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Abstract

The first author [J. Brough, ‘On vanishing criteria that control finite group structure’, J. Algebra 458
(2016), 207–215] has shown that for certain arithmetical results on conjugacy class sizes it is enough
to consider only the vanishing conjugacy class sizes. In this paper we further weaken the conditions to
consider only vanishing elements of prime power order.
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1. Introduction

Many results have been proven which connect the structure of a finite group G to
arithmetical data connected to G. One type of data that has often been considered
is the set of conjugacy class sizes in a group. Recently, instead of considering all
conjugacy class sizes, this set has been refined by using the irreducible characters of
a group. In particular, the set of vanishing conjugacy class sizes is of interest. (See
[1, 3, 4, 6] and also [8] for properties related to vanishing elements.) In [1, 4, 6] and
[8], the arithmetical data for conjugacy class sizes is weakened to only the vanishing
conjugacy class sizes. An element x ∈ G is called a vanishing element if there exists
some irreducible character χ of G such that χ(x) = 0; the conjugacy class xG is called
a vanishing conjugacy class.

In [4], the first author showed that the criterion given by Cossey and Wang to
determine solubility and supersolubility only required the vanishing conjugacy class
sizes. Furthermore, the author weakened the vanishing criterion for p-nilpotence given
by Dolfi et al. [6] to only considering the vanishing p′-elements (that is, the elements
whose order is not divisible by p). We restate here the three main theorems given
in [4].
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Theorem 1.1 [4, Theorem A]. Let G be a finite group and p a prime divisor of |G|
such that, if q is any prime divisor of G, then q does not divide p − 1. Suppose that no
vanishing conjugacy class size of G is divisible by p2. Then G is a soluble group.

Theorem 1.2 [4, Theorem B]. Let G be a finite group and suppose that every vanishing
conjugacy class size of G is square free. Then G is a supersoluble group.

Theorem 1.3 [4, Theorem C]. Let G be a finite group and suppose that a prime p does
not divide the size of any vanishing conjugacy class size |xG | for x a p′-element of
prime power order in G. Then G has a normal p-complement.

The aim of this paper is to further refine which vanishing conjugacy classes are
required. In particular, it is shown that it is sufficient to consider vanishing elements
of prime power order. In other words, we shall prove the following results.

Theorem 1.4. Let G be a finite group and p a prime divisor of G such that, if q is any
prime divisor of G, then q does not divide p − 1. Suppose that no conjugacy class
size of a vanishing element of prime power order in G is divisible by p2. Then G is a
soluble group.

Theorem 1.5. Let G be a finite group and suppose that no conjugacy class size of a
vanishing element of prime power order in G is square free. Then G is a supersoluble
group.

Theorem 1.6. Let G be a finite group and suppose that a prime p does not divide the
size of any vanishing conjugacy class size |xG | for x a p′-element of prime power order
in G. Then G has a normal p-complement.

Note that Theorem 1.4 has the following immediate corollary.

Corollary 1.7. Let G be a finite group and suppose that no vanishing conjugacy class
size of an element of prime power order in G is divisible by 4. Then G is a soluble
group.

The proofs of these theorems use very similar arguments to those in [4]. Therefore,
some of the details will be omitted here and we will instead refer the reader to
the previous paper. The key difference is that we now need to ensure that our
chosen elements from the nonabelian simple groups without an irreducible character
of q-defect zero have prime power order. In particular, the adapted version of [4,
Lemma 2.4] is given by two lemmas at the end of Section 2, which split the cases for
the sporadic and alternating groups into two parts.
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2. Preliminaries

Given a normal subgroup N in G, there is a natural bijection between the set of
irreducible characters of G/N and the set of irreducible characters of G with N in their
kernel. In particular, this natural bijection implies that if x is an element not in N, then
xN is vanishing in G/N if and only if x is vanishing in G. In addition, recall that for
an element x in G, both |xN | and |xNG/N | divide |xG |.

Let q be a prime number and χ an irreducible character of G. The character χ is said
to have q-defect zero if q does not divide |G|/χ(1). A result of Brauer highlights the
significance q-defect zero has for vanishing elements. If χ is an irreducible character
of G with q-defect zero, then χ(g) = 0 for every g ∈G such that q divides the order of g
[10, Theorem 8.17].

