TRIANGLES IN A COMPLETE CHROMATIC GRAPH

A. W. GOODMAN

(Received 26 January 1984)

Communicated by W. D. Wallis

Abstract

Suppose that in a complete graph on N points, each edge is given arbitrarily either the color red or the color blue, but the total number of blue edges is fixed at T. We find the minimum number of monochromatic triangles in the graph as a function of N and T. The maximum number of monochromatic triangles presents a more difficult problem. Here we propose a reasonable conjecture supported by examples.

1980 Mathematics subject classification (Amer. Math. Soc.): 05 C 15.

1. Introduction

Let K_{N} be the complete graph with N vertices (points) and suppose that each edge (line joining two vertices) is assigned exactly one of two possible colors, here always blue or red. After the coloring let B be the number of monochromatic (solid) blue triangles, and let R be the number of solid red triangles. The minimum of $B+R$ for each $N>0$ was determined by the author [2]. Later Sauvé [4] gave a simpler proof of the same theorem using an ingenious method of assigning weights to each pair of edges at each vertex. The maximum of $B+R$ is trivially $N(N-1)(N-2) / 6$, and the associated extremal graph is obtained by painting every edge blue, or painting every edge red.

Suppose that we modify the problem by considering only those colorings of K_{N} in which the number of blue edges is T where T is a fixed preassigned number. This also fixes the number of red edges U, and of course $U=N(N-1) / 2-T$.

[^0]Let $m(N, T)$ be the minimum of $B+R$ for all colorings with T blue edges, and let $M(N, T)$ be the maximum of $B+R$ under the same conditions. In this work we find $m(N, T)$ explicitly for every pair of integers N, T, with $0 \leqslant T \leqslant$ $N(N-1) / 2$ and $0 \leqslant N<\infty$.

The problem of finding $M(N, T)$ seems to be more difficult. In Section 4 we discuss the difficulties and we propose a reasonable conjecture for the form of the solution.

2. The basic equations

Following Sauvé [4], we attach the weight 2 to each pair of blue lines issuing from a vertex of the graph. We assign the same weight 2 , to each pair of red lines. For a mixed pair, one edge blue and one edge red we assign the weight -1 . Let b_{j} and r_{j} be the number of blue edges and red edges respectively at the point $P_{j}, j=1,2, \ldots, N$. Then for each j

$$
\begin{equation*}
b_{j}+r_{j}=N-1 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum b_{j}=2 T, \quad \sum r_{j}=2 U \tag{2.2}
\end{equation*}
$$

where all sums run from 1 to N unless otherwise noted. When we compute the weight of the edges meeting at P_{j} in accordance with the above assignment of weights, we obtain

$$
b_{j}\left(b_{j}-1\right)+r_{j}\left(r_{j}-1\right)-b_{j} r_{j}
$$

Then the total weight of the colored graph is

$$
\begin{equation*}
W=\sum b_{j}\left(b_{j}-1\right)+\sum r_{j}\left(r_{j}-1\right)-\sum b_{j} r_{j} \tag{2.3}
\end{equation*}
$$

On the other hand if we examine the weight of each triangle, the weight of a monochromatic triangle is 6 , and the weight of a mixed triangle is $2-1-1=0$. Then for the total weight we also have $B+R=W / 6$. Hence for any coloring,

$$
\begin{equation*}
B+R=\frac{1}{6} \sum\left[b_{j}\left(b_{j}-1\right)+r_{j}\left(r_{j}-1\right)-b_{j} r_{j}\right] \tag{2.4}
\end{equation*}
$$

Now $b(b-1)+r(r-1)-b r=(b+r)^{2}-(b+r)-3 b r$. If we use (2.1) and (2.2), then the formula (2.4) for $B+R$ gives

$$
\begin{aligned}
B+R & =\frac{1}{6} \sum\left[\left(b_{j}+r_{j}\right)^{2}-\left(b_{j}+r_{j}\right)-3 b_{j}\left(N-1-b_{j}\right)\right] \\
& =\frac{1}{6}\left[N(N-1)^{2}-N(N-1)-6 T(N-1)+3 \sum b_{j}^{2}\right]
\end{aligned}
$$

or

$$
\begin{equation*}
B+R=\frac{N(N-1)(N-2)}{6}-T(N-1)+\frac{1}{2} \sum b_{j}^{2} . \tag{2.5}
\end{equation*}
$$

Thus to minimize or maximize $B+R$ with T constant it is sufficient to minimize or maximize $Q \equiv \Sigma b_{j}^{2}$.

