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On the Distribution of Irreducible
Trinomials

Igor E. Shparlinski

Abstract. We obtain new results about the number of trinomials tn + at + b with integer coefficients

in a box (a, b) ∈ [C,C + A] × [D,D + B] that are irreducible modulo a prime p. As a by-product

we show that for any p there are irreducible polynomials of height at most p1/2+o(1), improving on the

previous estimate of p2/3+o(1) obtained by the author in 1989.

1 Introduction

For a fixed integer n ≥ 2, we consider the family of trinomials

(1) fa,b(T) = Tn + aT + b

with integer coefficients.

Given a prime p and a box

(2) Π = [C,C + A] × [D,D + B]

with some real numbers A,B,C,D we denote by Nn,p(Π) the number of pairs of

integers (a, b) ∈ Π, such that fa,b(T) is irreducible modulo p.

Using some ideas of [3], we obtain an asymptotic formula for Nn,p(Π) that is

nontrivial, provided that the side lengths A and B of Π satisfy

min{A,B} ≥ p1/4+ε and AB ≥ p1+ε

for some fixed ε > 0 and sufficiently large p.

More precisely, we have the following result.

Theorem 1 For a prime p and a box Π given by (2) for some real numbers A,B,C,D

with p > A,B ≥ 1, we have the bound

∣

∣

∣
Nn,p(Π) −

1

n
AB

∣

∣

∣

≤ min{AB1−1/ν p(ν+1)/(4ν2) + A1/2Bp1/4 + A1/2B1/2 p1/2,

A1−1/νBp(ν+1)/(4ν2) + AB1/2 p1/4 + A1/2B1/2 p1/2}po(1)

as p → ∞ with any fixed integer ν ≥ 1, where the function implied by o(1) depends

only on n and ν.
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Let hn(p) denote the smallest height of monic polynomials of degree n over Z

that are irreducible modulo p (recall the height is the largest absolute value of the

coefficients).

In particular, taking A = B =
⌈

p1/2+ε
⌉

for some ε > 0 and C = D = 0, choosing

ν = 1 in Theorem 1, we obtain Nn,p(Π) = pε/n + O(pε/2) for the corresponding box

Π. Since ε is arbitrary, we derive the following corollary.

Corollary 2 For all primes p, hn(p) ≤ p1/2+o(1) as p → ∞.

Corollary 2 improves the previous estimate of hn(p) ≤ p2/3+o(1) of [8] obtained

in 1989 (the proof also uses irreducible trinomials), see also [10, Theorem 3.11].

We also remark that it follows from a result of L. M. Adleman and H. W. Lenstra

[1] that, under the Extended Riemann Hypothesis, there are irreducible modulo p

monic polynomials of height O(log2n p). It is further shown in [9] that for any fixed

n ≥ 2 and an arbitrary function ϑ(x) → ∞, for almost all primes p in the interval

[N − M,N] of length M > N7/12+ε (with arbitrary ε > 0) there is an irreducible

modulo p polynomial of degree n and of height at most ϑ(p). However Corollary 2

appears to be the strongest known unconditional result that holds for all primes.

2 Preparations

2.1 Notation

Throughout this paper, we use U = O(V ), U ≪ V , and V ≫ U as equivalents of the

inequality |U | ≤ cV for some constant c > 0, which may depend only on the integer

parameters n and ν.

We write log x for the maximum of 1 and the natural logarithm of x, thus we

always have log x ≥ 1.

For a prime p, we use Fp to denote the field of p elements which we assume to be

represented by the set {0, . . . , p − 1}.

Let Xp be the set of multiplicative characters of Fp; we refer to [7, Chapter 3] for

the necessary background on multiplicative characters. We also use χ0 to denote the

principal character of Fp, and X∗
p = Xp \ {χ0} to denote the set of nonprincipal

characters.

2.2 Character Sums

We recall the following orthogonality relations. For any divisor d | p − 1,

(3)
1

d

∑

χ∈Xp

χd
=χ0

χ(w) =

{

1, if w = ud for some u ∈ F
∗
p,

0, otherwise,

and

(4)
1

p − 1

∑

r∈Fp

χ1(r)χ2(r) =

{

1, if χ1 = χ2,

0, otherwise,
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for all v ∈ Fp and χ1, χ2 ∈ Xp (here, χ2 is the character obtained from χ2 by complex

conjugation).

