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Abstract

We fix a prime p and consider a connected reductive algebraic group G over a perfect
field k which is defined over Fp. Let M be a finite-dimensional rational G-module M , a
comodule for k[G]. We seek to somewhat unravel the relationship between the restriction
of M to the finite Chevalley subgroup G(Fp)⊂G and the family of restrictions of M
to Frobenius kernels G(r) ⊂G. In particular, we confront the conundrum that if M is
the Frobenius twist of a rational G-module N,M =N (1), then the restrictions of M
and N to G(Fp) are equal whereas the restriction of M to G(1) is trivial. Our analysis
enables us to compare support varieties (and the finer non-maximal support varieties)
for G(Fp) and G(r) of a rational G-module M where the choice of r depends explicitly
on M .

Introduction

Our aim is to provide some understanding of the relationship of the restrictions of a finite-
dimensional rational G-module M to G(Fp) and G(r). We consider reductive groups G defined
over a field k of characteristic p > 0 and equipped with the data of an Fp-structure. We require
that p be at least as large as the Coxeter number of G, an assumption which much simplifies
arguments and might in fact be necessary for such a comparison. As we discuss in the final
section, our results apply to provide information about G(Fq) for q an arbitrary pth power.

Representations of a Lie group are faithfully reflected by their linearizations as representations
of the Lie algebra, but this is far from correct for modular representation theory. Instead, rational
representations of a smooth, affine group G correspond to locally finite representations of the
hyperalgebra lim−→r

kG(r) of distributions supported at the identity of G. This motivates our search
for a direct relationship between the action of elements of the finite discrete group G(Fp)⊂G and
the action of the distributions of bounded height supported at the identity of G. Proposition 4.2
establishes an explicit relationship, one which relies on the association to an element x ∈G(Fp)
of order p the 1-parameter subgroup φx : Ga→G whose construction is due to Seitz [Sei00] and
Testerman [Tes95].

The role of 1-parameter subgroups in the theory of support varieties for infinitesimal group
schemes was explored in earlier work of Suslin, the author, and Bendel in [SFB97a, SFB97b],
and this is the underlying foundation of our approach. We employ the point of view developed
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E. M. Friedlander

by the author and Pevtsova of π-points and π-point spaces Π(G) for finite group schemes G
such as G(Fp) and G(r); this perspective enables us to establish a natural relationship between
invariants of G(Fp) and G(r). Using the association x 7→ φx, we construct in Theorem 3.5 a
natural embedding

Ψ : Π(G(Fp))→ (Π(G(r)))/G(Fp), r > 0.

In Proposition 3.6, we give an interpretation of the global p-nilpotent operator defined and
studied by the author and Pevtsova in [FP], which relates this operator to Ψ.

As seen in Theorem 4.5, the support variety of M as a G(Fp)-module can be identified with
its image under this map Ψ provided that r is sufficiently large. We associate a new invariant,
s(M), which gives an upper bound on how large r must be. In Proposition 2.7, we bound s(M)
in terms of the weights of M . On the other hand, we should emphasize that weights of a rational
G-module M are determined by the action of semi-simple elements in the endomorphism algebra
of M , whereas our analysis addresses the action of p-nilpotent elements. Indeed, one can view
the consideration of cohomology and support varieties as a study of nilpotent actions, in sharp
contrast to the classification of irreducible modules in terms of weights.

Our methods apply to finer invariants than support varieties. Namely, we compare the
maximal Jordan types (as introduced by the author, Pevtsova, and Suslin in [FPS07]) of a rational
G-module restricted to G(Fp) and G(r). This comparison, given in Theorem 4.11, enables us to
compare non-maximal support varieties, subvarieties of π-point spaces which are refinements of
support varieties.

This work has been motivated by the challenge of interpreting and extending work of
Carlson et al. in [CLN08], which in turn was based on earlier work of Lin and Nakano in [LN99].
With the benefit of the technology of π-points and the use of 1-parameter subgroups, we
require neither geometric properties of nilpotent cones nor knowledge of centralizers of unipotent
elements to reprove and strengthen their results.

Unless stated to the contrary, p will denote an arbitrary prime number, q = pd an arbitrary
pth power, Fq the finite field of order q, k an arbitrary field of characteristic p, and Fp the
algebraic closure of Fp with chosen embeddings Fq ⊂ Fp.

1. Recollections

An affine group scheme G over k is said to be an affine algebraic group over k if it is smooth over k;
G is said to be a finite group scheme if its coordinate algebra k[G] is finite-dimensional over k; a
finite group scheme G is said to be an infinitesimal group scheme if its coordinate algebra is
local.

We denote by φ : k→ k the pth-power map, the ‘arithmetic Frobenius’, and we let φd denote
its dth power. For any scheme X over k, we denote by X(d) the base change of X along
φd, X(1) =X ×φd Spec k. Thus, the coordinate algebra of the affine group scheme G(d) equals
k ⊗φd k[G].

The Frobenius map F d :G→G(d) is the map of k-group schemes given by F d∗ : k ⊗φd k[G]→
k[G], a⊗ f 7→ a · f q (where q = pd as usual) (see [FS97]).

Definition 1.1. Assume that Fq ⊂ k. An Fq-structure on an affine group scheme G over k is
the data of a sub-Hopf algebra Fq[G]⊂ k[G] such that

k[G]' k ⊗Fq Fq[G].
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Restrictions to G(Fp) and G(r) of rational G-modules

If the affine group scheme G over k is provided with an Fq-structure, then we say that G is
defined over Fq.

We begin with the following (presumably well-known) observation, which gives an ‘intrinsic’
condition on G for it to be defined over Fq and clarifies what we mean by the ‘Frobenius
endomorphism’ on G.

Proposition 1.2. Let G be an affine group scheme over k with Fq ⊂ k. The data of an
Fq-structure on G is equivalent to the data of an isomorphism Φ : k[G]→ k ⊗φd k[G] of Hopf

algebras over k with the property that k[G]≡ k ⊗Fq (k[G])Φ, where (k[G])Φ is defined as the
Fq-subalgebra of k[G] consisting of those f such that Φ(f) = 1⊗φd f .

Such an Fq-structure on G determines an isomorphism G(d)→G of group schemes over k.
Thus, if G is defined over Fq, then we may (and will) view the Frobenius map F d as an
endomorphism of G.

Proof. Identify k[G] with k ⊗Fq Fq[G]. Then we define Φ : k[G]→ k ⊗φd k[G] by sending a⊗ f ∈
k ⊗Fq Fp[G] to a⊗ 1⊗ f ∈ k ⊗φd k ⊗Fq Fp[G]≡ k ⊗φd k[G]. The fact that Φ is an isomorphism is
readily checked using the fact that a k-linear map k→ k ⊗φd k, a 7→ a⊗φd 1 is an isomorphism;
for example, 1⊗φd b is the image of bq. Observe that Fq[G]⊂ k ⊗Fq Fq[G] is the Fq-subalgebra
consisting of those f such that Φ(f) = 1⊗φd f .

Given an Fq-structure on G, the isomorphism G(d)→G is given by Φ : k[G]→ k[G(d)]. 2

Our objective is to establish relationships between representations of the finite group schemes
G(Fq) of Fq-rational points of G and the infinitesimal group schemes G(r), which we now recall.
The reader is referred to [DM91, 3.6] for a more detailed discussion of the finite group G(Fq) of
fixed points of F d on G.

Definition 1.3. Let G be an affine group scheme over k. For any r > 0, we denote by G(r) the
infinitesimal group scheme over k of height r given by

G(r) ≡Ker{F r :G→G(r)}.

If G is defined over Fq with d dividing r, then G(r) equals the kernel of F r :G→G.
For G defined over Fq, we denote by G(Fq) the finite group

G(Fq)≡ {x ∈G(k) | F d(x) · x−1 = 1}.

We next recall the definition of the distribution algebra of an affine group scheme.

Definition 1.4. Let G be an affine group scheme over k. Then a distribution of G (with support
at the identity 1 ∈G) is a k-linear map φ : k[G]→ k which vanishes on some power of the maximal
ideal m1 ⊂ k[G]. The algebra of distributions of G is denoted by Dist(G). The reader is referred
to [Jan03, I.7] for a detailed discussion.

Let M be a (rational) G-module; in other words, M is a comodule for k[G] whose structure
is given by the k-linear map ∇M :M →M ⊗G. Then Dist(G) acts on M as follows:

Dist(G)×M →M, (φ, m) 7→
∑
i

φ(fi)mi, where ∇(m) =
∑
i

mi ⊗ fi.

If H ⊂G is a closed subgroup scheme, then Dist(H)⊂Dist(G). We readily identify
Dist(G(r))⊂Dist(G) as the group algebra of G(r), the Hopf dual of the coordinate algebra k[G(r)];
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we typically use the notation kG(r) to denote Dist(G(r)). On the other hand, if G is discrete then
Dist(G)' k since we are considering distributions supported at the identity.

Example 1.5. LetG= Ga, the additive group with coordinate algebra k[t]. Let (d/dt)(i) : k[t]→ k
denote the k-linear map sending tj to 0 for j 6= i and ti to 1. Then Dist(Ga) is the divided power
algebra spanned by (d/dt)(i), i> 0, with algebra generators

uj ≡ (d/dt)(p j), 0 6 j. (1)

Moreover, Dist(Ga(r))⊂Dist(Ga) is the subalgebra generated by uj , 0 6 j < r.

