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ON THE LIMIT CYCLE DISTRIBUTION OVER TWO NESTS
IN QUADRATIC SYSTEMS

XIANHUA HUANG AND J.W. REYN

As a contribution to the solution of Hilbert's 16th problem the question is consid-
ered whether in a quadratic system with two nests of limit cycles at least in one
nest there exists precisely one limit cycle. An affirmative answer to this question
is given for the case that the sum of the multiplicities of the finite critical points
in the system is equal to three.

1. INTRODUCTION

Of the list of problems enunciated by Hilbert in his address to the International
Congress of Mathematicians in Paris in 1900 [9], the sixteenth problem has proved to be
a remarkably intractable question. This applies also to its second part, which asks for
the maximum number and relative position of the limit cycles of polynomial systems of
differential equations in the plane. The problem remains unsolved, even for the simplest
case, that of quadratic systems, that is,

x = ooo + O-IQX + aoiy + a2gx + auxy + ag2y = P(x,y),

y = boo + b1Qx + bOiy + b20x
2 + bnxy + b02y

2 = Q(x,y),

where ' = ^ , aij,b{j 6 1R and P(x,y), Q{x,y) are relatively prime real polynomials,
which are not both linear. In fact, it has only fairly recently been firmly established that
a given quadratic system has at most finitely many limit cycles [1], whereas the existence
of a uniform upper bound for the number of limit cycles in the class of quadratic systems
is still a subject of research [8]. As a result of the work of Bautin [2] and Petrovskii and
Landis [12], for some time, an upper bound for the number of limit cycles in quadratic
systems was expected to be equal to three until, at the beginning of the eighties, in
China, examples with (at least) four limit cycles were given [4, 17]. Since then further
examples were given (see for instance [3, 10, 13, 14, 18]). From them and from other
results for quadratic systems, the suggestion then emerges that a quadratic system
contains at most four limit cycles, in which case they would be distributed over two
nests, three in one and one in the other. Since in a quadratic system there can be at
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most two nests of limit cycles the question then arises, whether it is generally true that
in the case of two nests at least one of them contains precisely one limit cycle. In fact,
this property was proved for quadratic systems with four (real) critical points forming
a convex quadrangle [20]. In this configuration there are two saddle points and two
antisaddles. For the other possible configuration with two nests and four (real) critical
points, three antisaddles and one saddle point no proof is available yet. The third
possibility with four critical points, that of having two real and two complex critical
points, is the one occurring in the examples with (at least) four limit cycles and here
again there is no proof, but only evidence. Apart from some limit cases with second
order critical points this covers all possibilities, wherein the sum of the multiplicities of
the (real or complex) critical points is equal to four. If the sum of the multiplicities of
the finite critical points is called the finite multiplicity m/ of a quadratic system, this
settles rrif = 4. By changing the coefficients in (1), one or more finite critical points
may be sent off to infinity yielding 0 ^ m/ < 4. Trivially for m/ = 0 or 1 no two nests
of limit cycles can occur, whereas for m/ = 2 it can be shown that in the case of two
nests there is precisely one limit cycle in each nest [15]. This leaves the case m/ = 3;
being the case with three finite critical points, possibly complex or coinciding, then
yielding a second or third order point. For mj = 3 a positive answer will be obtained
in the present paper. One consequence of this result is that for a bounded quadratic
system having two nests of limit cycles at least in one nest there is precisely one limit
cycle (and probably in both nests [7, 11]).

