(c) Canadian Mathematical Society 2011

On the Distribution of Irreducible Trinomials

Igor E. Shparlinski

Abstract. We obtain new results about the number of trinomials $t^{n}+a t+b$ with integer coefficients in a box $(a, b) \in[C, C+A] \times[D, D+B]$ that are irreducible modulo a prime p. As a by-product we show that for any p there are irreducible polynomials of height at most $p^{1 / 2+o(1)}$, improving on the previous estimate of $p^{2 / 3+o(1)}$ obtained by the author in 1989.

1 Introduction

For a fixed integer $n \geq 2$, we consider the family of trinomials

$$
\begin{equation*}
f_{a, b}(T)=T^{n}+a T+b \tag{1}
\end{equation*}
$$

with integer coefficients.
Given a prime p and a box

$$
\begin{equation*}
\Pi=[C, C+A] \times[D, D+B] \tag{2}
\end{equation*}
$$

with some real numbers A, B, C, D we denote by $N_{n, p}(\Pi)$ the number of pairs of integers $(a, b) \in \Pi$, such that $f_{a, b}(T)$ is irreducible modulo p.

Using some ideas of [3], we obtain an asymptotic formula for $N_{n, p}(\Pi)$ that is nontrivial, provided that the side lengths A and B of Π satisfy

$$
\min \{A, B\} \geq p^{1 / 4+\varepsilon} \quad \text { and } \quad A B \geq p^{1+\varepsilon}
$$

for some fixed $\varepsilon>0$ and sufficiently large p.
More precisely, we have the following result.
Theorem 1 For a prime p and a box Π given by (2) for some real numbers A, B, C, D with $p>A, B \geq 1$, we have the bound

$$
\begin{aligned}
& \left|N_{n, p}(\Pi)-\frac{1}{n} A B\right| \\
& \leq \min \left\{A B^{1-1 / \nu} p^{(\nu+1) /\left(4 \nu^{2}\right)}+A^{1 / 2} B p^{1 / 4}+A^{1 / 2} B^{1 / 2} p^{1 / 2},\right. \\
& \left.\quad A^{1-1 / \nu} B p^{(\nu+1) /\left(4 \nu^{2}\right)}+A B^{1 / 2} p^{1 / 4}+A^{1 / 2} B^{1 / 2} p^{1 / 2}\right\} p^{o(1)}
\end{aligned}
$$

as $p \rightarrow \infty$ with any fixed integer $\nu \geq 1$, where the function implied by o(1) depends only on n and ν.

[^0]Let $h_{n}(p)$ denote the smallest height of monic polynomials of degree n over \mathbb{Z} that are irreducible modulo p (recall the height is the largest absolute value of the coefficients).

In particular, taking $A=B=\left\lceil p^{1 / 2+\varepsilon}\right\rceil$ for some $\varepsilon>0$ and $C=D=0$, choosing $\nu=1$ in Theorem[1, we obtain $N_{n, p}(\Pi)=p^{\varepsilon} / n+O\left(p^{\varepsilon / 2}\right)$ for the corresponding box Π. Since ε is arbitrary, we derive the following corollary.
Corollary 2 For all primes $p, h_{n}(p) \leq p^{1 / 2+o(1)}$ as $p \rightarrow \infty$.
Corollary 2 improves the previous estimate of $h_{n}(p) \leq p^{2 / 3+o(1)}$ of [8] obtained in 1989 (the proof also uses irreducible trinomials), see also [10, Theorem 3.11].

We also remark that it follows from a result of L. M. Adleman and H. W. Lenstra [1] that, under the Extended Riemann Hypothesis, there are irreducible modulo p monic polynomials of height $O\left(\log ^{2 n} p\right)$. It is further shown in [9] that for any fixed $n \geq 2$ and an arbitrary function $\vartheta(x) \rightarrow \infty$, for almost all primes p in the interval [$N-M, N$] of length $M>N^{7 / 12+\varepsilon}$ (with arbitrary $\varepsilon>0$) there is an irreducible modulo p polynomial of degree n and of height at most $\vartheta(p)$. However Corollary 2 appears to be the strongest known unconditional result that holds for all primes.