We require the following elementary observation in order to initiate our comparison of actions
of G(Fp) and G(r).

Proposition 1.6. Let M be a finite-dimensional rational Ga-module. Then the action of
Dist(Ga) on M is the trivial extension of an action of Dist(Ga(r)) = kGa(r) for r� 0.

Proof. Let M be a rational Ga-module, given by the coaction ∇M :M →M ⊗ k[t]. Then the
k-linear action Dist(Ga)×M →M is given by ((d/dt)(i), m) 7→mi, where ∇M =

∑
mi ⊗ ti. If

M is finite dimensional, then ∇M (M)⊂M ⊗ k[t] is finite dimensional, so that the action of
(d/dt)(i) on M is trivial for i� 0. 2

We remind the reader that the prime 2 is bad for a simple algebraic group G over k if G is
not of type A`, that p= 2, 3 are bad if G is of type E6, E6, F4, G2, and that p= 2, 3, 5 are bad
if G is of type E8. If G is semi-simple, the prime p is bad for G if it is bad for some factor of its
simply connected cover. Otherwise, p is said to be good for G.

As considered in [Sei00], a subgroup A of a semi-simple algebraic group G over k is a group
of type A1 if A is a closed subgroup isomorphic to SL2 or PSL2. Such a group A of type A1 is
said to be good provided that the weights of its maximal torus for the action of A on the Lie
algebra of G are all at most 2p− 2. As shown by Seitz in [Sei00, 1.1], if G is simple, p is good
for G, and G is not of type An, then the restriction of the adjoint representation to a good A1 in
G is a tilting module; for G= SLn, the restriction of the action of a good A1 on the Lie algebra
of GLn+1 is also a tilting module.

We shall depend heavily on the following theorem of Seitz, which in turn depends upon work
of Testerman [Tes95].

Theorem 1.7 (Seitz [Sei00, 1.3]). Let G be a simple algebraic group over a perfect field k, with
p good for G, and let x ∈G(k) have order p. Then there is a unique one-dimensional unipotent
k-subgroup U ⊂G containing x such that U is contained in a good A1 ⊂Gk, where Gk/k is the

base change of G to an algebraic closure k of k. Consequently, there is a unique monomorphism
φx : Ga→G over k with image in a good A1 ⊂Gk and satisfying φx(1) = x.

If x1, . . . , xs ∈G(k) are elements of order p which pairwise commute, then there is an abelian
unipotent k-subgroup E ⊂G through which each φxi factors. Moreover, if G is defined over Fp
and if x1, . . . , xs ∈G(Fp) generate an elementary abelian p-group E ⊂G(Fp) of rank s, then the
associated one-dimensional unipotent k-subgroups U1, . . . , Us ⊂G generate an abelian unipotent
subgroup E ⊂G of rank s.

Remark 1.8. In [Sei00, 1.3], Seitz proved the existence of a unique one-dimensional unipotent
subgroup U ⊂G containing x contained in a good A1 under the hypothesis that k is algebraically
closed. If k is perfect, but not algebraically closed, the Galois group Gal(k, k) acts on G(k) with
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fixed group k. Since the Galois conjugate of a one-dimensional unipotent subgroup U of Gk
contained in a good A1 of Gk is again a one-dimensional unipotent subgroup of Gk contained
in a good A1, the uniqueness of U ⊂Gk implies that U is Gal(k, k)-invariant and thus the base
change of a one-dimensional unipotent k-subgroup U ⊂G is contained in a good A1 ⊂Gk.

If x1, . . . , xs are pairwise commuting, unipotent elements of order p, then each Ui is contained
in the centralizer of each xj ; thus, each Ui commutes with Uj , so that U1, . . . , Us generate an
abelian, unipotent subgroup E ⊂G.

If G is defined over Fp and if each xi ∈G(Fp), then we may take k = Fp to conclude that each
Ui is defined over Fp. Because E ⊂ E(Fp), E must have dimension >s; since E is generated by s
one-dimensional unipotent groups, we conclude that E has dimension equal to s.

We recall that a prime p is good for a reductive algebraic group if it is good for every factor
of its commutator G′ = [G, G]. We shall frequently impose the following condition on G.

Definition 1.9. Let G be an affine algebraic group over a field k. Then G is said to be suitable
if k is perfect, if G is a connected, reductive algebraic group over k, if p is good for G, and if the
degree of the simply connected covering group Gsc→G is prime to p.

Corollary 1.10. Let G be a suitable affine algebraic group. Then the assertions of Theorem 1.7
(as formulated for simple groups) also apply to G.

Proof. As above, we may assume that k is algebraically closed. First, assume that G is semi-
simple, so that π :Gsc→G has degree prime to p and Gsc is a product of simple groups. Clearly,
the assertions of Theorem 1.7 also apply to (G′)sc. Moreover, any x ∈G(k) with xp = 1 lifts to
x′ ∈Gsc with (x′)p = 1 and any two liftings are related by an automorphism of (G′)sc over G.
Thus, φx′ : Ga→Gsc determines π ◦ φx : Ga→G independent of the choice of lifting x′. The
properties of φx′ given in Theorem 1.7 imply the same properties for φx.

Now, consider a general connected, reductive group G covered by τ :R×G′→G, where R
is a central torus of G, G′ = [G, G] is semi-simple, and the degree of this finite covering is again
prime to p. Then the previous lifting argument applies equally to φx : Ga→G obtained as τ ◦ φx̃
for any x̃ ∈R×G′ with τ(x̃) = x. 2

The following definition appears related to the concepts of saturation as considered in [Ser94]
and of exponential type as considered in [SFB97a].

Definition 1.11. Let G be a suitable affine algebraic group, let H ⊂G be a closed algebraic
k-subgroup which is connected and smooth over k, and let k be an algebraic closure of k. Then
we say that H satisfies condition (S) if for every x ∈H(k) of order p the map φx : Ga→G of
Corollary 1.10 factors through H.

This condition (S) is not satisfied by all H ⊂G. A simple example (suggested by Seitz)
in which condition (S) is not satisfied is given by taking G= SL2 × SL2, H = SL2, and the
embedding H →G given by 1× F . Then x× x ∈ SL(2, Fp)× SL(2, Fp) is an element with pth
power equal to 1, but φx×x : Ga→ SL2 × SL2 does not factor through H, where x is the upper
triangular unipotent matrix with a 1 in the (1, 2)-position.

Example 1.12. As observed in [Sei00], if G is of classical type, x ∈G(k) is of order p, and
e= x− 1 is an endomorphism of the natural representation, then

φx(t) = 1 + te+
t(t− 1)

2
e2 + · · ·+ t(t− 1) · · · (t− p+ 1)

(p− 1)!
ep−1 ∈G(k), t ∈ k. (2)
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Thus, for such G, if H is either a parabolic subgroup of G or the unipotent radical of a parabolic
subgroup of G, then H satisfies condition (S).

As observed in [Ser94, § 4], if we write

log(x) =
∑

0<i<p

(−1)i+1ei/i, e= x− 1, xp = 1,

then

φx(t) = exp(t · log x) =
∑

06i<p

(t · log x)i

i!
. (3)

We recall that the Coxeter number h(G) of a simple algebraic group G over k is the height of
the longest root plus 1 of the root system of Gk. (Equivalently, we may consider the root system
of some form of G split over k.) If Π = {α1, . . . , α`} is the set of simple roots of Gk and R+

the set of positive roots for this root system, then h(G)− 1 = maxα∈R+{
∑
ni : α=

∑
niαi ∈Π}.

For a reductive group, we define h(G) to be the maximum of the Coxeter numbers of some split
form of each simple factor of [G, G]. Observe that the condition p> h(G) implies both that p is
good for G and that the degree of Gsc→G is prime to p.

The multiplicative property established below plays a crucial role in our construction of a
map between support varieties for G(Fp) and for G(r). The hypothesis that p> h(G), which we
require to prove our comparison results, appears in the proof of this proposition.

Proposition 1.13. Let G be a suitable affine algebraic group satisfying p> h. For any element
x ∈G(k) with xp = 1, let φx : Ga→G be as in Corollary 1.10. If x, y ∈G(k) with xp = yp = 1
and [x, y] = 1, then

φx · φy = φxy : Ga→G (4)

and

φx · φy = φy · φx : Ga→G. (5)

Proof. We may assume that k is algebraically closed. Let G⊂GLN be an embedding defined
over k, let B = U · T ⊂G be a split Borel subgroup, and let BN = UN · TN ⊂GLN with B ⊂BN .
Define filtrations on U(k) (respectively, UN (k)) by setting F iU(k) (respectively, F iUN (k)) to be
the subgroup generated by root subgroups Uα with α a positive root of G (respectively, GLN )
of height >i. Then U ⊂ UN restricts to F iU ⊂ F iUN .