We observe that the red edges have disappeared in (2.5). Hence the problem of minimizing or maximizing $B+R$ is equivalent to the problem of finding extreme values of Q for an incomplete graph on N vertices with T edges. With this interpretation, R is the number of independent triples; that is, the number of sets of three vertices with no edges joining any pair.

A sequence of integers $\left(b_{1}, b_{2}, \ldots, b_{N}\right)$ with

$$
\begin{equation*}
N-1 \geqslant b_{1} \geqslant b_{2} \geqslant \cdots \geqslant b_{N} \geqslant 0 \tag{2.6}
\end{equation*}
$$

is called a graph sequence (degree sequence) if there is a graph on N vertices such that the vertex P_{j} has degree b_{j}. Since we can always number the vertices in such a way that (2.6) is satisfied, there is no loss of generality in assuming that the sequence ($b_{1}, b_{2}, \ldots, b_{N}$) is nonincreasing. A sequence can satisfy (2.6) and still not be a graph sequence. For example $(3,2,1,0)$ is not the sequence of degrees for any graph on 4 vertices. A necessary and sufficient condition for a sequence to be a graph sequence can be found in the text by Behzad and Chartrand [1, p. 12]. For our objective we will need the following necessary conditions:

$$
\begin{equation*}
\sum b_{j}=2 T, \quad \text { an even number } \tag{2.7}
\end{equation*}
$$

and for each k with $0<k \leqslant N$

$$
\begin{equation*}
\sum_{j=1}^{k} b_{j}-\sum_{j=k+1}^{N} b_{j} \leqslant k(k-1) \tag{2.9}
\end{equation*}
$$

3. The minimum number of monochromatic triangles

Suppose that in a sequence (2.6) there are two indices j and k for which $b_{j} \geqslant b_{k}+2$. We replace b_{j} by $b_{j}-1$ and b_{k} by $b_{k}+1$. Since

$$
b_{j}^{2}+b_{k}^{2}>\left(b_{j}-1\right)^{2}+\left(b_{k}+1\right)^{2}
$$

this replacement will decrease $Q \equiv \sum b_{j}^{2}$. Thus
Lemma 1. The minimum of Q over all sequences of integers (2.6) that satisfy (2.7) occurs for a sequence in which either all b_{j} are the same, or no two differ by more than 1.

To compute this minimum, we set

$$
\begin{equation*}
\frac{2 T}{N}=q+\frac{\rho}{N}, \quad 0 \leqslant \rho<N \tag{3.1}
\end{equation*}
$$

where q and ρ are integers. Then the minimizing sequence has the form

$$
\begin{equation*}
S=(q+1, q+1, \ldots, q+1, q, q, \ldots, q) \tag{3.2}
\end{equation*}
$$

where there are ρ terms $b_{j}=q+1$, and the remaining $b_{j}=q$. A brief computation with this sequence and (2.5) gives

$$
\begin{equation*}
B+R \geqslant \frac{N(N-1)(N-2)}{6}-T(N-q-1)+\frac{\rho(q+1)}{2} \tag{3.3}
\end{equation*}
$$

To show that this lower bound is sharp we must produce a graph that has the required sequence as a graph sequence. From (3.1) we see that $2 T=N q+\rho$ must be even. Thus certain combinations of N, q and ρ cannot occur. Of the eight possibilities (with respect to parity) we can not have (1) N odd, q odd, ρ even, (2) N odd, q even, ρ odd, (3) N even, q odd, ρ odd, and (4) N even, q even, ρ odd.

Suppose that q is even. We may visualize the vertices arranged in order on a circle. Join each vertex with its nearest $q / 2$ neighbors on either side by blue edges. Thus $P_{j} P_{k}$ is blue if $|j-k| \leqslant q / 2$, where j or k are reduced $\bmod N$ if necessary. This gives each $b_{j}=q$. Now color $P_{j} P_{k}$ blue for $k=j+1+q / 2$ and $j=$ $1,2, \ldots, \rho$. Then this graph has the sequence (3.2) with respect to blue edges, and $\Sigma b_{j}=2 T$.