For a system with mf = 3 one critical point has "gone off' to infinity compared
to the general quadratic system with four finite critical points. At infinity there thus
exists one transversally non-hyperbolic critical point which then necessarily is multiple,
whereas possible other infinite critical points are hyperbolic transversal to the Poincare
circle. A multiple infinite critical point in a quadratic system will be indicated by M^q ,
where i indicates the index of the point, p the number of finite critical points and q

the number of infinite critical points that can at most bifurcate from it upon changing
the coefficients in the system. For mj = 3 thus we have precisely one point M^q with
p ^ 0 and for this point p = 1. For q there are the possibilities 9 = 1, 2 or 3. If
q equals 2 or 3 the point M^q is a degenerate critical point (for the locally linearised
system both eigenvalues are zero), and a result by Coppel [5] shows that the system then
has at most one limit cycle; so two nests are impossible. The remaining class in rn/ — 3
has an infinite critical point of type M\^, or as will be shown later, a transversally
non-hyperbolic second order saddle node Mj° 1 with center manifold transversal to the
Poincare circle. In section 2 a normal form will be derived for quadratic systems with
finite multiplicity 3 and a M{^ type of critical point at infinity, and the parameter
region indicated for which there are possibly two nests of limit cycles. In section 3 the
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normal form is studied for these parameter regions by transforming it into a Lienard

equation. Applying a non-existence and uniqueness theorem for limit cycles of this

equation then yields the result that in the case of two nests of limit cycles, in at least

one of the nests there is precisely one limit cycle.

2. QUADRATIC SYSTEMS WITH FINITE MULTIPLICITY 3

AND A M J J TYPE OF CRITICAL POINTAT INFINITY

LEMMA 1 . A quadratic system with finite multiplicity 3 and a M\x type of crit-
ical point at infinity can be represented by the system

x = x + Xy + ey2 + S(fj.x + 72/ + xy) = P(x,y)

(2) y = fix + 71/ + xy, = Q{x,y)

where fi^Q, c = ^ 1 , A, 7, 6 £ R .

The infinite critical point Ml x is a transversally non-hyperbolic second order sad-

dle node M° j with center manifold transversal to the Poincare circle.

PROOF: Critical points of (1) are located at the intersection points of P(x,y) = 0
and Q(x,y) = 0, being the 00 and 0 isoclines, respectively, and sending such a point
to infinity in a certain direction makes this direction a common asymptotic direction
of the conies P(x,y) = 0 and Q(x,y) — 0, so that the quadratic terms in (1) have a
common linear factor. Without loss of generality this factor may be taken to be y, so
that 020 = 620 — 0 yet, since for rrif = 3 only one critical point is sent to infinity, there
is only one common linear factor so C56 = anfco2 — 002^11 7̂  0. Since, moreover, an
infinite critical point of (1) is in the same direction - given by y = ux - as the flow on
the solution curves approaching it, u should be a solution of

/(it) = o02u3 + (an - 602)w2 + (o2o — &ii)u — &20 = 0,

with a2o = &20 = 0. For u — 0 to be a point of first order tangent to the Poincare

circle then 6n ^ 0. Also it may be seen that for raj — 3 there exists at least one real

critical point in the finite part of the plane which then may be thought to be located

in the origin, hence aoo = 600 = 0. If, furthermore, b^x + 6022/ is replaced by x, then

(1) takes the form

y2x — aiOx + ooij/ + ouxy + a02y
2

y = biox + b01y + xy,

where a<>2 7̂  0, since c$a — —0-02 ^ 0. It will be convenient to rewrite this equation as

x = aio* + a01y + aO2y2 + 6(fix + -yy + xy),

xy,
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with ao2 7̂  0 and, since otherwise mj ^ 2, aio ^ 0. Replacing x by axox, y by

«io/\/ |«o2ll/ and t by t/aio then yields

x = x + \y±y2 + S(fix +-yy + xy),

y = /J.X + 72/ + zy,

where A, 6, 7 £ R and where we can set /x ^ 0, if needed replacing y by —y (then

also A and 6 change their sign).