Our hypothesis p> h(G) implies that F pU(k) = 0. Assume that [x, y] = 1. We readily
check that if x= 1 + e ∈ F iUN and if y = 1 + f ∈ F jUN , then 1 + ef ∈ F i+jUN . This tells us
that if x= 1 + e, y = 1 + f ∈G(k) satisfy xp = yp = 1, then eif j = 0 for i+ j > p. The equality
φxy = φx · φy now follows from [Ser94, Proposition 9]. Thus,

φx · φy = φx·y = φy·x = φy · φx. 2

Let U and Up (respectively, N and Np) denote the subvarieties of unipotent elements and
p-unipotent elements of G (respectively, subvarieties of nilpotent elements and p-nilpotent
elements of Lie(G)). We conclude this section by recalling from [Spr69, 3.1] under the
hypotheses of Corollary 1.10 that there are isomorphisms, ‘Springer isomorphisms’, exp :N ∼−−→
U . The condition that p> h(G) for the reductive group G implies that N =Np and Up = U . The
weaker condition that p is good suffices to imply that Np is irreducible [NPV02, 6.1.3].
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2. 1-parameter subgroups

Theorem 1.7 exhibits 1-parameter subgroups of G associated to elements of order p in G(k). As
established by Suslin, the author, and Bendel in [SFB97a, SFB97b], (infinitesimal) 1-parameter
subgroups provide an alternate interpretation of cohomological invariants of kG(r)-modules. In
this section, we investigate further the role of 1-parameter subgroups in the representation theory
of Frobenius kernels.

We use the familiar notation of H•(G, k) to denote the commutative k-algebra H∗(G, k) =
Ext∗G(k, k) if p= 2 and to denote the even-dimensional subalgebra Hev(G, k)⊂H∗(G, k) if p > 2.

In the theorem below, the map of k-algebras (but not of Hopf algebras for r > 1)

ε : k[u]/up→ kGa(r) ' k[u0, . . . , ur−1]/(up0, . . . , u
p
r−1), u 7→ ur−1 (6)

(where uj is the distribution (d/dt)(p j)) makes its first appearance. As seen in the next section,
ε provides the link between 1-parameter subgroups and π-points of G(r).

Theorem 2.1 [SFB97b]. Let G be an infinitesimal group scheme over k of height 6r. Then the
functor sending a commutative k-algebra A to the set of maps µA : Ga(r),A→GA of group schemes
over SpecA is represented by an affine k-scheme V (G). Thus, a scheme-theoretic point of V (G)
with residue field K corresponds to a 1-parameter subgroup of the form µK : Ga(r),K →GK .

The closed subspaces of V (G) are the subsets of the form

V (G)M = {µK ∈ V (G) | µ∗K(MK) is not free as Ga(r),K-module}
= {µK ∈ V (G) | (µK ◦ ε)∗(MK) is not free as K[u]/up-module}

for some finite-dimensional kG-module M .

There is a natural p-isogeny

Φ : V (G)→ SpecH•(G, k)≡ |G| (7)

with the property that ΦG(V (G)M ) = Z(annH•(G,k) Ext∗G(M,M))≡ |G|M for any finite-
dimensional kG-module M .

In Theorem 2.1, the infinitesimal group scheme is assumed to have height 6r, yet the
notation V (G) does not refer to r. This is justified by the observation that if G has height
6r, then any 1-parameter subgroup Ga(r+1),A→GA factors uniquely through the projection
Ga(r+1),A→Ga(r+1),A/Ga(1),A 'Ga(r),A.

We recall that V (G) admits a natural grading associated to the action of Ga on the domain
Ga(r) of a 1-parameter subgroup µ : Ga(r)→G:

Ga × V (G)→ V (G), (s, µ) 7→ µ(s · −). (8)

In the special case G= Ga(r), the result of s acting on µ : Ga(r)→Ga(r) given by t 7→ a0t+ a1t
p +

· · ·+ ar−1t
pr−1

is the 1-parameter subgroup given by t 7→ a0t+ a1s
ptp + · · ·+ ar−1s

pr−1
tp
r−1

.
This non-linearity of the action of Ga on the 1-parameter subgroups of Ga(r) (parameterized

by r-tuples (a0, . . . , ar−1)) can be a source of some confusion. As we see in the following example,
k-linearity is retained for the 1-parameter subgroups of the form φx.

Example 2.2. Let G be a suitable affine algebraic group. Then the uniqueness property of x 7→ φx
implies the following linearity. For any x ∈G(k) of order p, the 1-parameter subgroup φx : Ga→G
satisfies

φφx(s) = s · φx ≡ φx(s · −) (9)
for any s ∈ k.
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Example 2.3 [SFB97a, 1.7, 1.8]. Let G= GLN be a semi-simple algebraic group over k which
is a product of classical types and let g = Lie(G). Then a 1-parameter subgroup φ : Ga→G is
(uniquely) of the form

t 7→ exp(tα0) · exp(tpα1) · · · exp(tp
r−1
α(r−1)), (10)

where r is some positive integer, α0, . . . , αr−1 are pairwise-commuting p-nilpotent elements of
g with entries in k, and exp(α) = 1 + α+ α2/2 + · · ·+ αp−1/(p− 1)! (cf. (3)). Let Vr(G) be the
k-scheme representing 1-parameter subgroups of G of the form (10). For a given r, the restriction
of such 1-parameter subgroups to Ga(r) determines an isomorphism

Vr(G) ∼−−→ V (G(r))

identified in [SFB97a] as the scheme of r-tuples of p-nilpotent, pairwise-commuting elements
of g.

Proposition 2.4. Let G be an algebraic group of classical type which is suitable (in the sense
of Definition 1.9). Sending x ∈ Up(G) to the 1-parameter subgroup φx : Ga→G determines a
rational map

Φ : Up(G)→ V1(G),

which is defined and injective on geometric points. In particular, if Up is normal (for example if
p> h(G)), then Φ is an injective morphism and thus defines the injective morphism Φ : Up(G)→
V (G(r)) for any r > 0.

More generally, if G is a suitable affine algebraic group equipped with an embedding G⊂GLN
with p not dividing N , then sending x ∈ Up(G) to the 1-parameter subgroup φx : Ga→G
determines a rational map Φ : Up(G)→ V1(GLN ). This rational map is injective on geometric
points, sending a geometric point of Up(G) to a geometric point of V1(GLN ) whose restriction
to any V (GLN(r)) lies in the image of V (G(r)).

Furthermore, for any closed algebraic subgroup H ⊂G which satisfies condition (S) of
Definition 1.11, Φ ◦ i sends geometric points of Up(H) to geometric points of V1(H).

Proof. We first assume that G is a suitable affine algebraic group of classical type. To define
Φ as a rational map on the irreducible variety Up(G), we must give the image of the generic
point of Up(G). If η : SpecK→Up(G) is the generic point corresponding to some xη ∈G(K)
with xp = 1, we define Φ(η) : SpecK→ V1(G) to be the 1-parameter subgroup φxη : Ga,K →GK .
To show that Φ is defined at every geometric point, it suffices to observe that formula (2) implies
that φxη ∈ V1(G)K specializes to φx ∈ V1(k̄) whenever xη ∈G(K) specializes to x ∈G(k̄). Since
φx(t) = exp(t · log x) as in (3), Φ is injective when restricted to G(r) for any r > 0.

More generally, let G be an arbitrary suitable affine algebraic group. Choose some embedding
G⊂GLN with p not dividing N . Let SpecK→Up(G) be a geometric point, corresponding
to an element x ∈G(K) with K algebraically closed (indeed, K perfect would suffice). Then
Corollary 1.10 associates to x a uniquely determined φx : Ga,K →GK . Since the composition of
φx with i :GK ⊂GLN,K must be the 1-parameter subgroup of GLN,K associated to x ∈G(K)⊂
GL(N, K), the restriction of i ◦ φx to Ga,K must be the image of x under the composition
φx ◦ i : Up(G)→Up(GLN )→ V1(GLN ). In particular, Φ is injective on geometric points
of Up(G).
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If a rational map is defined at every geometric point and has normal domain, then it is a
morphism. As established in [BR85, § 9], U is normal provided that G satisfies the hypotheses of
Corollary 1.10, so that Up is normal provided that p> h(G).

This argument applies without change to any closed algebraic subgroup H ⊂G satisfying
condition (S) of Definition 1.11. 2

The following definition is justified by Proposition 1.6, which tells us that for a given finite-
dimensional Ga-module M the distributions (d/dt)(i) vanish on M for i� 0.

Definition 2.5. Let G be a suitable affine algebraic group defined over an algebraically closed
field k. Let η : SpecK→Up(G) denote the generic point of the p-unipotent variety of G, and
let η : SpecK→Up(G) be any geometric point lying over η. For any finite-dimensional rational
G-module M , we define s(M) to be the least integer s such that (d/dt)(i) vanishes on φ∗xη(MK)
for all i> s. We call s(M) the p-nilpotent degree of M .

If G is defined over Fq, then we define sFq(M) to be the least integer s such that (d/dt)(i)

vanishes on φ∗x(M) for all i> s and all x ∈G(Fq) with xp = 1.

We initiate an investigation of this p-nilpotent degree of M .

Proposition 2.6. Let G be as in Definition 2.5; in particular, we assume that k is algebraically
closed. For any finite-dimensional rational G-module M , the integer s(M) of Definition 2.5 is
the least integer s such that for all k-points x ∈ Up(G) and all i> s the distribution (d/dt)(i)

vanishes on φ∗x(M).
In particular, if G is defined over Fq, then sFq(M) 6 s(M).

Proof. We first assume that G is of classical type, and set L equal to an algebraic closure of the
field of fractions of Up(G). Let θx : SpecRx→Up(G) be the strict Hensel local ring at the point
x : Spec k→Up(G), so that L is (isomorphic to) the field of fractions of Rx. By Proposition 2.4,
θx determines φθx : Ga,Rx →GRx . The k[G]-comodule structure on M determines the coproduct
∇Rx :M ⊗Rx→M ⊗Rx[t]. Clearly, if the image of ∇Rx ⊗ L inside M ⊗ L[t] lies in M ⊗ L[t]<s,
then the image of∇Rx ⊗ k lies in M ⊗ k[t]<s. Applying the identification of the action of (d/dt)(i)

given in Proposition 1.6, we conclude that s(M) is greater than or equal to the least integer s
such that for all k-points x ∈ Up(G) and all i> s, the distribution (d/dt)(i) vanishes on φ∗x(M).