Suppose that q is odd. Then $q+1$ is even and we proceed as in the first case joining each vertex by a blue edge to its nearest $(q+1) / 2$ neighbors on either side. Thus $P_{j} P_{k}$ is blue if $|j-k| \leqslant(q+1) / 2$. This gives too many blue edges, so we change some to red as follows. If N is even, then ρ is even, and $N-\rho$ is even. Then change from blue to red the edges $P_{N} P_{N-1}, P_{N-2} P_{N-3}, \ldots$ until $(N-\rho) / 2$ edges have been changed.

If N is odd, and q is odd, then ρ is odd and $N-\rho$ is even. We proceed as before to change from blue to red $P_{N} P_{N-1}, P_{N-2} P_{N-3}, \ldots$ until $(N-\rho) / 2$ edges have been changed. Thus in every possible case we have a graph with the sequence (3.2) with respect to blue edges. This completes the proof of

Theorem 1. Suppose that the edges of a complete graph on N vertices are colored with two colors, red and blue, coloring T edges blue, and the remaining red. Then minimum $(R+B)$ is given by the right side of (3.3), where ρ and q are defined by (3.1).

4. The maximum number of monochromatic triangles

The same computation that gave Lemma 1 shows that for a maximum we should make the early b_{j} as large as possible. Suppose that the sequence is subject only to the conditions (2.6) and (2.7). Define integers q and ρ by $2 T=q(N-1)$ $+\rho$ where $q \geqslant 0$ and $0 \leqslant \rho<N-1$. Then the sequence $S=(N-1, \ldots, N-$ $1, \rho, 0, \ldots, 0$) with $N-1$ repeated q times will make $\sum b_{j}^{2}$ a maximum. But S is not a graph sequence except in the trivial cases, all $b_{\mathrm{j}}=0$ or all $b_{j}=N-1$.

To find graph sequences with large Σb_{j}^{2}, we introduce two special graphs.
First, there are nonnegative integers q and ρ such that

$$
\begin{equation*}
T=q(N-1)-\frac{q(q-1)}{2}+\rho, \quad 0 \leqslant \rho \leqslant N-q-2 \tag{4.1}
\end{equation*}
$$

With these integers let G^{*} be the graph obtained as follows. Let $P_{1}, P_{2}, \ldots, P_{q}$ be a complete subgraph K_{q} on q vertices. Join each vertex of K^{q} with each of the remaining vertices P_{q+1}, \ldots, P_{N}. Finally join P_{q+1} to $P_{q+2}, \ldots, P_{q+\rho+1}$ using ρ edges. Of course this set of vertices is empty if $\rho=0$. Then the graph sequence for this graph is

$$
\begin{equation*}
S^{*}=(N-1, \ldots, N-1, q+\rho, q+1, \ldots, q+1, q, \ldots, q) \tag{4.2}
\end{equation*}
$$

where $N-1$ occurs q times, $q+1$ occurs ρ times, and q occurs $N-q-\rho-1$ times. An easy computation shows that $\Sigma b_{j}=2 T$ for S^{*}. Since S^{*} is the sequence for G^{*}, it must satisfy the conditions (2.7), (2.8), and (2.9). Further when $k=q+1$, the sequence S^{*} gives equality in (2.9). Thus the degrees, $b_{1}, b_{2}, \ldots, b_{q+1}$ are as large as possible. This suggests that G^{*} makes $B+R$ a maximum, when the edges of G^{*} are colored blue and the remaining edges of K_{N} are colored red. We will see shortly that this is not always the case.

Next we define non negative integers v and λ by

$$
\begin{equation*}
\frac{2 T}{v(v-1)}=1+\frac{2 \lambda}{v(v-1)}, \quad 0 \leqslant \lambda<v \tag{4.3}
\end{equation*}
$$

Let G_{v} be the graph defined as follows. The vertices $P_{1}, P_{2}, \ldots, P_{v}$ form a complete subgraph on v vertices. Then join each of $P_{1}, P_{2}, \ldots, P_{\lambda}$ with P_{v+1} by an edge. The graph sequence for G_{v} is

$$
\begin{equation*}
S_{v}=(v, \ldots, v, v-1, \ldots, v-1, \lambda, 0, \ldots, 0) \tag{4.4}
\end{equation*}
$$

where v occurs λ times and $v-1$ occurs $v-\lambda$ times. An easy computation shows that $\sum b_{j}=2 T$ for S_{v}. As we will see, when the edges of G_{v} are colored blue and the remaining edges of K_{N} are colored red, this graph occasionally gives a maximum for $R+B$ when G^{*} fails.