2 Preparations

2.1 Notation

Throughout this paper, we use $U=O(V), U \ll V$, and $V \gg U$ as equivalents of the inequality $|U| \leq c V$ for some constant $c>0$, which may depend only on the integer parameters n and ν.

We write $\log x$ for the maximum of 1 and the natural logarithm of x, thus we always have $\log x \geq 1$.

For a prime p, we use \mathbb{F}_{p} to denote the field of p elements which we assume to be represented by the set $\{0, \ldots, p-1\}$.

Let X_{p} be the set of multiplicative characters of \mathbb{F}_{p}; we refer to [7, Chapter 3] for the necessary background on multiplicative characters. We also use χ_{0} to denote the principal character of \mathbb{F}_{p}, and $X_{p}^{*}=X_{p} \backslash\left\{\chi_{0}\right\}$ to denote the set of nonprincipal characters.

2.2 Character Sums

We recall the following orthogonality relations. For any divisor $d \mid p-1$,

$$
\frac{1}{d} \sum_{\substack{\chi \in X_{p} \tag{3}\\ \chi^{d}=\chi_{0}}} \chi(w)= \begin{cases}1, & \text { if } w=u^{d} \text { for some } u \in \mathbb{F}_{p}^{*}, \\ 0, & \text { otherwise },\end{cases}
$$

and

$$
\frac{1}{p-1} \sum_{r \in \mathbb{F}_{p}} \chi_{1}(r) \bar{\chi}_{2}(r)= \begin{cases}1, & \text { if } \chi_{1}=\chi_{2} \tag{4}\\ 0, & \text { otherwise }\end{cases}
$$

for all $v \in \mathbb{F}_{p}$ and $\chi_{1}, \chi_{2} \in X_{p}$ (here, $\bar{\chi}_{2}$ is the character obtained from χ_{2} by complex conjugation).

The following result combines the Pólya-Vinogradov bound (for $\nu=1$) with the Burgess bounds (for $\nu \geq 2$); see [7, Theorems 12.5 and 12.6]:

Lemma 3 Uniformly for all primes p, and real X, Y with $p>X \geq 1$, for all characters $\chi \in X_{p}^{*}$, we have

$$
\left|\sum_{Y \leq x \leq Y+X} \chi(x)\right| \leq p^{(\nu+1) /\left(4 \nu^{2}\right)+o(1)} X^{1-1 / \nu}
$$

as $p \rightarrow \infty$ with any fixed integer $\nu \geq 1$, where the function implied by $o(1)$ depends only on ν.

The next bound is due to Ayyad, Cochrane and Zheng [2, Theorem 2]; see also the result of Friedlander and Iwaniec [6].

Lemma 4 Uniformly for all real X, Y with $p>X \geq 1$, we have

$$
\sum_{\chi \in X_{p}^{*}}\left|\sum_{Y \leq x \leq Y+X} \chi(x)\right|^{4} \leq p X^{2+o(1)}
$$

as $p \rightarrow \infty$.

2.3 Irreducibility

We recall a very special case of a result of S. D. Cohen [4] about the distribution of irreducible polynomials over a finite field \mathbb{F}_{q} of q elements, see also [5].

Let $\mathcal{T}_{n, p}$ be the set of pairs (r, s) with $r, s \in \mathbb{F}_{p}^{*}$ such that $f_{r, s}(T)$ given by (11) is irreducible over \mathbb{F}_{p}.

Lemma 5 For any prime p,

$$
\# \mathcal{T}_{n, p}=\frac{1}{n} p^{2}+O\left(p^{3 / 2}\right)
$$

We also make the following trivial observation.
Lemma 6 If a trinomial $f_{r, s}(T) \in \mathbb{F}_{p}[T]$ is irreducible, then so are all trinomials $f_{r u^{n-1}, s u^{n}}(T)$ with $u \in \mathbb{F}_{p}^{*}$.

Clearly, for $r, s \in \mathbb{F}_{p}^{*}$ there are exactly $p-1$ distinct polynomials that can be obtained this way.