On the other hand, let ∇L :ML→ML ⊗L L[t] be the L⊗ k[G]-comodule structure on
ML =M ⊗ L induced by the k[G]-comodule structure on M and set

∇L(m⊗ 1) =
s(M)−1∑
j=0

aimj ⊗ ti ∈M ⊗ L[t].

Choose some k-rational point x ∈ Up(G) with as(M)−1 a unit of Rx. Applying once again the
identification of the action of (d/dt)(i) given in Proposition 1.6, we conclude that the action
of (d/dt)(s(M)−1) on φ∗x(M) is given by sending m ∈M to as(M)−1ms(M)−1, where as(M)−1 is
the (necessarily non-zero) image of as(M)−1) under Rx→ k. Combining this non-vanishing of
(d/dt)(s(M)−1) on φ∗x(M) with the previous paragraph, we conclude that s(M) equals the least
integer s such that for all k-points x ∈ Up(G) and all i> s, the distribution (d/dt)(i) vanishes on
φ∗x(M).

We now consider any reductive G satisfying the condition of Definition 2.5 and choose some
closed embedding i :G⊂GLN . As above, we consider θx : SpecRx→Up(G) and observe that the
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composition i ◦ θx : SpecRx→Up(GLN ) determines φθx : Ga,Rx →GLN,Rx . By Proposition 2.4,
φθx ⊗Rx L factors through GL and φθx factors through G, so that φθx factors through GRx . The
proof now proceeds as above for G classical. 2

The following bound on s(M) is suggested by the discussion of [CLN08, 4.6].

Proposition 2.7. Let G be a suitable affine algebraic group over an algebraically closed field k.
Let M be a rational G-module and d be a positive integer chosen sufficiently large that every
high weight λ of M as a G-module satisfies∑̀

j=1

〈λ, ω∨j 〉< d, (11)

where ω1, . . . , ω` are the fundamental dominant weights of G with respect to some split Borel
subgroup. Then

s(M) 6 2d. (12)

Proof. Let x ∈G(k) satisfy xp = 1, let φx : Ga→G be Seitz’s 1-parameter subgroup associated
to x, and let Ax ⊂G be a good A1 containing the image of φx. By Dynkin’s theorem [Car85,
5.6.6] as observed in [CLN08, 4.6.2], the Tx-weight wtx(vµ) of a T -eigenvector vµ of a rational
G-module M of weight µ satisfies

−2d <−2
∑̀
j=1

〈λ, ω∨j 〉6 wtx(vµ) 6 2
∑̀
j=1

〈λ, ω∨j 〉< 2d.

Let Tx denote the torus of Ax and choose a split Borel subgroup B = U · T with Tx ⊂ T .
Thus, Tx-eigenspaces of M are sums of T -eigenspaces of M , so that the above inequalities apply
as well to the Tx-weight of any Tx-eigenvector vµ.

The coproduct M →M ⊗ k[G] is Tx-equivariant (i.e. is a map of Dist(Tx)-modules) provided
that k[G] is equipped with the adjoint action, so that

M →M ⊗ k[G]→M ⊗ k[Ax]→M ⊗ k[Ux]≡M ⊗ k[X] (13)

preserves weights with respect to Tx. Thus, if m ∈M is a Tx-eigenvector of weight ` and if the
composition of (13) sends m to

∑
i mi ⊗Xi, then mi has Tx-weight `+ 2i (since X as an element

of the Ax-module k[X] has weight −2).
We conclude that if vµ is a Tx-eigenvector ofM of weight µ, then (d/dt)(i)vµ is a Tx-eigenvector

with Tx-weight satisfying

−2d < wtx((d/dt)(i)vµ)< 2d, −2d+ 2i < wtx((d/dt)(i)vµ).

We thus conclude that (d/dt)(i)vµ = 0 for any i> 2d, so that s(M) 6 2d. 2

As expected, s(M) depends only upon conjugacy classes of p-nilpotent elements as verified
in the next proposition.

Proposition 2.8. Let G be a suitable affine algebraic group over an algebraically closed field k
and let M be a rational G-module. Choose a representative xC of each conjugacy class C of
p-unipotent elements of G(k). Then s(M) is the least integer s such that the distribution (d/dt)(i)

vanishes on φ∗xC (M) for all i> s and all xC .
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Assume, in addition, that G is defined over Fq and choose a representative xC′ of each
conjugacy class C ′ of p-unipotent elements of G(Fq). Then sFq(M) is the least integer s such

that the distribution (d/dt)(i) vanishes on φ∗xC′ (M) for all i> s and all xC′ .

Proof. By Proposition 2.6, it suffices to verify that if x, y : Spec k→Up(G)⊂G are conjugate
with y = gxg−1, then (d/dt)(i) vanishes on φ∗x(M) for all i> s if and only if (d/dt)(i) vanishes
on φ∗y(M) = φx(Mg) for all i> s. This follows immediately from the observation that for any
g ∈G(k) the rational G-module M is isomorphic to its g-conjugate Mg.

If G is defined over Fq and x ∈G(Fq), then Seitz showed in [Sei00, 9.1] that φx is defined
over Fq. If g ∈G(Fq), then the g-conjugate Mg of M is isomorphic to M as a G(Fq)-module, so
that φx∗((d/dt)(i)) vanishes on M if and only if φgxg−1∗((d/dt)(i)) vanishes on M . 2

We next consider the behavior of the p-nilpotent degree s(M) with respect to certain
operations on rational G-modules. This enables us to provide further upper bounds for s(M).

Proposition 2.9. Let G be a suitable affine algebraic group defined over an algebraically closed
field k, and let M, N be finite-dimensional rational G-modules.

(1) If N is a submodule of M , then s(N) 6 s(M).
(2) s(M) = s(M#), where M# = Homk(M, k) is the k-linear dual of M .

(3) s(M ⊕N) = max{s(M), s(N)}.
(4) s(M ⊗N) 6 s(M) + s(N).
(5) For any n > 0, each of s(M⊗n), s(Sn(M)), s(Λn(M)) is less than or equal to n · s(M).
(6) If G is defined over Fp, then sFp(M

(1)) = p · sFp(M), where M (1) is the Frobenius twist
of M .

Proof. Statement (1) is immediate from the observation that the action of (d/dt)(i) on φ∗x(Nk(x))
is the restriction of the action on φ∗x(Mk(x)). Statements (2) and (3) follow from the fact that
φ∗x(−) from rational G-modules to rational Ga,k(x)-modules commutes with taking duals and
direct sums.

If M, N are rational Ga-modules, then the action of (d/dt)(`) on M ⊗N is given by∑
i+j=`(d/dt)

(i) ⊗ (d/dt)(j). Thus, statements (4) and (5) follow from the observation that φ∗x(−)
also commutes with tensor products, symmetric powers, and exterior powers.

To prove statement (6), observe that if G is defined over Fp and x ∈G(Fp), then φ∗x(−)
commutes with the Frobenius twist. 2

In the following example, we see that the bound of Proposition 2.7 is far from sharp.

Example 2.10. Let M = Sλ be the irreducible SL2-module of high weight λ, 0 6 λ < p. Then
Sλ is the natural representation of SL2 on k[x, y]λ, homogeneous polynomials in two variables
of degree λ. Thus, s(Sλ) 6 λ by Proposition 2.9(5), whereas Proposition 2.7 gives the bound
s(Sλ) 6 2(λ+ 1). If M is an arbitrary irreducible rational SL2-module, then M ' S(λ0)⊗
S(λ1)(1) ⊗ · · · ⊗ S(λr)(r), so that Proposition 2.9(4) tells us that s(M) satisfies s(M) 6∑r

i=0 p
iλi.

3. π-points and 1-parameter subgroups

Our perspective on support varieties is that developed by the author and Pevtsova in [FP05,
FP07]. The advantage of this perspective is that it gives a uniform treatment of support varieties
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for finite groups and Frobenius kernels. In Theorem 3.5, we define the natural map

ΨG : Π(G(Fp))→ (Π(G(r)))/G(Fp),

whose restriction to abelian unipotent groups E associated to elementary abelian p-groups E ⊂
G(Fp) is very explicit. Namely, a π-point of E(Fp) of the form αx : k[u]/up→ kE, u 7→ [x]− 1 is
sent to the π-point βx : k[u]/up→ kE(r), u 7→ φx(u0 + · · ·+ ur−1) associated to the 1-parameter
subgroup φx ◦ σ.

For the reader’s convenience, we recall the definition of π-points of G and the π-point scheme
Π(G) for a finite group scheme G over k.

Definition 3.1 [FP07]. Let G be a finite group scheme over k.

(1) A π-point of G is a (left) flat map of K-algebras αK :K[u]/up→KG for some field
extension K/k with the property that there exists a unipotent abelian closed subgroup scheme
i : CK ⊂GK defined over K such that αK factors through i∗ :KCK →KGK =KG.

(2) Two π-points αK :K[u]/up→KG, βL : L[u]/up→ LG are said to be equivalent, written
αK ∼ βL, if they satisfy the following condition for all finite-dimensional kG-modules M :
α∗K(MK) is free as a K[u]/up-module if and only if β∗L(ML) is free as an L[u]/up-module.

