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Abstract 
In the restricted problem of three point masses, the positions of 

the equilibrium points are well known and are tabulated. When the 
satellite is a rigid body, these values no longer correspond to the 
equilibrium points. This paper seeks to determine the magnitudes of 
the discrepancies. 

1. Introduction 
In the restricted problem of three point masses the positions of 

the three collinear equilibrium points have been extensively calculated 
(Szebehely, 1969). It has always been an attractive feature that the 
other two points make equilateral triangles with the primaries. 

In this paper the possibility is considered that the satellite may 
be a rigid body rather than a point mass. Since the satellite is always 
regarded as extremely small, this assumption is unlikely to have notice
able effects on the overall picture. However, being small, it may have 
an appreciable effect on the positions of the equilibrium points as 
viewed from the satellite. 

It is assumed that the centre of mass of the satellite is situated 
at an equilibrium point and that the attitude of the satellite is one 
of stable equilibrium as described in an earlier paper by the author 
(Robinson, 19 74). 

2. Description of the system 
The primaries are point bodies with masses 1% and n^ located at 

points Aj and A2. They rotate with constant angular velocity u) about 
their common mass centre 0 under the action of their mutual gravita
tional attractions. The distance AiA2 is constant. Choosing the units 
of mass, length and time so that n^ + m2 = 1, AXA2 = 1 and |JU| = OJ = 1 
respectively, the gravitational constant also takes the value 1. 

A rectangular coordinate frame OXYZ is chosen so that OZ is the 
axis of rotation and Ax has coordinates (n^ , 0, 0). 
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The satellite has mass m, its centre of mass is located at G and 

A G = r , '0G> = r, A G> = r . 
1 — l' — ' 2 — 2 

The mass m is assumed to be so small in comparison with the masses of 
the primaries that their motion is unaffected by its presence. 

When the satellite is a point mass , its equation of motion is 
m 

£ + 2(0 X £ + <£ X (oj X £) = ~ A -J- £ . (2.1) 
l 

In this equation, £ and £ are the time derivatives relative to the 
rotating frame OXYZ. £ 2 is the unit vector in the direction of r, and 
£x = r^j. The symbol A is always followed by an expression referring 
to m . The symbol means that a similar expression referring to m2 has 
been omitted. Thus the symmetry of the expressions in terms of m2 and 
m2 is used to shorten the written equations. In the simplest case 
Ama = 1. 

In the case where the satellite is a rigid body, let P be the 
position of an element of the body of mass u. With 

A P = p , OP* = p, A~P"> = p and GP> = a 
1 ™ 1 -—• 2 — 2 — 

it follows that Z ]i£_ - mr_ , Z jip_ = mr_ and Z ya_ = _0 
and the equation or motion of the satellite is 

yjLi 
m{r + 2 < D x r + < j o x ( a ) x r ) } = - Am Y ( 2 . 2 ) 

— — — _ — — — 1 Li O 

Pi 
where E indicates summation over all the elements of the satellite. 

Since p_ = r_ + a_ and ̂  is usually an extremely small quantity, a 
polynomial Qn m(a1) may be defined for non-negative integral values of 
n and m by the equation 

n n L 
P2

 r j m=0 

a 
r. 

Q (a ) 
n,m 1 

where ax = (a_ . r_x) is the cosine of an angle. When m < 0, Qn m(a) is 
defined as having the value 0. Some of the properties of Qn m(a) are 
listed in Appendix 1. 

Equation (2.2) can now be expressed in the form 
m{r + 2ô  x £ + ô  x (û  x £) } 

= - Â T I - ^ k W "!>,) (2.3) 
where Ss(a1) and T_ (a ) are scalar and vector moments of the satellite 
about G which are defined by 

S (a ) = Z via' Qa (a ) (2.4) 
S l 3 , s 1 

T (a ) = E pa a'"' Q (a ). (2.5) 
— S 1 — 3.S-1 1 
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Diagram illustrating the notation of Section 2. 

It can be seen that if a is a length commensurate with the linear 
dimensions of the satellite then Ss(a1) and J_s(ct.,) have magnitudes of 
the order of mas . Some of the lower order moments are calculated in 
Appendices 2 and 3. 

3. The equilibrium points 
.The positions of the equilibrium points are found by placing 

r_ = r_ = 0_ in the equation of motion and then solving the resulting 
equations. 

In the case of the point mass satellite the five equilibrium 
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points are usually denoted by L1, L2 , L3, L4 and L5 , the first three 
being the collinear points the remaining two being the equilateral 
points. 

If L is one of these points and 
o r 

it follows that 

1 0 - o i • 
0L 

(D x (u x r ) 
— — — 0 

A -5- r 
rz — 0 1 
01 

(3.1) 

The corresponding equation for a rigid body satellite is 

m 
m u x ( u x r ) = - m A -=- r 

— — — r2 —1 

1 s = 2 
I r S (a ) - T (a) 

— I s 1 —s 1 
(3.2) 

the values of SQ(a1), S1(a1), J_0(o. ) and T_ (a ) having been substituted 
in Equation (2.3). 

The convergence of the infinite series depends on the moment of 
inertia terms rather than on the inverse powers of r . 