For the determination of the character of M{x we may refer to Reyn and Kooij

[16]; from figure 2 in [16] it follows with C25 = 1 ^ 0 that M\ x is a transversally

non hyperbolic second order saddle node M\x with center manifold transversal to the

Poincare circle. D

Possible other finite critical points may be shifted to the origin by means of a
translation of the axes leaving system (2) in the same form. In fact, if x = x — xc, y =
V — Vet where (xc,yc) are the coordinates of a finite critical point of (2), this yields

x = x + Xy + ey2 + ~8{p,x + jy + xy),

y = p.x + ;yy + xy,

where A = A + 2eyc, 6 = 6, JZ = fj, + yc and 7 = 7 + xc.

For the coordinates (xc,yc) we have

"c = - 7 + £M U - *M ± V (e/* + *)2 + 4e(T - /xA) J ,

yc = ̂  f -A -en± J{ep + A)2 + 4e(7 - MA)J.

We shall use some additional notation to indicate critical points. A finite saddle point
is indicated by e"1 , an antisaddle by e1, a complex point by c° and a multiple point
by mx

m, where i indicates the index of the point and m its multiplicity, being equal
to 2 or 3 for system (2). Elementary infinite critical points are indicated by E~* for a
saddle, E1 for an antisaddle (being a node) and C° for a complex point.

Moreover, we shall encounter a tangentially non-hyperbolic second order saddle
node which will be indicated by MQ2 > using the notation already given.

LEMMA 2 . For e = —1 there are t ie following combinations of finite critical

points: m\, mjje1, e~1 e1 e1 and c°c°e1 and t ie following combination of infinite critical

points: C70C70M1°il for \8\ < 2, M°2M°fl for \6\ = 2 and E ^ E 1 ^ for \6\>2.

For e — 1 t iere are the following combinations of finite critical points: m^1,

mije"1, e~1e~1e1 and c°c°e~1 and the following combination of infinite critical points:
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PROOF: We study first the critical points at infinity. By using the Poincare trans-
formation z = a:"1, u = yx~1, after a scaling of time, (2) becomes

z = z[{\ + fi6)z + Su + (A + j5)uz + eu2] = R{z,u),

u' = -fj.z - u + (1 + Su - j)uz + Su2 + (A + •y6)u2z + eu3 = S(z,u),

so that the infinite critical points, apart from M^j, are located at z = 0 and the roots
of eu2 + Su - 1 = 0.

For the product of the eigenvalues in the critical point (0,iic) we have

x 9R, ,dS, . dR, ^dS.n .
c) = -^(0,uc) — (0,uc) - —(0,U c) — (0,«e)

= uc(S + euc)(—1 + 2Suc + 3EU2.) = 2 — Suc.

For e = - 1 , if \S\ < 2 obviously we have C°C0Af^ and for |£| = 2 we have M[
If |£| > 2 there are two elementary points, located in u± — (S ± \/62 — 4)/2, whereas
f2(O,u+)f2(O,u_) = — (62 —4) < 0 so we have E~1E1M^1. In all three cases, the
sum of the indices of the infinite critical points equals zero. As a result the sum of the
indices of the finite critical points is equal to 1, which yields the possible combinations
ml, m\ex, e~1e1e1 and c ^ e 1 .

For e = 1 we may write Cl(Q,uc) = 1 + u2 > 0, so there are two nodes and there
exists only the combination E1E1M®1 of which the sum of the indices equals 2, yielding
for the sum of the indices of the finite critical points —1. The finite combinations are
then: m"1, m^e"1, e-1e~1e1 and cVe" 1 . D

Since in a quadratic system a limit cycle has only one critical point in its interior,
this point being an elementary focus, only those combinations containing an antisaddle
are of interest for the limit cycle problem. Classes with possibly two nests of limit
cycles are e-1e1e1C°C0M1

0
1, e ^ e V A ^ M ^ and e'1 e1 e1 E'1 E1 M°A . They occur

for e = — 1 and this class will now be investigated.