The Π-point scheme Π(G) is a scheme of finite type over k whose points are equivalence classes
of π-points of G. A subset Y ⊂Π(G) is closed if and only if there exists a finite-dimensional
kG-module M such that Y equals

Π(G)M = {[αK ] | α∗K(MK) is not free as a K[u]/up-module}.

The scheme structure on Π(G) is given in [FP07] in terms of the stable module category of
kG-modules.

To relate the scheme of 1-parameter subgroups V (G) and the scheme of 1-parameter π-points
Π(G), we recall the following theorem.

Theorem 3.2 [FP07, 7.5]. Let G be a finite group scheme over k. Then there is a natural
isomorphism of schemes over k:

ProjH•(G, k)'Π(G).

Moreover, for any finite-dimensional kG-module M , this isomorphism restricts to

ProjH•(G, k)/AnnH•(G,k)(Ext∗(M,M))'Π(G)M .

Combining Theorem 3.2 and the p-isogeny (7) of Theorem 2.1, we conclude the existence of
the natural p-isogeny for G an infinitesimal group scheme of height 6 r,

Φ : Proj k[V (G)]→ ProjH•(G, k) ∼−−→Π(G), (14)

which sends φ : Ga(r)→G to the π-point φ∗ ◦ ε : k[u]/up→ kGa(r)→ kG, where

ε : k[u]/up→ kGa(r), u 7→ ur−1. (15)

In the following proposition, we pre-compose φx with the distinguished 1-parameter subgroup
of Ga(r):

σ : Ga(r)→Ga(r), t 7→ t+ tp + · · ·+ tp
r−1
. (16)
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The role of σ is that σ∗(ur−1) =
∑r−1

i=0 ui ∈ kGa(r) (whose relevance appears in Proposition 4.1),
so that

((φ ◦ σ)∗ ◦ ε)(u) = φ(u0 + · · ·+ ur−1).

Proposition 3.3. Let G be a suitable affine algebraic group. Consider an elementary abelian
p-subgroup E ⊂G(Fp) of rank s, let {1 = y0, y1, . . . , yps−1} be a listing of the elements of E,
and let G×sa ∼= E ⊂G be the unipotent abelian subgroup generated by the φyj : Ga→G.

Define the k-linear map L : Rad(kE)→ Rad(kE(r)) by sending [yi]− 1 to (φyi ◦ σ)∗(ur−1):

L
(ps−1∑
i=1

ai([yi]− 1)
)
≡
(ps−1∑
i=1

ai(φyi ◦ σ)
)
∗
(ur−1) =

ps−1∑
i=1

ai(φyi)∗(u0 + · · ·+ ur−1). (17)

Then (17) determines a k-linear map

L̃ : Rad(kE)/Rad2(kE)→ Rad(kE(r)). (18)

Moreover, the induced map L : Rad(kE)/Rad2(kE)→ Rad(kE(r))/Rad2(kE(r)) is injective for
all r > 1 and is an isomorphism if r = 1.

Proof. To prove that L of (17) determines L̃ as in (18), we must show that L vanishes on
Rad2(kE). Since elements of the form ([yi]− 1)([yj ]− 1) span Rad2(kE), it suffices to prove
that L vanishes on elements of this form. Observe that

([yi]− 1)([yj ]− 1) = ([yi + yj ]− 1)− ([yi]− 1)− ([yj ]− 1),

so that L̃(([yi]− 1)([yj ]− 1)) equals

(φyi+yj − φyi − φyj )∗(u0 + · · ·+ ur−1).

Thus, the required vanishing follows from Proposition 1.13.
By Theorem 1.7, injectivity of L̃ for r > 1 (and thus bijectivity for r = 1) is reduced to the

evident special case of s= 1. 2

Corollary 3.4. Retain the notation and hypotheses of Proposition 3.3. Then

L : Rad(kE)/Rad2(kE)→ Rad(kE(r))/Rad2(kE(r)) (19)

naturally determines an embedding of (Zariski) spaces of equivalence classes of π-points

ΨE : Π(E(Fp))→Π(E(r)). (20)

So defined, ΨE sends the equivalence class of the π-point

αx :K[u]/up→KE(Fp), u 7→ x− 1

to the equivalence class of the π-point

βx = (φx ◦ σ)∗ ◦ ε :K[u]/up→KE(r)

for any 1 6= x ∈ E(Fp) of order p, where ε and σ are given in (6) and (16).

For r = 1, this embedding is an isomorphism.

Proof. For an elementary abelian p-group E, equivalence classes of π-points in Π(E)
are represented by maps of K-algebras K[u]/up→KE sending u to some element of
Rad(KE)\Rad2(KE); the equivalence relation on such maps is generated by pairs of maps
differing by a non-zero scalar multiple, pairs of maps sending u to elements of Rad(kE) differing
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by an element of Rad2(KE), and pairs of maps which become equal after a common base
extension (see [FP07, 7.5]). Since kE(r) is isomorphic to the group algebra of an elementary
abelian group (of rank equal to r times the rank of E), we have the same description of Π(E(r))
in terms of elements of Rad(KE(r))/Rad2(KE(r)).

Thus, L (and its base extensions to fields K/k) naturally induces ΨE : Π(E)→Π(E(r)).
By (17), ΨE sends the equivalence class of the π-point αx corresponding to [x]− 1 ∈
Rad(kE)/Rad2(kE) to the equivalence class of the π-point k[u]/up→ kE(r) sending u to
φx∗(u0 + · · ·+ ur−1) = ((φx ◦ σ)∗ ◦ ε)(u); thus, ΨE([αx) = [βx], as asserted.

By Proposition 3.3, ΨE is an isomorphism for r = 1 and an embedding for r > 1. 2

The following theorem is an extension/refinement of [CLN08, Theorem 4] and [FP05, 5.8].
Observe that if G is an affine algebraic group defined over Fq, then G(Fq) naturally acts (by
conjugation) on G and thus on H•(G(r), k) for any r > 1 and thus on Π(G(r)).

Theorem 3.5. LetG be a suitable affine algebraic group, and letH ⊂G be a connected, smooth,
closed algebraic subgroup satisfying condition (S) (cf. Definition 1.11; for example take H =G).
Assume that H ⊂G is defined over Fp. For any r > 0, there is a well-defined embedding of
(Zariski) spaces of equivalence classes of π-points

ΨH : Π(H(Fp))→Π(H(r))/H(Fp), (21)

whose restriction ΨE to any elementary abelian p-group E ⊂H(Fp) is given by Corollary 3.4.

Proof. As defined in Corollary 3.4, the restriction to Π(E′) of Ψ|E clearly equals Ψ|E′ whenever
E′ <E.

Quillen’s stratification theorem (see [Qui71] and [FP05, 3.6]) implies that

Π(H(Fp))' lim−→
E<H(Fp)

Π(E),

where the colimit is indexed by the category whose objects are elementary abelian p-subgroups
of H(Fp) and whose maps are compositions of inclusions and conjugations by elements of
H(Fp). (Thus, the π-point αx : k[u]/up→ kE(Fp)⊂ kH(Fp), u 7→ x− 1 is equivalent to the
π-point αxh : k[u]/up→ kEh(Fp)⊂ kH(Fp), u 7→ xh − 1 for any h ∈H(Fp).)

Applying the uniqueness of x 7→ φx, we conclude that the action of h ∈H(Fp) sends φx :
Ga(r)→H to φxh : Ga(r)→H. Thus, the conjugate αxh of αx is mapped to the conjugate by
h of βx. We conclude that the colimit of the maps ΨE induces the continuous, injective map
ΨH : Π(H(Fp))→Π(H(r))/H(Fp). 2

It is natural to ask whether the map Ψ of (21) is a morphism of schemes. To check this, one
would have to investigate more carefully the scheme structure of Π(G(Fp))' ProjH•(G(Fp), k).
With this question in mind, we investigate further the operation of sending a 1-parameter
subgroup φ : Ga(r)→G(r) to the π-point φ∗ ◦ ε : k[u]/up→ kG(r), u 7→ φ(ur−1).

We recall from [FP, 2.2] the global p-nilpotent operator

ΘG : k[G]→ k[V (G)] (22)

associated to an infinitesimal group scheme G of height 6r. This is a k-linear functional, but not
a homomorphism of algebras. We can identify ΘG (as in [FP, 2.2.2]) with the image of u under
the composition

k[u]/up ε⊗1−−−→ kGa(r) ⊗ k[V (G)]
UG,∗−−−−→ kG⊗ k[V (G)], (23)

1968

https://doi.org/10.1112/S0010437X11005562 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11005562


Restrictions to G(Fp) and G(r) of rational G-modules

where UG,∗ has the property that its base change from k[V (G)] to some commutative k-algebra A
is the 1-parameter subgroup φA : G(a(r),A→GA represented by that k[V (G)]→A.

Proposition 3.6. Let G be an infinitesimal group scheme of height 6r. Consider the map
of commutative k-algebras S∗(k[G])→ k[V (G)] induced by ΘG of (22), with the corresponding
map of affine schemes S : V (G)→ kG. This map sends an A-valued point of V (G) given by
φA : Ga(r),A→GA to φA(ur−1) ∈A⊗ kG.