The following result combines the Pólya–Vinogradov bound (for ν = 1) with the

Burgess bounds (for ν ≥ 2); see [7, Theorems 12.5 and 12.6]:

Lemma 3 Uniformly for all primes p, and real X,Y with p > X ≥ 1, for all characters

χ ∈ X∗
p, we have

∣

∣

∣

∑

Y≤x≤Y +X

χ(x)
∣

∣

∣
≤ p(ν+1)/(4ν2)+o(1)X1−1/ν

as p → ∞ with any fixed integer ν ≥ 1, where the function implied by o(1) depends

only on ν.

The next bound is due to Ayyad, Cochrane and Zheng [2, Theorem 2]; see also

the result of Friedlander and Iwaniec [6].

Lemma 4 Uniformly for all real X,Y with p > X ≥ 1, we have

∑

χ∈X∗

p

∣

∣

∣

∑

Y≤x≤Y +X

χ(x)
∣

∣

∣

4

≤ pX2+o(1)

as p → ∞.

2.3 Irreducibility

We recall a very special case of a result of S. D. Cohen [4] about the distribution of

irreducible polynomials over a finite field Fq of q elements, see also [5].

Let Tn,p be the set of pairs (r, s) with r, s ∈ F
∗
p such that fr,s(T) given by (1) is

irreducible over Fp.

Lemma 5 For any prime p,

#Tn,p =
1

n
p2 + O(p3/2).

We also make the following trivial observation.

Lemma 6 If a trinomial fr,s(T) ∈ Fp[T] is irreducible, then so are all trinomials

frun−1,sun (T) with u ∈ F
∗
p.

Clearly, for r, s ∈ F
∗
p there are exactly p − 1 distinct polynomials that can be

obtained this way.

3 Proof of Theorem 1

3.1 Idea of the Proof

We see from Lemma 6 that in order to establish the desired result it is enough, for

a given irreducible trinomial fr,s(T) ∈ Fp[T], to estimate the cardinality of the set
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Un,p(Π; r, s) of u ∈ F
∗
p such that the residues modulo p of run−1 and sun which belong

to the intervals [C,C + A] and [D,D + B], respectively, where Π is given by (2).

One certainly expects #Un,p(Π; r, s) to be about AB/p, and our task is to prove this

for as small values of A and B as possible. We also note that it is enough to estimate

the deviation |#Un,p(Π; r, s) − AB/p| on average over all r, s ∈ Tn,p. Furthermore,

since by Lemma 5 this is set very large, we can simply estimate the above deviation

on average over all r, s ∈ Fp. Thus we concentrate on the distribution of the set

(5) {(run−1, sun) : u ∈ Fp}

inside of the box Π, on average over r, s ∈ Fp.

In fact, a similar argument has already been used in [8]. However, here we follow

the technique of [3], which is based on the use of the character sum instead of expo-

nential sums (which were used in [8]). This allows us to use some rather powerful

tools which have no analogues for exponential sums (such as Lemmas 3 and 4). In

turn, this leads to stronger results.

3.2 Simultaneous Distribution of Powers in Intervals

Let

σp(U ) = max
χ∈X∗

p

max
V∈R

{

1,
∣

∣

∣

∑

V≤u≤V +U

χ(u)
∣

∣

∣

}

.

We begin by investigating the distribution of the second component sun of the

pairs (5). Accordingly, for an interval J = [D,D + B] and s ∈ Fp we define

Un,p(J; s) = {u ∈ F
∗
p : sun ≡ w (mod p), where w ∈ J}.

We have the following asymptotic formula for the cardinality of Un,p(J; s):

Lemma 7 For all primes p, intervals J = [D,D + B] with p > B ≥ 1, and s ∈ F
∗
p,

we have

#Un,p(J; s) = B + O
(

σp(B)
)

.

Proof Let d = gcd(n, p − 1). By the orthogonality relation (3), for all w ∈ F
∗
p we

have

#{u ∈ F
∗
p : un

= w} = #{u ∈ F
∗
p : ud

= w} =

∑

χ∈Xp

χd
=χ0

χ(w).

Let s be an integer such that ss ≡ 1 (mod p). Separating the contribution of B+O(1)

from the principal character χ0, we see that

#Un,p(J; s) =
∑

w∈J

∑

χ∈Xp

χd
=χ0

χ(sw) = B + O(1) +
∑

χ∈X
∗

p

χd
=χ0

χ(s)
∑

w∈J

χ(w).