3. SYSTEMS WITH POSSIBLY TWO NESTS OF LIMIT CYCLES

We recall that these systems can only be found in (2)e__1:

x = x + Xy - y2 + S(fix + jy + xy) = P(x,y),

(3) y — /J.X + 7j/ + xy = Q(x,y),

with fi ^ 0, A, 7, S EM, and that the coordinates of the finite critical points are given
by

x± = —7 + -fi I A + /i ± y (A — fi) — 4(7 —
(4) u 1—> \

y± ==~\^~fM^z\/{^~f1) ~4(7 — MA) 1.
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Figure 1. Parameter plane for equation (3).

In figure 1 the A, 7 parameter plane is given for a given value of 11 > 0. We do
not consider /x = 0 since then the system has an invariant line: y = 0 and such a
quadratic system is known to have at most one limit cycle [6]. In fact the same is true
for 7 = 0 for which y = —y. is an invariant line. The various possible combinations of
finite critical points are indicated in the corresponding regions. From a local analysis
it follows that (0,0) is a saddle for 7 - /xA < 0, an antisaddle for 7 - /xA > 0 and a
multiple point for 7 - fiX = 0; a m\ for A = /z, 7 = fi2 and a m° for A ̂  /*. Of
interest for the question of two nests of limit cycles is the region 7 > /xA where (0,0) is
an antisaddle, since if (0,0) is a saddle one of the two antisaddles may be shifted to the
origin keeping the same form of equation.

This region may be further subdivided into region I: —00 < A < 00; 7 ^
(A + /x)2/4, wherein there is only one antisaddle and the regions II-V representing sys-
tems with two antisaddles. They are given by: II:-00 < A < -/x, 0 ^ 7 < (A + fi) /4;
III: -00 < A < 0, jxA < 7 < 0; IV: -/x < A < fi, max{0,/xA} < 7 < (A + it)2/4 **<*
V: fi < A < 00, /xA < 7 < (A + /x)2/4, and indicated as shaded regions in figure 1. A
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further restriction in the parameter plane A, 7 is possible since for regions IV and V
at most one nest of limit cycles is possible. We thus arrive at

THEOREM 1. If a quadratic system with finite multiplicity m/ = 3 has two nests
of limit cycles, it can be represented by equation (3) with parameter values in the
regions II (-00 < A < -fi, 0 ^ 7 < (A + y.)2/4\ and III (-00 < A < 0, pA < 7 < 0).

PROOF: If the parameter values are in region V, x+ > x_, J/_J_ > y_ > 0 and
the situation is sketched in Figure 2. Since fl(x+,y+) = —2(7 — A/j) + (A — fi)y+ >
—2(7 — X/J,) + (A — n)y~ = £l(x-,y-), the saddle is at (z_,t/_) and the antisaddle at
(x_)_, 2/.f). If (KC>2/C) are the coordinates of a critical point, from (3) may be obtained
that on y = yc we have y = (fi + yc)(x — xc), so that with fi > 0, yc ^ 0 follows that
on possible limit cycles around (0,0) and (X+,T/-|.) the motion is in the anticlockwise
direction. It is a known result for quadratic systems that this is not possible since the
segment of the straight isocline between (0,0) and (x+,y+) must be crossed in the same
direction all along this segment.

Figure 2.

If the origin is shifted to (K+,J /+) ; the parameter values are in region IV. D
Having focused our attention to regions II and III, it may further be realised that

these regions are related to each other through a shift of the origin to the other anti-
saddle. For either of the two regions it is sufficient then to consider the situation with
regard to limit cycles around the origin; the information on limit cycles around the
other antisaddle (focus) being taken from the other region. Limit cycles around the
origin will be studied by transforming (3) into a Lienard equation. We shall make use
of the following lemmas.
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LEMMA 3 . Suppose the system

x = —
(5)

y = x- F(y),

satisfies the following conditions:

0) 9{y) G C1 and F(y) 6 C2 for y G (a,/3), where a < 0 < /?;
(") 2/5(2/) > 0 f°T V G (a, /3) and t/ ^ 0;

(iii) there exists an c*i, with a < ai < 0, such that f(y) > 0 for y G (a ,a i )
and f{y) < 0 for y G (a^/3), where /(y) = F'(y);

(iv) [/(»)/fl(y)]' > 0 for y G (a.Oi) and y G (0,/3).