We now look at several examples. First suppose that $N=4$ and $T=3$. Then

$$
S^{*}=(3,1,1,1), \quad \sum b_{j}^{2}=12
$$

and

$$
S_{v}=(2,2,2,0), \quad \sum b_{j}^{2}=12 .
$$

Therefore both graphs give the same maximum. In fact S^{*} is the complement of S_{v} so $R+B$ must be the same for both graphs.

Next, let $N=5$ and $T=4$. Then

$$
\begin{array}{ll}
S^{*}=(4,1,1,1,1), & \sum b_{j}^{2}=20 \\
S_{v}=(2,2,2,2,0), & \sum b_{j}^{2}=16
\end{array}
$$

This time S^{*} provides the maximum for $R+B$.
Finally let $N=7$ and $T=10$. Then

$$
\begin{array}{ll}
S^{*}=(6,5,2,2,2,2,1), & \sum b_{j}^{2}=78 \\
S_{v}=(4,4,4,4,4,0,0), & \sum b_{j}^{2}=80
\end{array}
$$

This time it is S_{v} that gives a maximum.
For the sequence S^{*} in (4.2), we find

$$
\begin{equation*}
\sum b_{j}^{2}=q(N-1)^{2}+(4 q+\rho+1) \rho+q^{2}(N-q) \tag{4.5}
\end{equation*}
$$

an expression which does not seem to simplify.
For S_{v} in (4.4) we have

$$
\begin{equation*}
\sum b_{j}^{2}=\lambda v^{2}+(v-\lambda)(v-1)^{2}+\lambda^{2}=2 T(v-1)+\lambda(\lambda-1) \tag{4.6}
\end{equation*}
$$

Conjecture. If a complete graph on N vertices is colored with T blue edges and the rest red edges, then $\max (B+R)$ occurs either for the graph G^{*} or G_{v}. If this is the case, then $\max (B+R)$ is given by (2.5) where either (1) q and ρ are defined by (4.1) and Σb_{j}^{2} is given by (4.5), or (2) v and λ are defined by (4.3) and Σb_{j}^{2} is given by (4.6).

There is a relation between S^{*} and S_{v} which we now develop. First observe that the integers N, T, q, and ρ determine S^{*} uniquely and conversely S^{*} determines N, T, q, and ρ uniquely. Similarly there is a one-to-one correspondence between the integers N, T, v, and λ and the graph sequences S_{v}. Now consider \tilde{G} the complement of G. If G is an incomplete graph then \tilde{G} has an edge $P_{i} P_{j}$ if and only if $P_{i} P_{j}$ is not an edge of G. Or if G is regarded as a complete graph with two colors, then the colors are interchanged in \tilde{G}. Let \tilde{S}^{*} be the graph sequence obtained from S^{*} when we replace b_{j} by $N-1-b_{j}$ for $j=1,2, \ldots, N$ and then reverse the order. With this notation we have

Theorem 2. The sequence \tilde{S}^{*} is the graph sequence S_{v} for the graph \tilde{G}^{*}.

Proof. If S^{*} is the sequence (4.2) then

$$
\begin{aligned}
\tilde{S}^{*}=(N-1-q, \ldots, N-1-q, & N-2-q, \ldots \\
& N-2-q, N-1-q-\rho, 0, \ldots, 0)
\end{aligned}
$$

where $N-1-q$ occurs $N-q-\rho-1$ times, $N-2-q$ occurs ρ times and 0 occurs q times. We set $v=N-1-q$ and $\lambda=N-q-\rho-1$. Then

$$
\tilde{S}^{*}=(v, \ldots, v, v-1, \ldots, v-1, \lambda, 0, \ldots, 0)
$$

where v occurs $v-\rho=\lambda$ times, $v-1$ occurs $\rho=v-\lambda$ times and 0 occurs $q=N-v-1$ times, (see equation (4.4)). Then \tilde{S}^{*} is the sequence S_{v} for \tilde{G}^{*}.

Corollary. If G^{*} gives the maximum $R+B$ for all two-color graphs on N points with T blue edges, then G_{v} gives the maximum $R+B$ for all two-color graphs on N points with $U=N(N-1) / 2-T$ blue edges.