Corollary 2.1 [9, Corollary 2]. Let S be a nonabelian simple group and assume that
there exists a prime q such that S does not have an irreducible character of q-defect
zero. Then q = 2 or 3 and S is isomorphic either to one of the following sporadic
simple groups M12, M22, M24, J2, HS , Suz, Ru,Co1,Co3, BM, or some alternating
group Alt(n) with n ≥ 7.

In the particular case that M is a minimal normal subgroup, we shall use
the preceding corollary together with the following lemma; this result forms a
generalisation of a comment made during the proof of [6, Theorem A].

Lemma 2.2 [4, Lemma 2.2]. Let G be a group and N a normal subgroup of G. If N has
an irreducible character of q-defect zero, then every element of N of order divisible by
q is a vanishing element in G.

It still remains to consider those simple groups which have no character of q-defect
zero for some prime q. The next result provides a condition for an irreducible character
of a minimal normal subgroup M of G to extend to an irreducible character of G.

Proposition 2.3 [2, Lemma 5]. Let G be a group and M = S 1 × · · · × S k a minimal
normal subgroup of G, where every S i is isomorphic to a nonabelian simple group S .
If θ ∈ Irr(S) extends to Aut(S), then θ × · · · × θ ∈ Irr(M) extends to G.

We want to obtain a version of [4, Lemma 2.4] for elements of prime power order;
however, it is not straightforward to construct an element x of prime power order in
Sym(n) such that 8 and every prime which divides |Sym(n)| also divides |xSym(n)|.
Fortunately, for sporadic simple groups we do have the analogous result.

Lemma 2.4. Let S be a nonabelian sporadic simple group and assume that there exists
a prime q such that S does not have an irreducible character of q-defect zero.

(1) There exists a prime power element x whose conjugacy class xS is of size
divisible by every prime dividing S and by 4, and there exists θ ∈ Irr(S) which
extends to Aut(S) such that θ vanishes on xS .
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Table 1. Pairs {x1, θ1} and {x2, θ2} for the sporadic groups.

Group Character θ1 Class x1 Character θ2 Class x2

M12 χ7 3B χ7 8A
M22 χ7 8A χ2 7A
M24 χ7 4C χ5 7A
J2 χ6 3B χ10 4B

HS χ7 5C χ16 4C
S uz χ3 8B χ9 3C
Ru χ11 4D χ9 5B

Co1 χ2 4F χ2 9B
Co3 χ6 4B χ10 5B
BM χ20 4J χ27 9B

(2) Let p be a prime dividing the order of S . Then there exists a p′-element x of
prime power order whose conjugacy class xS is of size divisible by p, and there
exists θ ∈ Irr(S) which extends to Aut(S) such that θ vanishes on xS .

Proof. To prove (1), Table 1 gives a pair {x1, θ1} satisfying the required conditions.
If a pair {x1, θ1} satisfies the conditions required for (1), then it also satisfies the

conditions required for (2), unless x1 turns out to have order divisible by p. Thus, to
establish (2) from (1), it is enough to provide an additional pair {x2, θ2} such that if x1
has order divisible by p, then x2 has order not divisible by p. We cannot take exactly
the same list as in either [4, Lemma 2.4] or [6, Lemma 2.2], as the given elements were
not all prime power elements.

Table 1 provides pairs {x1, θ1} and {x2, θ2} taken from [5], for the required sporadic
groups. �

It remains to study the alternating groups. We study Alt(n) for all n ≥ 7, although
in fact [9, Corollary 2] yields some additional restrictions on n. For n ≥ 7, recall that
Aut(Alt(n)) � Sym(n). As we are considering elements of prime power order, it is
enough to show the existence of such an element for a prime l not equal to 2 or 3.
Then the simple group has a character of l-defect zero.

Lemma 2.5. Let S be isomorphic to Alt(n) for n ≥ 7 and assume that there exists a
prime q such that S does not have an irreducible character of q-defect zero.

(1) There exists an l-element x whose conjugacy class xS is of size divisible by 4 for
some prime l , 2 or 3.

(2) Let p be a prime dividing the order of S . Then there exists an l-element x whose
conjugacy class xS is of size divisible by p for some prime l , 2, 3 or p.

Proof. To prove this statement, we first produce an l-element x whose conjugacy class
size is divisible by 4 and every prime dividing Alt(n) except for l. In order to then
obtain the second statement, we can assume that the given prime p is equal to l for the
example given to the first statement. In this case it is then enough to produce another
l′-element of prime power order with conjugacy class size divisible by l.
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Let l be the largest prime less than n (that is, l is the largest prime dividing the order
of Alt(n)). Since n ≥ 7, it is clear that l ≥ 5. If x is an l-cycle in Alt(n), then the size of
its conjugacy class in Sym(n) is given by

n!
l · (n − l)!