Then the system has at most one limit cycle in the strip

Z>i := {(x,y)\ - o o < a ; < o o , a < y < (3}

If it exists, it must be a stable cycle, which is hyperbolic.

Suppose, moreover, that the system satisfies conditions (i) and (ii) and in addition
the conditions:

(iii)' /(0) = 0 > 5 ' ( 0 ) > 0 ;
(iv)' [f(y)/g(y)}' > 0 (or < 0) for y G (a,/?) and y £ 0.

Then the system has no limit cycle entirely contained in the strip D\ .

PROOF: AS pointed out in [21], the uniqueness part of the theorem follows from
Theorem 6.4 of [19] and also from Theorem 1 of [6]. The non-existence part is proved
in [21]. D

NOTE. The non-existence part of the lemma is very useful if we want to prove that there
is no limit cycle surrounding a weak focus when the sign of the focal values cannot easily
be determined.

LEMMA 4 . System (3) can be transformed into the Lienard system (5), where

/(») - -fi(y)/{y + rf, g(y) = ygi(y)/(y + n)2 and h{y) = 6y
2 + (i

fj.(/j.S + 7 + 1) and gi(y) = y2 + {y. - \)y + 7 - A/x.

PROOF: In (3), let x\ = fix + -yy + xy, y1 = y. It then follows that

7 -*i iyf + (A

+ x^Sy2 + (2^6 + l)yi + /x(l +8n + 7)} + x\),

Vi — «!•
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Then, by x2 - Z I / ( M + y), 3/2=3/1 and tx = t(fj, + y) we get

X2 = ; -2 [-yl + (A - n)y\ + (A// - 7)2/2

+x2{Syl + (2(1,6 + l)y2 + /x(l + fy + 7)}] ,

1/2 = »2-

Finally by x = x2 + F(y2), y = 3/2 we obtain (5) with g(y) and F(y), where
f(y) = F'(y) as stated in the lemma. U

As may be seen from (3), y = —fi is a line without contact which cannot be crossed
by a limit cycle. Moreover on y = y± we note that y is linear in x with the only zero
a t (X±>V±) • K a limit cycle around the origin crosses this line it has to encircle another
critical point as well, which is not possible in a quadratic system.

This indicates the following strips in the x,y plane as regions wherein limit cycles
have to be investigated.

II: - 0 0 < A < - / i , 0 < 7 < (A + /x)2/4; y G (-/*, 00)
III: - 00 < A < 0, ^A < 7 < 0; y G (y+,00), -fj.<y+ < 0.

Applying Bendixon's criterion yields the following for region II.

THEOREM 2 . For parameter values in region II: -00 < A < — fi, 0 < 7 <
(A + fj.) /4 equation (3) has no limit cycles around the origin if 8 ̂  0.

PROOF: The roots / * of fi(y) are given by

so / j ~ < / j + < 0 for 7 ^ 0, 6 ̂  0(fi > 0). In the strip y 6 (—//,00) the divergence of
(-5(3/)) x - F(y)) = —f(y) = fi(y)/{y + /*)2 is of constant sign if / i (y) is of constant
sign. Sufficient for this is that / j + ̂  — fj. or 8 ̂  0. D

REMARK. The theorem is equally valid for the regions I, IV and V.

There is no need to obtain a result for 8 < 0 in region II since complementary
information can be obtained from region III.

For region III we apply lemma 3, using lemma 4, where

( J =
\g(y)J \ygi(y)J y2gUy) y2g2(y)

which defines <p(y), for which the following lemma is obtained.
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LEMMA 5 . If6^ max{0, - ( 7 + 1)/^}, for region III (-00 < A < 0, fiX < 7 < 0)
there is <p(y) ^ 0 for y 6 (y+, ff) U (0,00).