Furthermore, S∗(k[G])→ k[V (G)] is a map of graded algebras of degree pr−1, where k[V (G)]
is graded as in [SFB97a, 1.23]; thus, the associated morphism

S : V (G)→ kG

has homogeneous degree pr−1. In the special case G= Ga(r), if φa0,...,ar−1 : Ga(r)→Ga(r), then

S(φ) = (φa0,...,ar−1)(ur−1) = ar−1u0 + apr−2u1 + · · ·+ ap
r−1

0 ur−1 + g(u0, . . . , ur−1), (24)

where g is a polynomial in {u0, . . . , ur−1} with vanishing constant and linear terms, and where
ui is given homogeneous degree pi.

More generally, if G= E(r) for some abelian unipotent group E 'Gs
a, then S induces

S : V (E(r))→ Rad(kE(r))/Rad2(kE(r)), (25)

which can be identified with the p-isogeny Φ : V (E(r))→ Spec(H•(E(r), k)red) of Theorem 2.1
using the natural isomorphism

Rad(kE(r))/Rad2(kE(r))' Spec(H•(E(r), k)red).

Proof. To check that the image under S of the A-valued point φA : Ga(r),A→GA of V (G)
equals the image of u under the composition φA ◦ ε : k[u]/up→AGa(r),A→AGA, we simply
specialize (23) along this point.

As proved in [FP, 2.10], ΘG as a k-linear functional is homogeneous of degree pr−1. This
is equivalent to the statement that the induced map S∗(k[G])→ k[V (G)] is a map of graded
algebras of degree pr−1. The formula (24) is given in the proof of [SFB97b, 6.5].

Since (φA ◦ ε)(u) ∈ Rad(AG), S factors through Rad(kG)⊂ kG. The identification of S :
V (E(r))→ Rad(kE(r))/Rad2(kE(r))'H•(E(r), k)red for E 'G×sa with Φ of Theorem 2.1 is given
in [SFB97a, 1.14, 1.15]. (In making this comparison and comparing degrees of the corresponding
maps of graded algebras, it is useful to recall that the Bockstein β :H1(Z/p, k)→H2(Z/p, k) as
a map of schemes is of degree p.) 2

4. Comparing actions of G(Fp) and G(r) at π-points

In Theorem 4.5, we compare support varieties of a rational G-module when restricted to G(Fp)
and G(r). After recalling maximal Jordan types and the non-maximal support varieties, we
provide in Theorem 4.11 a stronger result which involves the comparison of maximal Jordan
types.

The following elementary proposition is the key to our comparison of actions of G(Fp) and
G(r) on a rational G-module.

Proposition 4.1. Let G be a connected affine algebraic group over k and M a rational
G-module given by ρ :G→GLn, where n= dim(M). Let φ : Ga→G be a 1-parameter subgroup
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and set x= φ(1) ∈G(k). Then the action of x on M equals that of the action of (ρ ◦ φ)∗
(
∑

i>0(d/dt)(i)) ∈ Endk(M), where (d/dt)(i), i> 0, are the ‘standard’ distributions on Ga

supported at 0.

Proof. The action of x on M is equal to that of 1 ∈Ga(k) on φ∗(M). Let ∇M,φ :M →M ⊗ k[t]
denote the composition

∇M,φ = (1⊗ φ∗) ◦ (1⊗ ρ∗) ◦ ∇n :M →M ⊗ k[GLn]→M ⊗ k[G]→M ⊗ k[Ga],

which defines the rational action of Ga on φ∗(M), where ∇n is the standard comodule action on
the natural defining representation for GLn. The action of 1 ∈Ga(k) on m ∈ φ∗(M) is given by
evaluating ∇M,φ(m) =

∑
i mi ⊗ ti at t= 1. In other words, this action is given by applying the

distribution
∑

i>0(d/dt)(i) ∈Dist(Ga) to ∇M,φ(m).

By functoriality, this action is given by evaluating (ρ ◦ φ)∗(
∑

i>0(d/dt)(i)) ∈Dist(GLn) on
∇n(m) ∈M ⊗ k[GLn]. By definition, this is the action of (ρ ◦ φ)∗(

∑
i>0(d/dt)(i)) viewed as an

element of Endk(M). 2

We now determine a first relationship between the actions of p-nilpotent elements of G(k)
and actions of infinitesimal 1-parameter subgroups of G on rational G-modules.

Proposition 4.2. Let G be an algebraic group over k and M be a finite-dimensional rational
G-module, given by ρ :G→GLn. Consider a 1-parameter subgroup φ : Ga→G, and set x=
φ(1) ∈G(k) assuming that xp = 1. Choose some r > 0 such that the action of (ρ ◦ φ)∗((d/dt)(i))
on M is trivial for all i> pr.

Consider the π-points

αx : k[u]/up→ kG(k) u 7→ x− 1,
βx = (φ ◦ σ)∗ ◦ ε : k[u]/up→ kGa(r)→ kG(r).

Then

ρ∗(αx(u)), ρ∗(βx(u)) ∈ im{(ρ ◦ φ)∗ : Rad(kGa(r))→ Endk(M)}
and

ρ∗(αx(u))− ρ∗(βx(u)) ∈ im{(ρ ◦ φ)∗ : Rad2(kGa(r))→ Endk(M)}.

Proof. Proposition 4.1 asserts that the image of u+ 1 ∈ kG(k) as a distribution on GLn and thus
in Endk(M) equals

∑pr−1
i>0 (ρ ◦ φ)∗((d/dt)(i)). Hence,

ρ∗(αx(u)) =
pr−1∑
i=1

(ρ ◦ φ)∗((d/dt)(i)) ∈ Endk(M). (26)

Since the image of u under σ∗ ◦ ε is
∑r−1

j=0(d/dt)(p j),

ρ∗(βx((u)) =
r−1∑
j=0

(ρ ◦ φ)∗((d/dt)(p j)). (27)

The assertions now follow from the fact recalled in Example 1.5 that kGa(r) is a divided power
algebra on {(d/dt)(p j), j > 0}. 2

With the aid of [CLN08, Proposition 8], we can weaken the hypothesis on r in Proposition 4.2
if we are concerned only with the question of whether pull-backs via αx, βx of M are free.
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Proposition 4.3. Let G be an affine algebraic group over k, x ∈G(k) a non-trivial element of
order p, and φ : Ga→G a 1-parameter subgroup with φx(1) = x. Let M be a finite-dimensional
rational G-module, given by ρ :G→GLn. Choose r > 0 such that the action of (ρ ◦ φ)∗((d/dt)(i))
on M is trivial for all i> (p− 1)pr.

Consider the π-points

αx : k[u]/up→ kG(k) u 7→ x− 1,
βx = (φ ◦ σ)∗ ◦ ε : k[u]/up→ kGa(r)→ kG(r)

as in Proposition 4.2. Then α∗x(M) is free (as a k[u]/up-module) if and only if β∗x(M) is free.

Proof. The assertion is the comparison of two k[u]/up-modules, the first given by the action of u
as in (26) and the second by the action of u as in (27). Proposition 8 of [CLN08] asserts that if
x, y ∈ End(M) with x 6= 0, xp = 0 = yp−1 and if M is free over the group algebra k〈1 + x〉, then
M is free over the group algebra k〈1 + x+ y〉 (and hence vice versa). Since (d/dt)s(p

j) for any
s > 1 and (d/dt)p

r
have (p− 1)st power equal to 0, the assertion that these two k[u]/up-modules

are either both free or both not free follows by repeated applications of [CLN08, Proposition 8]. 2

Corollary 4.4. Let E 'G×sa be an abelian unipotent algebraic group over Fp and consider
x1, . . . , xs ∈ E(Fp) which generate E(Fp). Define φxj : Ga→G to be the embedding with
φxj (1) = xj for each j, 1 6 j 6 s. Let M be a finite-dimensional rational E-module, given by

ρ : E→GLn. Choose r > 0 such that the action of (ρ ◦ φxj )∗((d/dt)(i)) on M is trivial for all j
and all i> (p− 1)pr.

Then for any 0 6= (a1, . . . , as) ∈ k×s, (
∑s

j=1 ajαxj )
∗(M) is free (as a k[u]/up-module) if and

only if (
∑s

j=1 ajβxj )
∗(M) is free.

Proof. As in the proof of Proposition 4.3, the assertion follows by applying [CLN08, Proposition 8]
to the actions of

s∑
j=1

aj

(p−1)pr−1∑
i>0

(ρ ◦ φxj )∗((d/dt)(i)),
s∑
j=1

aj

r−1∑
j=0

(ρ ◦ φxj )∗((d/dt)(p j))

in Endk(M). 2

In earlier work [CLN08, 4.6], Carlson et al. compared the support varieties of a rational
G-module M when restricted to G(Fp) and G(1) for simple algebraic groups G (with a restriction
on p) and a certain very restricted class of rational G-modules M which they denoted by Cp. The
following theorem encompasses all finite-dimensional rational G-modules by replacing G(1) by
G(r), keeps the same bound for r = 1 as in [CLN08], and even in that case of r = 1 is somewhat
more precise. The proof proceeds by reducing to the situation in Corollary 4.4.

Theorem 4.5. Let G be a suitable affine algebraic group (see Definition 1.9). Assume that G
is defined over Fp and consider some connected, smooth, closed algebraic subgroup H ⊂G also
defined over Fp satisfying condition (S) (cf. Definition 1.11), for example take H =G. Let M be a
finite-dimensional rational H-module. If (p− 1)pr > sFp(M)), then ΨH of Theorem 3.5 induces
a homeomorphism

ΨH : (Π(H(Fp)))M
∼−−→Π(H(r))M/H(Fp) ∩Ψ(Π(H(Fp))).

