited a TPP triple with
parameters (2m(m — 1), 2m(m — 1), 2m(m — 1)) in a wreath product G := A wr Cs, where A
is an abelian group of order m3. Here G has an abelian subgroup A x A of order m® and index
v = 2 and their triple shows that

p(@) > Zmim = 1) —4(1 - 1>3,

2mb m

which is very close to v? for large values of m. Taking direct products of these groups, we can
create examples with arbitrarily large index v and p(G) arbitrarily close to v2.

In practice, for the purposes that Cohn and Umans had in mind, Corollary 4.2 is unlikely
to be of much help. For, in the notation of page 233, to get a bound for w (the exponent of
matrix multiplication) of the form w < 2+ ¢ with ¢ small, we would want dmax(G) = nz=e2,
where 5 is small. If G has an abelian subgroup of index v then dy.x(G) < v, 80 v > n%_gﬁ and
then v2n > n2(1722) 50 that (since we know already that 5(G) < n®/?) the bound §(G) < v?n
would tell us nothing.
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