It is clear that Equations (3.1) and (3.2) have the same solutions 
only when all the moments of the satellite about G vanish. Since the 
differences between the two equations are very small, it is to be 
expected that their solutions will differ by similarly small amounts. 
If G is at the point L, the equilibrium point of Equation (3.2) corres
ponding to the point L , let L L = e. It follows that r = r + e and 
F & F 0 ' 0 — — 1 —01 — 

Tin L 
e 
r„ n , m 0 1 

(3.3) 

where 301 = r_01 . e_, the expansion being possible on the assumption 

that is sufficiently small. 
roi 

Regarding rD1 as a known quantity (Szebehely, 1967), the object 
is to determine the displacement vector _e, Equation (3.1) being regar
ded as a first approximation to Equation (3.2). 

Under these circumstances the following expansions are necessary. 

I (3.4) 
-01 J 
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M V = I (3.5) 
p = 0 •01. 

T (« ) = 7 - -£- T -s 1
 pfo y r»ii ~spl 

(3.6) 

where as 2 , Ssp l and T_spl are functions of e, r_o I
 a nd the moments of 

inertia. These coefficients are discussed in Appendix 4. 

Equations (3.1) and (3.2) now reduce to 

01 s = 1 

m a) x (u x e) , V 
r01/ -osoi 

OO 00 

I I I 
t+p 

where 

r2 u u u , . s + t + p — s t p i 

oi s=2 t=o p=o (-r01) 

V = \r Q (B ) - e Q (6 )\s — stpi [— m 3+s, t oi — 3 + s, t-i oi j spi 

(3.7) 

2+ s s t 01 — s p l 
(3.8) 

The properties of V s t p l a re listed in Appendix 5. The suffices have 
the following significances, s is the order of the moments contained 
in _Vst p l and (t + p) is the power of the associated term in e and 
s + t + p the power of — . 

roi 

With m and a, a characteristic dimension of the satellite, as the 
very small parameters which determine the relative magnitudes of the 
terms in Equation (3.7), the linearized form of the equation becomes 

mu>x((iuxe)-A-5- e V 
— 0101 

- A 
mi 

01 OlJ 
-pOOl 

(3.9) 

where p is the smallest positive integer exceeding 1 which gives a non
zero solution. 

M-. The collinear equilibrium points 
At the collinear points £ 0 1 = [\1 , 0, 0] and £_02 = [ X2 , 0, 0] where 

X , X have the values -1, -1 at L ; -1, +1 at L and +1, +1 at L . 

It follows that _e = Ci + nj. + £k is given by 
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m£ 1 + 2A 
01 

in 

A - i - (-1)' V 

01 

— a O O l — 

mn 1 - A A -z^r (-Db v — b O 01 J-

01 

m 
-!- (-Dc + 1 v . k 
C + 2 — C O 01 — 

IP 
01 

where _i, _j_ and k_ are the unit vectors along the axes of OXYZ and a, b 
and c are the smallest integers greater than 1 which give non-zero 
terms. 

It has been shown (Robinson, 1974), that if the centre of mass is 
held at a collinear equilibrium point, the principal axes of the sat
ellite align themselves parallel to the axes of OXYZ when the satellite 
is at relative rest. If A, B and C are the principal moments about OX, 
OY and OZ respectively the satellite reaches a stable attitude with 
C > B > A. For some bodies there is a second possibility with B>A>C. 

If the satellite is such that 2A =£ B + C, then 

so t h a t 

m£ 

V 
— 2 0 0 1 

1 + 2A - 5 -
r 3 

0 1 

- XX(-2A + B + C) [ 1 , 0 , 0 ] 

m X 
| (-2A + B + C) A ^ ' 

r>4 

o l 

To obtain n and £, the third moments have to be considered, 
these do not vanish 

If 

mn 1 - A -r r3 
| SyyC+x2 

m 

z ) A^r 
01 

mS A pp - ZuzC+x2 
m 

z2) A ^ 
01 

If a is a length commensurate with the linear dimensions of the 
satellite it can be seen that E, is of the same order at a2 and n and £ 
of the same order as a3. 

5, The equilateral equilibrium points 
In this case r 

01 
r = 1 and 
02 
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ioi = i [_1> /3» 0 l a n d £02 = \ [1> ^ ' 0 ]-
Referring again to the stable stationary position of the satellite 

(Robinson, 1974) when G is at L , the principal axes Ox and Oy are 

turned through an angle -K about Oz where cos2K = — and N = /l + 12m2 

with 2m 
0 2 1 

Equation (3.9) now becomes 

C + /l2 m n 

/l2" m E, + 3n 

4 
" 3 ? 

~ (-DP A m V 
3m 1 — pool 

(5.1) 

£ and n can be determined when p = 2 in some cases, but to find £, 
p must take the value 3 at least. 

With these values 

5 

m (68 - 11N2) 
0 

(A - B) 
4Nm(4 - N ) 

6 - N2 

4/3 Nm(4 - N2) 
[4NC +3(A-B) - 2N(A-B)] + 

N(B-A) 

2/3(4-N2)r 

C = - A m k . V 
m i — —3001 

Again it can be seen that C and n are of order a2 while t, is of 
order a3 . 