Proof. Let αK :K[u]/up→KH(Fp) be a π-point of H(Fp). Since the projectivity of α∗K(MK)
depends only upon the equivalence class of αK (by definition of the equivalence relation
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on π-points) and since any such π-point is equivalent to one which factors through some elemen-
tary abelian p-subgroup E ⊂H(Fp) (see, for example, [FPS07, 4.1]), we shall assume that αK
factors through some elementary abelian p-subgroup E ⊂H(Fp). Moreover, by Theorem 1.7, E =
E(Fp) for some unipotent abelian algebraic subgroup E ⊂H with embedding defined over Fp.
Thus, ΨE : Π(E)→Π(E(r)) sends the equivalence class of αK to a point of Π(E(r)) whose image
in Π(H(r)) equals Ψ([αK ]).

The explicit description of ΨE in Theorem 3.5 tells us that we may represent [αK ] by a
K-linear combination of π-points of the form αx : k[u]/up→ kE, u 7→ x− 1 and Ψ([αK ]) by the
corresponding K-linear combination of π-points βx = (φx ◦ σ)∗ ◦ ε : k[u]/up→ kGa(r)→ k(E(r)).
Thus, the proof is completed by applying Corollary 4.4. 2

The necessity of choosing r sufficiently large as in the statement of Theorem 4.5 is revealed
by the following examples.

Example 4.6. In the following two examples, the homeomorphism of Theorem 4.5 fails for r = 1.

(i) Let N be a rational G-module which is projective as a G(Fp)-module and let M =N (1)

be the first Frobenius twist of N . Then Π(G(Fp))M = ∅, whereas Π(G(1))M = Π(G).
(ii) Let G= Ga and let M be the p-dimensional rational G module defined by ρ∗ : k[GLp]→

k[t] :Xi,i 7→ 1, Xi,i+1 7→
∑p−1

s=0 t
ps for 1 6 i < p, and Xi,j 7→ 0 otherwise. Then the restriction of

M to G(1) is projective, but the restriction of M to G(Fp) is trivial.

The isomorphism type of a k[u]/(up)-module M of dimension n is given by a partition of n
into subsets of size 6p. We denote the Jordan type of M (or isomorphism type of M as a k[u]/up-
module) by JType(M), and write JType(M) =

∑p
i=1 ai[i]; in other words, as a k[u]/up-module

M '
⊕p

i=1([i])⊕ai , where [i] = k[u]/ui. We shall compare Jordan types using the dominance
partial order, the usual partial ordering of partitions. If a=

∑p
i=1 ai[i] and b=

∑p
i=1 bi[i] with∑

i ai · i=
∑

i bi · i=m, then a> b if and only if
p∑

i=j+1

ai(i− j) >
p∑

i=j+1

bi(i− j), ∀j, 1 6 j < p. (28)

Let M, N be k[u]/up-modules of the same dimension. Then the Jordan type of M is greater than
or equal to the Jordan type of N if and only if for every j, 1 6 j < p, the rank of u on M (which
we call the j-rank of M and denote by j-Rank(M)) is greater than or equal to the j-rank of N .

We recall terminology introduced in [FP10, FPS07].

Definition 4.7. Let G be a finite group scheme over k and M a kG-module.

(i) If αK :K[u]/up→KG is a π-point of G with the property that there does not exist
another π-point βL : L[u]/up→ LG with JType(β∗L(ML)> JType(α∗KMK), then α∗K(MK) is said
to be of maximal Jordan type for M .

(ii) If j is an integer with 1 6 j < p and if αK :K[u]/up→KG is a π-point of G with the
property that there does not exist another π-point βL : L[u]/up→ LG with j-Rank(β∗L(ML))>
j-Rank(α∗K(MK)), then α∗K(MK) is said to be of maximal j-rank for M .

Clearly, α∗K(MK) is of maximal Jordan type for M if and only if for every j, 1 6 j < p,
α∗K(MK) is of maximal j-rank for M .

We used in the proof of Theorem 4.5 the fact that if αK , βL are equivalent π-points of a
finite group scheme G and if M is a finite-dimensional kG-module, then α∗K(MK) is free if and
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only if β∗L(ML) is free. This independence of representative of the equivalence class of π-points
is valid as well for maximal Jordan types and maximal j-ranks, as we now recall.

Theorem 4.8 ([FPS07, 4.2, 4.10] and [FP10, 3.6]). Let G be a finite group scheme, let M
be a finite-dimensional rational G-module, and let j be a positive integer < p. If α∗K(MK) has
maximal j-rank for M (respectively, maximal Jordan type) and if [αK ] lies in the closure of some
[βL] ∈Π(G), then

j-Rank(α∗K(MK)) = j-Rank(β∗L(ML)) (respectively, JType(α∗K(MK)) = JType(β∗L(ML))).

In particular, if α∗K(MK) has maximal j-rank for M and if βL ∼ αK , then j-Rank(α∗K(MK))
equals j-Rank(β∗L(ML)).

We next recall refinements of the support variety Π(G)M for a finite group scheme and a
finite-dimensional kG-module M as introduced in [FP10, FPS07] justified by Theorem 4.8.

Definition 4.9. Let G be a finite group scheme over k and M be a finite-dimensional
kG-module. Then the non-maximal j-rank variety (respectively, non-maximal support variety)

Γj(G)M ⊂Π(G) (respectively Γ(G)M ⊂Π(G))

is defined to be the closed subset of those equivalence classes of π-points αK :K[u]/up→KG
such that the j-rank (respectively, Jordan type) of α∗K(MK) is strictly less than the j-rank
(respectively, Jordan type) of β∗L(ML) for some π-point βL : L[u]/up→ LG of G.

Thus, if Π(G)M 6= Π(G), then Γj(G)M = Γ(G)M = Π(G)M . On the other hand, if Π(G)M =
Π(G) (as is always the case if p does not divide the dimension of M , for example), then Γj(G)M
and Γ(G)M are strictly contained in Π(G)M .

Example 4.10. Let G be a connected reductive algebraic group defined and split over k and
let M =H0(G/B, λ) be the rational G-module obtained by inducing the one-dimensional
B-module kλ from B to G for some dominant weight λ. Thus, H0(G/B, λ) is dual to the Weyl
module W (λ). If λ is a p-regular weight, then the dimension of M is not divisible by p, so that
Π(G)M = Π(G), whereas Γj(G)M is a proper closed subset of Π(G) for all j, 1 6 j < p.

The following theorem is a considerable strengthening of Theorem 4.5 for it allows arbitrary
Jordan types as maximal Jordan types, not simply those of the form n[p] and it applies to j-rank
which is finer than Jordan type. The role of Proposition 4.3 in the proof of Theorem 4.5 is now
replaced by an appeal to Proposition 4.2.

Theorem 4.11. Let G be a suitable affine algebraic group defined over Fp with p> h(G), and
let H ⊂G be a connected, smooth, closed algebraic subgroup also defined over Fp satisfying
condition (S) (cf. Definition 1.11), for example takeH =G. LetM be a finite-dimensional rational
H-module. Choose r > 0 so that pr > sFp(M).

Let αK :K[u]/up→KH(Fp) be a π-point of KH(Fp) and let βL : L[u]/up→ LH(r) represent
ΨH([α]) ∈Π(H(r))/H(Fp). If β∗L(ML) has maximal j-rank for M as a kH(r)-module for some
j, 1 6 j < p, then

j-Rank(α∗K(MK)) = j-Rank(β∗L(ML)),

and α∗K(MK) has maximal j-rank for M as an H(Fp)-module.

Proof. Observe that if βL has maximal j-rank for M as an H(r)-module, then so does the
conjugate of βL by any element h ∈H(Fp) (since the conjugate Mh is isomorphic to M as
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an H(r)-module). Moreover, if βL represents ΨH([αK ]) and if β∗L(ML) has maximal j-rank for
the restriction of M to H(r), then α∗K(MK) must have maximal j-rank for the restriction of M
to H(Fp). (Otherwise, there would be a π-point α′K′ of H(Fp) such that α′∗K′(MK′) has larger j-
rank type, so that a representative of ΨH([αK′ ]) would have larger j-rank than j-Rank(β∗L(ML)).)
Consequently, by appealing to Theorem 4.8, we may replace αK , βL by equivalent π-points.

Thus, exactly as in the proof of Theorem 4.5, we may represent [αK ] by a K-linear
combination of π-points of the form αx : k[u]/up→ kE(Fp), u 7→ x− 1 and ΨH([αK ]) by the
corresponding K-linear combination of π-points βx = (φx ◦ σ)∗ ◦ ε : k[u]/up→ E(r). The proof is
completed by applying Proposition 4.2 and [FPS07, 1.13], the fundamental result underlying the
proof of Theorem 4.8. 2

Corollary 4.12. With hypotheses and notation as in Theorem 4.11, the map ΨH of (21)
induces injective maps

Γj(H(Fp))M ↪→ Γj(H(r))M/H(Fp), Γ(H(Fp))M ↪→ Γ(H(r))M/H(Fp)

for any j, 1 6 j < p.

Moreover, the images of these maps equal

(Γj(H(r))M/H(Fp)) ∩ΨH(Γj(H(Fp))) (respectively, (Γ(H(r))M/H(Fp)) ∩ΨH(Γ(H(Fp))))

inside Π(H)/H(Fp) if and only if the maximal j-rank (respectively, Jordan type) of M as an
H(Fp) module is also maximal for M as an H(r)-module.