3 Proof of Theorem 1

3.1 Idea of the Proof

We see from Lemma 6 that in order to establish the desired result it is enough, for a given irreducible trinomial $f_{r, s}(T) \in \mathbb{F}_{p}[T]$, to estimate the cardinality of the set
$\mathcal{U}_{n, p}(\Pi ; r, s)$ of $u \in \mathbb{F}_{p}^{*}$ such that the residues modulo p of $r u^{n-1}$ and $s u^{n}$ which belong to the intervals $[C, C+A]$ and $[D, D+B]$, respectively, where Π is given by (2).

One certainly expects $\# \bigcup_{n, p}(\Pi ; r, s)$ to be about $A B / p$, and our task is to prove this for as small values of A and B as possible. We also note that it is enough to estimate the deviation $\left|\# U_{n, p}(\Pi ; r, s)-A B / p\right|$ on average over all $r, s \in \mathcal{T}_{n, p}$. Furthermore, since by Lemma 5 this is set very large, we can simply estimate the above deviation on average over all $r, s \in \mathbb{F}_{p}$. Thus we concentrate on the distribution of the set

$$
\begin{equation*}
\left\{\left(r u^{n-1}, s u^{n}\right): u \in \mathbb{F}_{p}\right\} \tag{5}
\end{equation*}
$$

inside of the box Π, on average over $r, s \in \mathbb{F}_{p}$.
In fact, a similar argument has already been used in [8]. However, here we follow the technique of [3], which is based on the use of the character sum instead of exponential sums (which were used in [8]). This allows us to use some rather powerful tools which have no analogues for exponential sums (such as Lemmas 3and 4). In turn, this leads to stronger results.

3.2 Simultaneous Distribution of Powers in Intervals

Let

$$
\sigma_{p}(U)=\max _{\chi \in X_{p}^{*}} \max _{V \in \mathbb{R}}\left\{1,\left|\sum_{V \leq u \leq V+U} \chi(u)\right|\right\} .
$$

We begin by investigating the distribution of the second component $s u^{n}$ of the pairs (5). Accordingly, for an interval $\mathcal{J}=[D, D+B]$ and $s \in \mathbb{F}_{p}$ we define

$$
\mathcal{U}_{n, p}(\mathcal{J} ; s)=\left\{u \in \mathbb{F}_{p}^{*}: s u^{n} \equiv w(\bmod p), \text { where } w \in \mathcal{J}\right\} .
$$

We have the following asymptotic formula for the cardinality of $\mathcal{U}_{n, p}(\mathcal{J} ; s)$:
Lemma 7 For all primes p, intervals $\mathcal{J}=[D, D+B]$ with $p>B \geq 1$, and $s \in \mathbb{F}_{p}^{*}$, we have

$$
\# \mathfrak{U}_{n, p}(\mathcal{J} ; s)=B+O\left(\sigma_{p}(B)\right) .
$$

Proof Let $d=\operatorname{gcd}(n, p-1)$. By the orthogonality relation (3), for all $w \in \mathbb{F}_{p}^{*}$ we have

$$
\#\left\{u \in \mathbb{F}_{p}^{*}: u^{n}=w\right\}=\#\left\{u \in \mathbb{F}_{p}^{*}: u^{d}=w\right\}=\sum_{\substack{\chi \in X_{p} \\ \chi^{d}=\chi_{0}}} \chi(w) .
$$

Let \bar{s} be an integer such that $s \bar{s} \equiv 1(\bmod p)$. Separating the contribution of $B+O(1)$ from the principal character χ_{0}, we see that

$$
\# U_{n, p}(\mathcal{J} ; s)=\sum_{\substack{w \in \mathcal{J}\\}} \sum_{\substack{\chi \in X_{p} \\ \chi^{d}=\chi_{0}}} \chi(\bar{s} w)=B+O(1)+\sum_{\substack{\chi \in X_{p}^{*} \\ \chi^{d}=\chi_{0}}} \bar{\chi}(s) \sum_{w \in \mathcal{J}} \chi(w) .
$$

Since the inner sum is bounded by $\sigma_{p}(B)$ and

$$
\#\left\{\chi \in X_{p}^{*}: \chi^{d}=\chi_{0}\right\}=d-1<n
$$

the result follows.