PROOF: First we consider 7 ^ — 1 ; then 5 ^ 0 . For £ = 0 we have

<p{y) = p{l + 7)(T - V ) + 2/*(l

= /x(l + 7)51 (y) + 3/M1 + 7)

- A V

From the cubic polynomial we see that, since the coefficients are non-negative,
f(y) > 0 for y > 0. On the interval (y+,ff) we have gi(y) > 0, y < 0, ^(1 + 7)+ 3/ <
0 and -A + y. + 2y > 0 so that <p{y) > 0 on (y+,/i+) U (0,oo).

For f ^ 0 we may write

(6) tp(y) = 5y4 + 2(1 + 2/z%3 + rf + 7)
M5 + 7 )y ,i8 + 7).

From the quartic polynomial we see, since the coefficients are non negative, that
> 0 for y > 0. It remains to consider the interval y £ (y+,/j ) . For fixed values

of yx, 7, A we may consider <p(y) as a function of y and 8 and use the fact that <p{y,8)
depends linearly on 8. The region in the y,6 plane on which to consider ip(y,8) is
sketched in figure 3a. Its boundaries are given by 8 = 0, y £ (y+,— /x(l +7)); y =
y+, 0 < 8 < £(/i^) ; and the curve 8 = 8(ff). Since <p(y) > 0 for 8 = 0 and f(y)
is linear in 8 it suffices to show that y ( /* ) > 0 for 8 = £(/*)• This is so since
p(fi~) = -[y9i(y)fi(y)]v=f+ a n c l y - ft < 0 for 8 > 0, yi(y) > 0 for y > y+ and for
f [ { y ) i n y = / j + w e m a y w r i t e 6(f* - f i ) = \ / l — Afi8/1 > 0 .

5 6

a. 7 > - i i>. Y< -•?

Figure 3. Region in the y, 8 plane where to consider (p(y,8)
for region III.

If 7 < - 1 , then 6 ^ - ( 7 + l)/p has to be considered. For 8 = - ( 7 + l)//x > 0
from the quartic polynomial (6) it can be seen that, since the coefficients are non
negative, <p(y) > 0 for y > 0. It remains to consider the interval y £ (y.).,/^*). The
region in the y, 8 plane on which to consider <p(y, 8) is given in figure 3b. Its boundaries
are given by 8 = - ( 7 + l)//i, y £ (y+,0); y = y+, 8 > 0; and the curve 8 = 8(f+) .
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Since for 7 ^ —1 (but not using this condition) it was shown that f(y) > 0 for
y = / + it suffices to show that <p(y) > 0 for 8 = — (7 + 1)//*. Now (6) yields for

(7) f{y) = y2i>(y) = y2[Sy2 + 2(1

where V'(y) takes its minimum at y = —1/5 (1 + 2fi8) < —fi < y+ so it is

sufficient to show that i/){y+) > 0. However, (p(y+) = [{ygi(y))'h(y))y=y+ =

6y+(y+ - y-)(y+ - ff)(y+ - / f ) > 0, thus i>{y+) > 0. D

We can now state the following theorem.

THEOREM 3 . For region III ( -00 < A < 0, fj,X < -y < 0) there is at most one

limit cycle around the origin for equation (3) if 8 ^ max{0, —(7 + 1)/^} • 1$& exists, it

is a stable cycle, which is hyperbolic.

PROOF: Apply lemma 3, using lemma 4 and 5 and putting a = y+, (3 = 00 and

For region III lemma 3 may further be applied to complete the information for

6>0.

THEOREM 4 . For region III ( -00 < A < 0, fj.\ < 7 < 0) there is no Emit cycle

around the origin for equation (3) if 8 ^ —(7 + l)//x, 7 ^ —1.