Since the inner sum is bounded by σp(B) and

#{χ ∈ X∗
p : χd

= χ0} = d − 1 < n,

the result follows.
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We now take into account the distribution of the first component run−1 of the

pairs (5). For a box Π given by (2) and r, s ∈ Fp we define

#Un,p(Π; s, r) = {u ∈ Un,p(J; s) : run−1 ≡ v (mod p), where v ∈ I},

where I = [C,C + A] and, as before, J = [D,D + B].

Lemma 8 For all primes p, boxes Π given by (2) for some real numbers A,B,C,D

with p > A,B ≥ 1, and s ∈ F
∗
p, we have

∑

r∈Fp

∣

∣

∣
#Un,p(Π; s, r) −

A · #Un,p(J; s)

p

∣

∣

∣
≤ A1/2Bp1/4+o(1) + A1/2B1/2 p1/2+o(1)

as p → ∞.

Proof We can assume that AB > p, since the result is trivial otherwise. Indeed, if

AB ≤ p, then A1/2B1/2 p1/2 ≥ AB, while

∑

r∈Fp

∣

∣

∣
#Un,p(Π; s, r) −

A · #Un,p(J; s)

p

∣

∣

∣

≤
∑

r∈Fp

#Un,p(Π; s, r) + A · #Un,p(J; s) ≪ AB.

For every a ∈ F
∗
p, let a be an integer such that aa ≡ 1 (mod p). Using (3) and

separating the contribution of
(

A+O(1)
)

#Un,p(J; s) from the principal character χ0,

it follows that

#Ur,s(A,B; p)

=

∑

u∈Un,p(J;s)

∑

a∈I

1

p − 1

∑

χ∈Xp

χ(run−1a)

=
A · #Un,p(J; s)

p − 1
+ O(1)

1

p − 1

∑

χ∈X∗

p

χ(r)
∑

u∈Un,p(J;s)

χ(un−1)
∑

a∈I

χ(a).

Since

A · #Un,p(J; s)

p
−

A · #Un,p(J; s)

p − 1
≪

A · #Un,p(J; s)

p2
≪

AB

p2
≪ 1,

we have

(6)
∑

r∈Fp

∣

∣

∣
#Un,p(Π; s, r) −

A · #Un,p(J; s)

p

∣

∣

∣
≪ p + W,
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where

W =
1

p

∑

r∈Fp

∣

∣

∣

∑

χ∈X∗

p

χ(r)
∑

u∈Un,p(J;s)

χ(un−1)
∑

a∈I

χ(a)
∣

∣

∣
.

By the Cauchy inequality,

W 2 ≤
1

p

∑

r∈Fp

∣

∣

∣

∑

χ∈X∗

p

χ(r)
∑

u∈Un,p(J;s)

χ(un−1)
∑

a∈I

χ(a)
∣

∣

∣

2

=
1

p

∑

χ1,χ2∈X∗

p

∑

u1,u2∈Un,p(J;s)

χ1(un−1
1 )χ2(un−1

2 )

∑

a1,a2∈I

χ1(a1)χ2(a2)
∑

r∈Fp

χ1(r)χ2(r).

Using the orthogonality relation (4) we deduce that

W 2 ≤
∑

χ∈X∗

p

∣

∣

∣

∑

u∈Un,p(J;s)

χ(un−1)
∣

∣

∣

2 ∣
∣

∣

∑

|a|≤A

χ(a)
∣

∣

∣

2

.

Applying the Cauchy inequality again, it follows that

(7) W 4 ≤
∑

χ∈X∗

p

∣

∣

∣

∑

u∈Un,p(J;s)

χ(un−1)
∣

∣

∣

4

·
∑

χ∈X∗

p

∣

∣

∣

∑

|a|≤A

χ(a)
∣

∣

∣

4

.

The second sum is of size O(p1+o(1)A2) by Lemma 4. For the first sum, we extend the

summation to include the trivial character χ = χ0, obtaining

∑

χ∈X∗

p

∣

∣

∣

∑

u∈Un,p(J;s)

χ(un−1)
∣

∣

∣

4

≤
∑

χ∈Xp

∣

∣

∣

∑

u∈Un,p(J;s)

χ(un−1)
∣

∣

∣

4

= pT,

where T is the number of solutions to the congruence

un−1
1 un−1

2 ≡ un−1
3 un−1

4 (mod p), u1, u2, u3, u4 ∈ Un,p(J; s).

Note that T does not exceed the number of quadruples (u1, u2, u3, u4) in Un,p(J; s)4

for which

un(n−1)
1 un(n−1)

2 ≡ un(n−1)
3 un(n−1)

4 (mod p).