We now take into account the distribution of the first component $r u^{n-1}$ of the pairs (5). For a box Π given by (2) and $r, s \in \mathbb{F}_{p}$ we define

$$
\# U_{n, p}(\Pi ; s, r)=\left\{u \in \mathcal{U}_{n, p}(\mathcal{F} ; s): r u^{n-1} \equiv v(\bmod p), \text { where } v \in \mathcal{J}\right\}
$$

where $\mathcal{J}=[C, C+A]$ and, as before, $\mathcal{J}=[D, D+B]$.
Lemma 8 For all primes p, boxes Π given by (2) for some real numbers A, B, C, D with $p>A, B \geq 1$, and $s \in \mathbb{F}_{p}^{*}$, we have

$$
\sum_{r \in \mathbb{F}_{p}}\left|\# U_{n, p}(\Pi ; s, r)-\frac{A \cdot \# \bigcup_{n, p}(\mathcal{J} ; s)}{p}\right| \leq A^{1 / 2} B p^{1 / 4+o(1)}+A^{1 / 2} B^{1 / 2} p^{1 / 2+o(1)}
$$

as $p \rightarrow \infty$.
Proof We can assume that $A B>p$, since the result is trivial otherwise. Indeed, if $A B \leq p$, then $A^{1 / 2} B^{1 / 2} p^{1 / 2} \geq A B$, while

$$
\begin{aligned}
& \sum_{r \in \mathbb{F}_{p}}\left|\# \mathfrak{U}_{n, p}(\Pi ; s, r)-\frac{A \cdot \# \mathcal{U}_{n, p}(\mathcal{J} ; s)}{p}\right| \\
& \leq \sum_{r \in \mathbb{F}_{p}} \# \mathcal{U}_{n, p}(\Pi ; s, r)+A \cdot \# \mathfrak{U}_{n, p}(\mathcal{J} ; s) \ll A B
\end{aligned}
$$

For every $a \in \mathbb{F}_{p}^{*}$, let \bar{a} be an integer such that $a \bar{a} \equiv 1(\bmod p)$. Using (3) and separating the contribution of $(A+O(1)) \# \mathfrak{U}_{n, p}(\mathcal{J} ; s)$ from the principal character χ_{0}, it follows that

$$
\begin{aligned}
\# \mathcal{U}_{r, s} & (A, B ; p) \\
& =\sum_{u \in \mathcal{U}_{n, p}(\mathcal{J} ; s)} \sum_{a \in \mathcal{J}} \frac{1}{p-1} \sum_{\chi \in X_{p}} \chi\left(r u^{n-1} \bar{a}\right) \\
& =\frac{A \cdot \# \mathcal{U}_{n, p}(\mathcal{J} ; s)}{p-1}+O(1) \frac{1}{p-1} \sum_{\chi \in X_{p}^{*}} \chi(r) \sum_{u \in \mathcal{U}_{n, p}(\mathcal{O} ; s)} \chi\left(u^{n-1}\right) \sum_{a \in \mathcal{J}} \bar{\chi}(a) .
\end{aligned}
$$

Since

$$
\frac{A \cdot \# \mathfrak{U}_{n, p}(\mathcal{J} ; s)}{p}-\frac{A \cdot \# \mathfrak{U}_{n, p}(\mathcal{J} ; s)}{p-1} \ll \frac{A \cdot \# \mathfrak{U}_{n, p}(\mathcal{J} ; s)}{p^{2}} \ll \frac{A B}{p^{2}} \ll 1
$$

we have

$$
\begin{equation*}
\sum_{r \in \mathbb{F}_{p}}\left|\# \mathcal{U}_{n, p}(\Pi ; s, r)-\frac{A \cdot \# \mathcal{U}_{n, p}(\mathcal{J} ; s)}{p}\right| \ll p+W \tag{6}
\end{equation*}
$$

where

$$
W=\frac{1}{p} \sum_{r \in \mathbb{F}_{p}}\left|\sum_{\chi \in X_{p}^{*}} \chi(r) \sum_{u \in \mathcal{U}_{n, p}(\mathcal{J} ; s)} \chi\left(u^{n-1}\right) \sum_{a \in \mathcal{J}} \bar{\chi}(a)\right| .
$$