PROOF: For 8 = —(7 + l)//x, the origin is a weak focus for (3). From the non
existence part of Lemma 3 it follows that there is no limit cycle around the weak focus.
In fact conditions (i) and (ii) are equally satisfied putting a = y+, /3 = 00, whereas,
clearly / (0) = 0, g'(0) = 1 /M 2 (7 - A/x) > 0 and according to the proof of lemma 5
[f(y)/g{y)Y > 0 for 1/ £ (y+,oo) and y ^ 0 as / + = 0 for 1 + 7 + n8 - 0. The same
conclusion may also be obtained by considering the change of stability of the focus in the
origin when 8 is varied through 8 = —(7 + l)//x and using Theorem 3. To determine
its stability, first replace fix + 77/ by x in (3) to obtain

x = (1 + (J.8 + 7)x - (7 - \(i)y + [8 + ?- jxy - -((i2 + /i«7 + j2)y2,

1 7 ,
y = x + -xy y ,

H fj
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For the first focal value W\ we have, see [19],

Wr- 1

and W\ < 0 for 7 $$ — 1 in region III, and the weak focus is stable. Since for 6 >
— (1 +7)/ /^, the origin is an unstable strong focus, precisely one (stable) limit cycle,
which is hyperbolic will be bifurcated in a Hopf bifurcation, and since, according to
Theorem 3 there is only one limit cycle, there will be none around the weak focus. Now
consider the Poincare mapping around the origin for (3).

Figure 4.

As i l lustrated in figure 4 a pa th intersecting the positive x axis at x = X\ again

intersects at x = X2 after one t ime wise (anticlockwise) revolution around the origin.

For t h e (stable) weak focus without limit cycle around it X2 = X2(xi;6) < X\ for

xi > 0 . For 6 < —(1 + j)/fi t he path through the same value of xi spirals in more

strongly as may be seen from the expression

Q
dQ_

86

— 1 , X2 =

P
dP_
dS

= -Q2 0.

1; 6) < x\ for > 0 and there is
D

As a result for 8 ^ —(1 +7)//x, 7
no limit cycle around the origin.

Having obtained the focal value W\ for the weak focus in the origin, figure 1 may
also be viewed as the projection of the fine focus plane 1 + fiS + 7 = 0 in the A, 7, S
space onto the A, 7 plane, wherein the value of W\ may be indicated.

4. DISTRIBUTION OF LIMIT CYCLES OVER TWO NESTS

Now we can state

THEOREM 5 . If a quadratic system with finite multiplicity mj = 3 has two nests
of Umit cycles, at ieast one nest contains precisely one limit cycle.

PROOF: From theorems 3 and 4 follows for region III that there is at most one
limit cycle around the origin if 8 ^ 0. If 8 < 0 there is at most one nest of limit cycles,
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since around the antisaddle not in the origin there exists no limit cycle. This may be
derived from the result for region II in Theorem 2 that for 6^0 there does not exist a
limit cycle around the origin. In order to demonstrate this, the origin will be shifted to
the other antisaddle, which is located at (x-,y-), the saddle being located at (x+,y+).

Using the transformation x = x — a;_, y — y — y- on (3) yields

x = x + Xy - y2 + I(p.x + jy + xy),

+ xy,

where A = A — 2i/_, 8 = 8, ~jl = fj, + y- and 7 = 7 + a;_ .

Using (4) this gives fL = (A + / x ) /2 - y(A - nf - 4(7 - /zA)/2 < 0, since A + ^ < 0
in region II. Replacing y by — y now leads to a system with /ii = —/Z > 0, Ai =
—A, 81 = —8 and 7j = 7 . It then follows that

0 > 71 = 1/2M(A + H ~ J(* ~ M)2 - 4(7 -

\ (M + \/(A M) - 4(7 - /**)) [\ + /x - y/{\ - fj,)2 - 4(7 -

and the mapping is into region III with 8\ > 0. D
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