5. Bounds for other combinations

In a coloring of K_{N} with blue and red, let $B B R$ be the number of triangles with two blue edges and one red edge. Similarly let $B R R$ be the number of triangles with one blue edge and two red edges.

Let us attach the weight x to each pair of blue edges, the weight y to each mixed pair, and the weight z to each pair of red edges. Again we compute the weight of K_{N} in two different ways. Following the notation and method of section 2, with this more general system of weights, we obtain

$$
\begin{align*}
3 x B & +(x+2 y) B B R+(z+2 y) B R R+3 z R \\
& =\sum\left[\frac{x}{2} b_{j}\left(b_{j}-1\right)+\frac{z}{2} r_{j}\left(r_{j}-1\right)+y b_{j} r_{j}\right] \tag{5.1}
\end{align*}
$$

We replace r_{j} by $N-1-b_{j}$ and use $\Sigma b_{j}+2 T$. Then (5.1) becomes

$$
\begin{align*}
3 x B+(x+2 y) & B B R+(z+2 y) B R R+3 z R \tag{5.2}\\
= & \frac{z}{2} N(N-1)(N-2)+[2 y(N-1)-x-z(2 N-3)] T \\
& +\left(\frac{x+z}{2}-y\right) \sum b_{j}^{2} .
\end{align*}
$$

Various selections of weights (x, y, z) in (5.2) give special relations. The selection $(2,-1,2)$ gives equation (2.5). The selection $(0,1,0)$ gives

$$
\begin{equation*}
2(B B R+B R R)=2(N-1) T-\sum b_{j}^{2} \tag{5.3}
\end{equation*}
$$

Equation (5.3) also follows from (2.5) and the fact that the total number of triangles is $N(N-1)(N-2) / 6$, (try $(x, y, z)=(1,1,1))$.

Let $(x, y, z)=(1,0,0)$. Then (5.2) yields

$$
\begin{equation*}
3 B+B B R=-T+\frac{1}{2} \sum b_{j}^{2} \tag{5.4}
\end{equation*}
$$

Further $(x, y, z)=(2,-1,0)$ gives

$$
\begin{equation*}
3 B-B R R=-N T+\sum b_{j}^{2} \tag{5.5}
\end{equation*}
$$

Finally $(x, y, z)=(0,1,1)$ gives

$$
\begin{equation*}
2 B B R+3 B R R+3 R=\frac{1}{2} N(N-1)(N-2)+T-\frac{1}{2} \sum b_{j}^{2} \tag{5.6}
\end{equation*}
$$

These equations are not independent. Since the vectors $(1,1,1),(0,1,0)$, and $(1,0,0)$ form a basis for E^{3}, it follows that any equation that can be derived from (5.2) can also be obtained from (5.3), (5.4), and the fact that the total number of triangles is $\binom{N}{3}$.

The methods that gave Theorem 1, also yield

Theorem 3. Suppose that the edges of K_{N} are colored with two colors red and blue and that T edges are colored blue. Define ρ and q by equation (3.1). Then we have the following sharp bounds:

$$
\begin{gather*}
B B R+B R R \leqslant T(N-q-1)-\frac{\rho(q+1)}{2} \tag{5.7}\\
3 B+B B R \geqslant T(q-1)+\frac{\rho(q+1)}{2} \tag{5.8}\\
3 B-B R R \geqslant T(2 q-N)+\rho(q+1) \tag{5.9}
\end{gather*}
$$

and
(5.10) $2 B B R+3 B R R+3 R \leqslant \frac{1}{2} N(N-1)(N-2)-T(q-1)-\frac{\rho(q+1)}{2}$.

Of course (5.7) follows directly from the bound (3.3).

References

[1] Mehdi Behzad and Gary Chartrand, Introduction to the theory of graphs (Allyn and Bacon, Inc., Boston, 1971).
[2] A. W. Goodman, 'On sets of acquaintances and strangers at any party', Amer. Math. Monthly 66 (1959), 778-783.
[3] A. W. Goodman, 'Triangles in a complete chromatic graph with three colors', Discrete Math., to appear.
[4] Leopold Sauvé, 'On chromatic graphs', Amer. Math. Monthly 68 (1961), 107-111.

Department of Mathematics
University of South Florida
Tampa, Florida 33620
U.S.A.

[^0]: (c) 1985 Australian Mathematical Society $0263-6115 / 85 \$$ A2.00 +0.00