By the Cauchy inequality,

$$
\begin{aligned}
W^{2} \leq & \frac{1}{p} \sum_{r \in \mathbb{F}_{p}}\left|\sum_{\chi \in X_{p}^{*}} \chi(r) \sum_{u \in \mathcal{U}_{n, p}(\partial ; s)} \chi\left(u^{n-1}\right) \sum_{a \in \mathcal{J}} \bar{\chi}(a)\right|^{2} \\
= & \frac{1}{p} \sum_{\chi_{1}, \chi_{2} \in X_{p}^{*}} \sum_{u_{1}, u_{2} \in \mathcal{U}_{n, p}(\not \partial ; s)} \chi_{1}\left(u_{1}^{n-1}\right) \bar{\chi}_{2}\left(u_{2}^{n-1}\right) \\
& \sum_{a_{1}, a_{2} \in \mathcal{J}} \bar{\chi}_{1}\left(a_{1}\right) \chi_{2}\left(a_{2}\right) \sum_{r \in \mathbb{F}_{p}} \chi_{1}(r) \bar{\chi}_{2}(r) .
\end{aligned}
$$

Using the orthogonality relation (4) we deduce that

$$
W^{2} \leq \sum_{\chi \in X_{p}^{*}}\left|\sum_{u \in \mathcal{U}_{n, p}(\mathcal{F} ; s)} \chi\left(u^{n-1}\right)\right|^{2}\left|\sum_{|a| \leq A} \chi(a)\right|^{2}
$$

Applying the Cauchy inequality again, it follows that

$$
\begin{equation*}
W^{4} \leq \sum_{\chi \in X_{p}^{*}}\left|\sum_{u \in \mathcal{U}_{n, p}(\mathcal{\partial} ; s)} \chi\left(u^{n-1}\right)\right|^{4} \cdot \sum_{\chi \in X_{p}^{*}}\left|\sum_{|a| \leq A} \chi(a)\right|^{4} \tag{7}
\end{equation*}
$$

The second sum is of size $O\left(p^{1+o(1)} A^{2}\right)$ by Lemma4 For the first sum, we extend the summation to include the trivial character $\chi=\chi_{0}$, obtaining

$$
\sum_{\chi \in X_{p}^{*}}\left|\sum_{u \in \mathcal{U}_{n, p}(\mathcal{Z} ; s)} \chi\left(u^{n-1}\right)\right|^{4} \leq \sum_{\chi \in X_{p}}\left|\sum_{u \in \mathcal{U}_{n, p}(\mathcal{J} ; s)} \chi\left(u^{n-1}\right)\right|^{4}=p T
$$

where T is the number of solutions to the congruence

$$
u_{1}^{n-1} u_{2}^{n-1} \equiv u_{3}^{n-1} u_{4}^{n-1}(\bmod p), \quad u_{1}, u_{2}, u_{3}, u_{4} \in \mathcal{U}_{n, p}(\mathcal{J} ; s)
$$

Note that T does not exceed the number of quadruples $\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$ in $\mathcal{U}_{n, p}(\mathcal{J} ; s)^{4}$ for which

$$
u_{1}^{n(n-1)} u_{2}^{n(n-1)} \equiv u_{3}^{n(n-1)} u_{4}^{n(n-1)}(\bmod p)
$$

Since $s u_{j}^{n} \equiv w_{j}(\bmod p)$ for some w_{j} with $w_{j} \in \mathcal{J}$, and each w_{j} corresponds to at most n values of u_{j}, it follows that $T \leq n^{4} R$, where R is the number of solutions to the congruence

$$
w_{1}^{n-1} w_{2}^{n-1} \equiv w_{3}^{n-1} w_{4}^{n-1}(\bmod p), \quad w_{1}, w_{2}, w_{3}, w_{4} \in \mathcal{J}
$$