Conclusions 
It has been shown that the displacements of the equilibrium 

points are extremely small, which was to be expected. If a is the 
length of the satellite, remembering that AXA2 = 1, then £ is of the 
same order as a2. n is of the same order in the equilateral case, but 
of order a3 in the collinear case. The coordinate' £ is, at its 
greatest, of order a3 in either case. 

It can also be mentioned that since all bodies certainly have one 
stable attitude at each equilibrium point, some may have two stable 
attitudes. The conditions for the second case are given in the paper 
referred to earlier (Robinson, 1974). The outcome is that some bodies 
may actually have ten equilibrium points, while others have only five, 
or some intermediate number. Of course, in those cases where the 
points occur in pairs, the members of such pairs are very near each 
other. 
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Appendix 1. The polynomials Q (a) 
mn 

From the definition 

2 . - n / 2 
(1 + 2ax + x ) n / = Y (-x) Q (a) 

n s i t follows t h a t s = o 
dQ (a) 

and 

Q' (a) = T = n Q (.a) 
n s d a n + l , s - l 

Q n 0 ( a ) = i 
Q n l ( a ) = na 

Q (a) = in{(n + 2)a2 - 1} 
n2 " 

Q , (a) = s"n(n t 2) {(n + 4)a3 - 3a} . 
Note t h a t n3 

Q, (a) = P (a) 
I s s 

which a re the f a m i l i a r Legendre Polynomials . 

Appendix 2. The s c a l a r moments S (a ) 

S (a ) = I ya5Q, (a ) 

where 
a = a . r 

l — — I 

S Q (a i ) = £y = m 

SjCcij) = 3Ep(£ . r z ) = 0 

S 2 ( 0 l ) = ^ £y(a . r / - | Z ya2 

S 3 ( 0 l ) = f ¥ a - i / - y l y a 2 ( a . r ^ 

Appendix 3 . The vec tor moments T_ (a ) 

T (a ) = I va a s _ 1 Q , , (a ) . 
—s 1 — 3 s - 1 1 

Since the above definition holds for s > 1 the additional definition 
is made 

T (a ) = 0 . 
—o l — 

From the definition 
T (a ) = I y a = 0 
— i i — — * 
T (a ) = 3 2 y a(a . r ) 

_ 2 1 — 1 

-3(ai ) = T E y -(- - ̂ -i)2 " 2" E P - °2 • 

Appendix M-
Using Equation (3.3) it can be shown that 

https://doi.org/10.1017/S0252921100062400 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100062400


THE RESTRICTED THREE BODY PROBLEM 

where 

roi.' s l 

asi = aoiQ1,s^o1
) •Y'J,.,-i(|5.i)! 

01 
r . a and v = e . a. 
—01 — ' — — 

Making use of the relation 

Q' (a) = m Q (a) 

and Taylor's Theorem 
n 2s T ? + s 

S = 0 
, fin' 

l 2 J 
a r Q » 

t l xm<-2s , 

I £ 

l roiJ i n n s l" 

From the definition 

i t follows that 

Sf (Oj) = I M S Q a ^ ^ ) 

y t = o I ro iJ 

where 

= I , r 
t = o <• o i 

S = Y y o q , 
s t 1 L ^-tmn 

is a scalar moment of the s-th order. 
In a similar manner °° 

T 
— st 1 

Since S^c^) = m, Si (c^) = 0, T_Q = T^ = 0_ 

S = m, S = 0 ( t # 0 ) , Sw , = 0 for a l l t . 
0 0 1 » O t l ' l t l 

T = T = 0 for a l l t . 
—ot I —it l — 

Also S (a ) = S „ . T (a ) = T . 
s 0 1 s 01 ' —s 0 1 —sOl 

Appendix 5. The function V e e —st p i 

V = {£ Q (3 ) - E Q (3 )} S 
— s t p l — 0 i y 3 + s , t ^ P 0 1 ' - x 3 + s , t - 1 ^ 0 l " s p l 

- Q (a ) T 
2 + s , t 01 —sp 1 

If s , t and p are non-zero posit ive integers i t follows that 
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V = m r 
— 0 0 0 1 — 0 1 

V = r S (a ) - T (a ) 
— S 0 0 1 — 0 1 s 0 1 —s 01 

V = m{r Q (6 ) - e Q (6 )} 
—OtOl —0 1 x 3 , t w0 1 — X 3 , t - 1 M0 1 

V = 0 
—oopi — 

V = 0 
—ot p i — 

V = r S - T 
— s O p l — 0 1 s p l — s p l 

V = { r Q (g ) - e Q (g ) } S (a ) 
— s t O l — 0 1 X 3 + S , t 0 1 — X 3 + s , t - l M 0 1 ' s 0 1 

« ^ . 1 ^ 1 ^ , ) 
V = 0 . 
—It pi — 

References 
Robinson, W.J.: 1974, Celes. Mech. 10, 17. 
Szebehely, V.: 1967, Theory of Orbits, Academic Press, New York and 

London. 

https://doi.org/10.1017/S0252921100062400 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100062400