Since sun
j ≡ w j (mod p) for some w j with w j ∈ J, and each w j corresponds to at

most n values of u j , it follows that T ≤ n4R, where R is the number of solutions to

the congruence

wn−1
1 wn−1

2 ≡ wn−1
3 wn−1

4 (mod p), w1,w2,w3,w4 ∈ J.
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Clearly, R ≤ (n − 1)Q, where Q is the largest number of solutions to the congruence

w1w2 ≡ ρw3w4 (mod p), w1,w2,w3,w4 ∈ J,

taken over all integers ρ with ρn−1 ≡ 1 (mod p). Writing

Q =
1

p − 1

∑

χ∈Xp

∑

w1,w2,w3,w4∈J

χ(w1w2)χ(ρw3w4)

≤
1

p − 1

∑

χ∈Xp

∣

∣

∣

∑

w∈J

χ(w)
∣

∣

∣

4

=

(

B + O(1)
) 4

p − 1
+

1

p − 1

∑

χ∈X∗

p

∣

∣

∣

∑

w∈J

χ(w)
∣

∣

∣

4

and using Lemma 4 again, we see that

T ≪ R ≪ Q ≪ B4 p−1 + B2 po(1).

Collecting the above estimates and substituting them into (7) we deduce that

W 4 ≪ p2+o(1)A2(B4 p−1 + B2),

which together with (6) implies that

∑

r∈Fp

∣

∣

∣
#Un,p(Π; s, r) −

A · #Un,p(J; s)

p

∣

∣

∣

≪ p + A1/2Bp1/4+o(1) + A1/2B1/2 p1/2+o(1).

Finally, for AB > p we have p < A1/2B1/2 p1/2, and the result follows.

Combining Lemmas 7 and 8 we immediately obtain:

Corollary 9 For all primes p, boxes Π given by (2) for some real numbers A,B,C,D

with p > A,B ≥ 1, and s ∈ F
∗
p, we have

∑

r∈Fp

∣

∣

∣
#Un,p(Π; s, r) −

AB

p

∣

∣

∣

≪ Aσp(B) + A1/2Bp1/4+o(1) + A1/2B1/2 p1/2+o(1).
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3.3 Concluding the Proof

We say that two trinomials fr1,s1
(T), fr2,s2

(T) ∈ Fp[T] are equivalent if r1 = un−1r2

and s1 = uns2 for some u ∈ Fp. Clearly all trinomials fr,s(T) ∈ Fp[T] with r, s ∈ F
∗
p

fall into p − 1 equivalent classes of p − 1 elements each.

Thus, we see from Lemma 6 that

Nn,p(Π; r, s) =
1

p − 1

∑

(r,s)∈Tn,p

#Un,p(Π; r, s) + O(p)

(where the term O(p) accounts for the contribution coming from irreducible bino-

mials).

Therefore,

Nn,p(Π) −
#Tn,p

p(p − 1)
AB =

1

p − 1

∑

(r,s)∈Tn,p

(

#Un,p(Π; s, r) −
AB

p

)

+ O(p)

≤
1

p − 1

∑

(r,s)∈Tn,p

∣

∣

∣
#Un,p(Π; s, r) −

AB

p

∣

∣

∣
+ O(p)

≤
1

p − 1

∑

s∈F∗

p

∑

r∈Fp

∣

∣

∣
#Un,p(Π; s, r) −

AB

p

∣

∣

∣
+ O(p).

Applying Lemma 5 and Corollary 9 we obtain

Nn,p(Π) −
1

n
AB

≪ ABp−1/2 + Aσp(B) + A1/2Bp1/4+o(1) + A1/2B1/2 p1/2+o(1) + p.

As in the proof of Lemma 8, we can assume that AB > p since the bound of

Theorem 1 is trivial otherwise. In this case

A1/2B1/2 p1/2 ≥ p.

Since p > A,B ≥ 1, we also have

A1/2B1/2 p1/2 ≥ ABp−1/2.

Therefore (3.3) simplifies as

Nn,p(Π) −
1

n
AB ≪ Aσp(B) + A1/2Bp1/4+o(1) + A1/2B1/2 p1/2+o(1).

It is easy to see that the roles of r and s can be interchanged in the above arguments,

and this leads to the bound

Nn,p(Π) −
1

n
AB ≪ σp(A)B + AB1/2 p1/4+o(1) + A1/2B1/2 p1/2+o(1).

Recalling Lemma 3, we conclude the proof.
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