Clearly, $R \leq(n-1) Q$, where Q is the largest number of solutions to the congruence

$$
w_{1} w_{2} \equiv \rho w_{3} w_{4}(\bmod p), \quad w_{1}, w_{2}, w_{3}, w_{4} \in \mathcal{J}
$$

taken over all integers ρ with $\rho^{n-1} \equiv 1(\bmod p)$. Writing

$$
\begin{aligned}
Q & =\frac{1}{p-1} \sum_{\chi \in X_{p}} \sum_{w_{1}, w_{2}, w_{3}, w_{4} \in \mathcal{J}} \chi\left(w_{1} w_{2}\right) \bar{\chi}\left(\rho w_{3} w_{4}\right) \\
& \leq \frac{1}{p-1} \sum_{\chi \in X_{p}}\left|\sum_{w \in \mathcal{J}} \chi(w)\right|^{4} \\
& =\frac{(B+O(1))^{4}}{p-1}+\frac{1}{p-1} \sum_{\chi \in X_{p}^{*}}\left|\sum_{w \in \mathcal{J}} \chi(w)\right|^{4}
\end{aligned}
$$

and using Lemma 4 again, we see that

$$
T \ll R \ll Q \ll B^{4} p^{-1}+B^{2} p^{o(1)}
$$

Collecting the above estimates and substituting them into (7) we deduce that

$$
W^{4} \ll p^{2+o(1)} A^{2}\left(B^{4} p^{-1}+B^{2}\right)
$$

which together with (6) implies that

$$
\begin{aligned}
\sum_{r \in \mathbb{F}_{p}} \mid & \left.\# \mathcal{U}_{n, p}(\Pi ; s, r)-\frac{A \cdot \# \mathcal{U}_{n, p}(\mathcal{J} ; s)}{p} \right\rvert\, \\
& \ll p+A^{1 / 2} B p^{1 / 4+o(1)}+A^{1 / 2} B^{1 / 2} p^{1 / 2+o(1)}
\end{aligned}
$$

Finally, for $A B>p$ we have $p<A^{1 / 2} B^{1 / 2} p^{1 / 2}$, and the result follows.
Combining Lemmas 7 and 8 we immediately obtain:
Corollary 9 For all primes p, boxes Π given by (2) for some real numbers A, B, C, D with $p>A, B \geq 1$, and $s \in \mathbb{F}_{p}^{*}$, we have

$$
\begin{aligned}
\sum_{r \in \mathbb{F}_{p}} \mid & \left.\# \mathcal{U}_{n, p}(\Pi ; s, r)-\frac{A B}{p} \right\rvert\, \\
& \ll A \sigma_{p}(B)+A^{1 / 2} B p^{1 / 4+o(1)}+A^{1 / 2} B^{1 / 2} p^{1 / 2+o(1)}
\end{aligned}
$$

3.3 Concluding the Proof

We say that two trinomials $f_{r_{1}, s_{1}}(T), f_{r_{2}, s_{2}}(T) \in \mathbb{F}_{p}[T]$ are equivalent if $r_{1}=u^{n-1} r_{2}$ and $s_{1}=u^{n} s_{2}$ for some $u \in \mathbb{F}_{p}$. Clearly all trinomials $f_{r, s}(T) \in \mathbb{F}_{p}[T]$ with $r, s \in \mathbb{F}_{p}^{*}$ fall into $p-1$ equivalent classes of $p-1$ elements each.

Thus, we see from Lemma6that

$$
N_{n, p}(\Pi ; r, s)=\frac{1}{p-1} \sum_{(r, s) \in \mathcal{J}_{n, p}} \# \mathcal{U}_{n, p}(\Pi ; r, s)+O(p)
$$

(where the term $O(p)$ accounts for the contribution coming from irreducible binomials).