=
n(n − 1) · · · (n − l + 1)

l
.

As l was chosen to be the largest prime less than n, it follows that both 4 and every
other prime divisor of Alt(n) not equal to l divides the conjugacy class size of x in
Alt(n). This completes the proof of the first claim.

Consider the second claim. If the largest prime l ≤ n is not equal to p, then we are
done. Thus, assume that l = p. From the verified Bertrand’s postulate [13, page 67],
since n ≥ 7, it follows that l ≤ n ≤ 2l − 1. Let q be the second largest prime less than
n, so 3 < q ≤ l ≤ n. Let k be a natural number such that 0 ≤ n − kq < l. If k ≥ l, then
n − kq ≤ n − pq ≤ n − 2p < 0, which is a contradiction. Thus, k < l. Now let x be a
product of k q-cycles. It follows that the conjugacy class size of x in Sym(n) is

n!
qk · (k)!(n − kq)!

.

However, no term in the denominator of this fraction is divisible by l and so x is a
q-element (that is, a prime power p′-element) such that p divides its conjugacy class
size in Alt(n). �

3. The proofs

Theorem 3.1 (Theorem 1.4). Let G be a finite group and p a prime divisor of G such
that, if q is any prime divisor of G, then q does not divide p − 1. Suppose that no
conjugacy class size of a vanishing element of prime power order in G is divisible by
p2. Then G is a soluble group.

Proof. Suppose that G is chosen of minimal order satisfying the hypothesis of the
theorem, but is not soluble. By the same arguments as in [4, Theorem A], it can be
assumed that p = 2 and, if G has a proper normal subgroup N, then G/N is soluble.
Moreover, a minimal normal subgroup M � S 1 × · · · × S n is nonabelian. If S i has a
character of q-defect zero for all q, then, as S i is nonsoluble, [11, Proposition] implies
that there is an element of prime power order with conjugacy class size divisible by 4.
On the other hand, if S i is isomorphic to Alt(n) with n ≥ 7, then, by Lemma 2.5, there
is an l-element for l > 3 such that the conjugacy class size is divisible by 4. In both
cases applying [4, Lemma 2.2] shows that G has a prime power vanishing element with
conjugacy class size divisible by 4. Hence, it can be assumed that S i is isomorphic to
one of the sporadic groups given in Corollary 2.1. In this case the same argument as in
[4, Theorem A] now using Lemma 2.4 produces a vanishing element of G with prime
power order and 4 dividing its conjugacy class size. �

Theorem 3.2 (Theorem 1.5). Let G be a finite group and suppose that no conjugacy
class size of a vanishing element of prime power order in G is square free. Then G is
a supersoluble group.
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Proof. This result now follows by combining Theorem 1 with the proof of [4,
Theorem B], as the only elements considered are of prime power order. �

Theorem 3.3 (Theorem 1.6). Let G be a finite group and suppose that a prime p does
not divide the size of any vanishing conjugacy class size |xG | for x a p′-element of
prime power order in G. Then G has a normal p-complement.

Proof. Suppose that G is chosen of minimal order satisfying the hypothesis of the
theorem, but does not have a normal p-complement. By the same arguments used in
the proof of [4, Theorem C], we can conclude that Op′(G) = 1. Let M = S 1 × · · · × S k

be a minimal normal subgroup of G with each S i � S a simple group. Then p divides
the order of S . If S is abelian, the proof of [4, Theorem C] shows that any vanishing p′-
element of prime power order lies in Op(G). Hence, G has a normal p-complement by
[7, Corollary C].

Hence, assume that S is nonabelian. First assume that S is not sporadic. If S has
an irreducible character of q-defect zero for each prime q, then as S � Op(S) × Op′(S)
it follows by [12, Theorem 5] that S has a p′-element of prime power order such that
p divides its conjugacy class size. Moreover, Lemma 2.5 implies for S of alternating
type (on at least seven points) that there exists a p′-element which has order a power
of a prime l > 3 and conjugacy class size divisible by p. Thus, [4, Lemma 2.2] shows
that G has a p′-element of prime power order which is vanishing and conjugacy class
size divisible by p. Finally, assume that S is sporadic. In this case the same argument
as in [4, Theorem C] but using Lemma 2.4 produces a vanishing p′-element of G with
prime power order and p dividing its conjugacy class size. �
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