Proof. If αK :K[u]/up→KH(Fp) is a π-point of H(Fp) at which M has non-maximal j-rank,
then Theorem 4.11 asserts that at any π-point βL : L[u]/up→H(r) representing ΨH([αK ]) the
j-rank of M is non-maximal for H(r). Thus, ΨH restricts to Γj(H(Fp))M → Γj(H(r))M/H(Fp),
and this restriction is necessarily an embedding because ΨH is an embedding.

If α∗K(MK) has maximal j-rank for M as an H(Fp)-module but β∗L(ML) does not have
maximal j-rank for M as an H(r)-module for some π-point βL : L[u]/up→H(r) representing
ΨH([αK ]), then

ΨH([αK ]) ∈ (Γj(H(r))M/H(Fp)) ∩Ψ(H(Fp)), ΨH([αK ]) /∈ΨH(Γj(H(Fp))M ).

If every element of (Γj(H(r))M/H(Fp)) ∩ΨH(H(Fp)) lies in the image of Γj(H(Fp))M , then this
necessarily says that each maximal j-rank of M as an H(Fp)-module is a maximal j-rank for M
as an H(r)-module. 2

Example 4.13. LetG be a connected reductive algebraic group over an algebraically closed field k
defined and split over Fp, assume that p> h, and assume that every p-unipotent conjugacy class
of G is defined over Fp. For example, G could be of classical type. Then Lang’s theorem implies
that every p-unipotent conjugacy class of G meets G(Fp) [Hum95, 8.4]. Thus, for any finite-
dimensional rational G-module M with p> sFq(M), the maximal Jordan types of M as a G(Fp)
module are also maximal for M as a G(1)-module.

Moreover, since Np(gk) is irreducible, there is a unique maximal Jordan type for a given
finite-dimensional kG(1)-module, namely the generic Jordan type. Thus, if p> sFq(M), there
is only one maximal Jordan type of the rational G-module M when restricted to G(Fp), even
though the generic Jordan types of the restriction of M to G(Fp) may be different at different
generic points of Π(G(Fp)).

The following example suggests caution in trying to sharpen Theorem 4.11.
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Example 4.14. Take G= Ga and consider the two-dimensional rational G-module M determined
by ρ∗ : k[GL2]→ k[Ga] = k[t] sending X1,1 and X2,2 to 1, sending X2,1 to 0, and sending X1,2

to
∑p−1

s=0 t
ps . Then M restricted to G(Fp) is trivial, but M restricted to G(r) is non-trivial for

1 6 r < p. Thus, Γ(G(Fp))M = ∅, but Γ(G(r))M is non-empty and Ψ : Π(G(Fp))→Π(G(r)) is non-
trivial.

A module M for a finite group scheme G is said to have constant j-rank for some j, 1 6 j < p
(respectively, constant Jordan type) if the j-rank (respectively, Jordan type) of α∗K(MK) is the
same for all π-points of G (see [CFP07]). This condition on M is equivalent to the condition
that Γj(G)M (respectively, Γ(G)M ) be empty.

Corollary 4.15. With hypotheses and notation as in Theorem 4.11, assume in addition that
the restriction of M to H(r) has constant j-rank for some j, 1 6 j < p. Then the restriction of M
to H(Fp) has constant Jordan type with the same Jordan type.

We briefly consider the condition of Corollary 4.12 that a maximal j-rank of M as a G(Fp)-
module is also maximal for M as a G(r)-module. We restrict our attention to groups G of
classical type in order to apply Examples 1.12 and 2.3. In this case, every 1-parameter subgroup
φ : Ga(r+1)→G(r+1) admits a lifting to a 1-parameter subgroup of G of the form (10)

φ̃= (φexp(α0)) · (φexp(α1) ◦ F ) · · · (φexp(αr) ◦ F
r) : Ga(r+1)→G, (29)

where α0, . . . , αr are pairwise-commuting p-nilpotent elements of g = Lie(G) with entries in k.
We recall that every π-point ofG(r+1) is equivalent to one of the form φ∗ ◦ ε : k[u]/up→Ga(r+1)→
G(r+1) associated to φ̃ of the form (29). Thus, the maximal j-ranks of M as a kG(r+1)-module
occur among the j-ranks of φ∗(ur) acting on M as φ̃ ranges over 1-parameter subgroups of the
form (29).

The following proposition shows that increasing r does not introduce new maximal Jordan
types.

Proposition 4.16. Let G be a direct product of general linear groups and simple algebraic
groups of classical types over k, and assume that p> h(G). Let M be a finite-dimensional
rational G-module and assume that s(M) 6 pr for some r > 1. Then the maximal j-ranks for M
as a kG(r+1)-module are the same as those for M as a kG(r)-module.

Proof. Let φ̃ : Ga(r+1)→G be of the form (29). The condition s(M) 6 pr implies that φexp(α0)(ur)
acts trivially on M . Since φexp(αi) ◦ F i commutes with φexp(αj) ◦ F j whenever αi commutes with
αj , the action of φ(ur) on M equals the action of φ′(ur) on M , where

φ′ = (φexp(α1) ◦ F ) · · · (φexp(αr) ◦ F
r) : Ga(r+1)→Gr+1.

Observe that the Frobenius map F : Ga(r+1)→Ga(r+1) induces

F∗ : kG(r+1) ' k[u0, . . . , ur]→ k[u0, . . . , ur]' kG(r+1), u0 7→ 0; uj+1 7→ uj . (30)

Consequently, the action of φ′∗(ur) on M equals the action of φ∗(ur−1) on M , where

φ= (φexp(α1)) · · · (φexp(αr) ◦ F
r−1) : Ga(r)→G(r). 2

We conclude this section with the following comparison of maximal Jordan types for
irreducible SL2-modules.
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Example 4.17. Let G= SL2. Then any finite-dimensional rational G-module has constant
Jordan type as an SL2(1)-module by [CFP07, 2.5]. Let φe : Ga→ SL2 be the map sending t
to the strictly upper triangular matrix with t in the (1, 2) position.

The Steinberg tensor product theorem tells us that any irreducible rational G-module M
satisfying s(M) 6 pr is of the form

M = S(λ0)⊗ S(λ1)(1) ⊗ · · · ⊗ S(λr−1)(r−1) (31)

for integers λi, 0 6 λi < p. Using Proposition 4.16, we conclude that the maximal Jordan type of
S(λi)(i) as a kG(r)-module equals [λi + 1] (i.e. a single block of size λi + 1) and this is the Jordan
type of φe∗(ui) acting on M . Since φe∗(uj) acts trivially on S(λi)(i) for i 6= j, we conclude that
this maximal Jordan type for S(λi)(i) is realized at the π-point (φe ◦ σ)∗ ◦ ε.

Exactly as discussed in [FP10, 4.11], the tensor product formula for maximal Jordan
types [CFP07, 4.2] implies that the maximal Jordan type of M is the Jordan type of the
tensor product [λ0 + 1]⊗ [λ1 + 1]⊗ · · · ⊗ [λr−1 + 1] of k[u]/up-modules (determined explicitly
in [CFP07, 10.3]). This maximal Jordan type for M also occurs at (φe ◦ σ)∗ ◦ ε.

It would be interesting to know under what circumstances the maximal Jordan type as an
SL2(r)-module of an arbitrary (finite-dimensional) rational SL2-module M with s(M) 6 pr occurs
at (φe ◦ σ)∗ ◦ ε.

5. Extension to G(Fq), q = pd

In [Fri10], we showed how the Weil restriction functor enables one to extend techniques suitable
for G(Fp) to G(Fq), q = pd, for algebraic groups G defined over Fq. In this section, we indicate
how this method applies to extend results of § 4 from G(Fp) to G(Fq). The reader is referred
to [Pin04] for a helpful discussion of the Weil restriction functor applied to affine algebraic groups.

The following proposition is a extension of [Fri10, 1.5].

Proposition 5.1. Let k′/k be a finite field extension and G′ an affine algebraic group over k′.
Let Rk′/kG′ be the Weil restriction of G′, an affine algebraic group over k.

Then the k-points of Rk′/kG′ can be naturally identified with the k′-points of G′. Moreover,
the rth Frobenius kernel ofRk′/kG′ can be identified with the Weil restriction of the rth Frobenius
kernel of G′,

(Rk′/kG′)(r) 'Rk′/k(G′(r)).

Proof. The proof of [Fri10, 1.5] applies with only the minor change of replacing the (supported
at the identity of G) 1-distributions Dist1(G′) by Distrr(G′). 2

Remark 5.2. Let G′ be a connected reductive algebraic group provided with the data of an
Fq-structure and assume that p> h(G′). Denote RFq/FpG

′ by G. Observe that G is also a
connected, reductive algebraic group over Fp which satisfies p> h(G): namely, the base change
from Fp to Fq of G splits as a product of copies of Gal(Fq/Fp)-conjugates of G′ and thus has
trivial unipotent radical. Hence, Theorems 4.5 and 4.11 apply to rational G-modules M , enabling
a comparison of invariants for M restricted to G(Fp) =G′(Fq) and to G(r).

In particular, one could take G′ to be the base change from Fp to Fq of a reductive algebraic
group G defined and split over Fp. Then G=RFq/FpG

′ with G(Fp) = G(Fq).
We leave elaboration to the interested reader.
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