Therefore,

$$
\begin{aligned}
N_{n, p}(\Pi)-\frac{\# \mathcal{T}_{n, p}}{p(p-1)} A B & =\frac{1}{p-1} \sum_{(r, s) \in \mathcal{T}_{n, p}}\left(\# U_{n, p}(\Pi ; s, r)-\frac{A B}{p}\right)+O(p) \\
& \leq \frac{1}{p-1} \sum_{(r, s) \in \mathcal{T}_{n, p}}\left|\# U_{n, p}(\Pi ; s, r)-\frac{A B}{p}\right|+O(p) \\
& \leq \frac{1}{p-1} \sum_{s \in \mathbb{F}_{p}^{*}} \sum_{r \in \mathbb{F}_{p}}\left|\# U_{n, p}(\Pi ; s, r)-\frac{A B}{p}\right|+O(p)
\end{aligned}
$$

Applying Lemma5 and Corollary 9 we obtain

$$
\begin{aligned}
& N_{n, p}(\Pi)-\frac{1}{n} A B \\
& \quad \ll A B p^{-1 / 2}+A \sigma_{p}(B)+A^{1 / 2} B p^{1 / 4+o(1)}+A^{1 / 2} B^{1 / 2} p^{1 / 2+o(1)}+p
\end{aligned}
$$

As in the proof of Lemma 8, we can assume that $A B>p$ since the bound of Theorem 1 is trivial otherwise. In this case

$$
A^{1 / 2} B^{1 / 2} p^{1 / 2} \geq p
$$

Since $p>A, B \geq 1$, we also have

$$
A^{1 / 2} B^{1 / 2} p^{1 / 2} \geq A B p^{-1 / 2}
$$

Therefore (3.3) simplifies as

$$
N_{n, p}(\Pi)-\frac{1}{n} A B \ll A \sigma_{p}(B)+A^{1 / 2} B p^{1 / 4+o(1)}+A^{1 / 2} B^{1 / 2} p^{1 / 2+o(1)}
$$

It is easy to see that the roles of r and s can be interchanged in the above arguments, and this leads to the bound

$$
N_{n, p}(\Pi)-\frac{1}{n} A B \ll \sigma_{p}(A) B+A B^{1 / 2} p^{1 / 4+o(1)}+A^{1 / 2} B^{1 / 2} p^{1 / 2+o(1)}
$$

Recalling Lemma3, we conclude the proof.

References

[1] L. M. Adleman and H. W. Lenstra, Finding irreducible polynomials over finite fields. In: Proc. 18th ACM Symp. Theory Comput. (Berkeley, 1986), ACM, New York, 1986, 350-355.
[2] A. Ayyad, T. Cochrane and Z. Zheng, The congruence $x_{1} x_{2} \equiv x_{3} x_{4}(\bmod p)$, the equation $x_{1} x_{2}=x_{3} x_{4}$ and the mean value of character sums. J. Number Theory 59 (1996), 398-413. doi:10.1006/jnth. 1996.0105
[3] W. D. Banks and I. E. Shparlinski, Sato-Tate, cyclicity, and divisibility statistics on average for elliptic curves of small height. Israel J. Math. 173(2009), 253-277. doi:10.1007/s11856-009-0091-0
[4] S. D. Cohen, The distribution of polynomials over finite fields. Acta Arith. 17 (1970), 255-271.
[5] , Uniform distribution of polynomials over finite fields. J. London Math. Soc. 6 (1972), 93-102. doi:10.1112/jlms/s2-6.1.93
[6] J. B. Friedlander and H. Iwaniec, The divisor problem for arithmetic progressions. Acta Arith. 45 (1985), 273-277
[7] H. Iwaniec and E. Kowalski, Analytic number theory. Amer. Math. Soc., Providence, RI, 2004.
[8] I. E. Shparlinski, Distribution of primitive and irreducible polynomials modulo a prime. (Russian) Diskret. Mat. 1 (1989), 117-124; translation in Discrete Math. Appl. 1 (1991), 59-67.
[9] \longrightarrow On irreducible polynomials of small height in finite fields. Appl. Algebra Engrg. Comm. Comput. 4(1996), no. 6, 427-431. doi:10.1007/s002000050043
[10] , Finite fields: Theory and computation. Kluwer Acad. Publ., Dordrecht, 1999.
Department of Computing, Macquarie University, Sydney, NSW 2109, Australia e-mail: igor@ics.mq.edu.au

[^0]: Received by the editors September 25, 2008; revised February 6, 2009.
 Published electronically March 24, 2011.
 During the preparation of this paper, the author was supported in part by ARC Grant DP0556431.
 AMS subject classification: 11L40, 11 T 06.
 Keywords: irreducible trinomials, character sums.

