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Abstract

We show that under a suitable transversality condition, the intersection of two rational subtori in an
algebraic torus (C∗)n is a finite group which can be determined using the torsion part of some associated
lattice. We also give applications to the study of characteristic varieties of smooth complex algebraic
varieties. As an example we discuss A. Suciu’s line arrangement, the so-called deleted B3-arrangement.
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1. Introduction

Let L be a free Z-module of finite rank n, and let A ⊂ L and B ⊂ L be two primitive
sublattices, that is, A and B are subgroups such that

Tors(L/A)= Tors(L/B)= 0.

Consider the associated C-vector spaces

V = L ⊗Z C, VA = A ⊗Z C and VB = B ⊗Z C.

Let expL : V → T = L ⊗Z C∗ be the associated exponential map given by

expL = 1L ⊗Z exp

where 1L : L→ L is the identity and exp : C→ C∗ is defined by t 7→ exp(2π i t). Then
expL is a surjective group homomorphism with kernel L = L ⊗Z Z⊂ V . If a Z-basis
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of L is chosen, then the identifications L = Zn , V = Cn , T = (C∗)n are obvious and
expL : Cn

→ (C∗)n is given by

(t1, . . . , tn) 7→ (exp(2π i t1), . . . , exp(2π i tn)).

The main result of this note is the following theorem.

THEOREM 1.1. If VA ∩ VB = 0, then there is a group isomorphism

Tors(L/(A + B))→ expL(VA) ∩ expL(VB).

In fact any algebraic subtorus S ⊂ T , that is, S is a closed algebraic subset
and a subgroup in T , comes from a primitive lattice A(S)⊂ L (see Arapura’s
paper [1, Lemma 2.1 in Section II]). Hence, Theorem 1.1 applies to any pair of such
algebraic subtori.

This theorem is proved in Section 2. In Section 3 we show how to use Theorem 1.1
to describe the intersections of the irreducible components of the characteristic
varieties of smooth complex algebraic varieties. A specific example coming from
hyperplane arrangement theory concludes the paper.

2. The proof

Let n = rank L , a = rank A and b = rank B. Consider the quotient group L ′ =
L/A, which is again a lattice, of rank n − a. The composition B→ L→ L ′ of
the inclusion B→ L and the projection L→ L ′ gives rise to an injective morphism
ι : B→ L ′ identifying B to the sublattice B ′ = ι(B)⊂ L ′.

Then there is a basis e′1, . . . , e′n−a of the lattice L ′ such that B ′ is the subgroup
spanned by d1e′1, . . . , dbe′b for some positive integers d j . Moreover, there is an integer
m with 1≤ m ≤ b + 1 such that

1= d1 = · · · = dm−1 < dm ≤ · · · ≤ db and dm | dm+1 | · · · | db. (2.1)

It follows that

Tors(L/(A + B))= Tors
(

L/A

(A + B)/A

)
= Tors(L ′/B ′) (2.2)

and hence

Tors(L/(A + B))= Z/dmZ⊕ Z/dm+1Z⊕ · · · ⊕ Z/dbZ. (2.3)

Let e1, . . . , en−a be any lifts of the vectors e′j to L and let f1, . . . , fa be a Z-basis
of A. Then B = {e1, . . . , en−a, f1, . . . , fa} is a Z-basis of L .

For j = 1, . . . , b, let g j ∈ B be vectors such that their classes g′j in L ′ satisfy
g′j = d j e′j . It follows that g j = d j e j + a j for some vectors a j ∈ A. Now write

a j =
∑

i=1,a

α j i fi (2.4)
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for some α j i ∈ Z. By replacing e j by e j + r j for suitable vectors r j ∈ A, we may and
do assume throughout the remainder of this paper that

0≤ α j i < d j (2.5)

for all i = 1, . . . , a and j = 1, . . . , b. In particular, a j = 0 for j = 1, . . . , m − 1.

LEMMA 2.1. The vectors g1, . . . , gb form a Z-basis of the lattice B.

PROOF. Note that the vectors g1, . . . , gb are all contained in B and their images under
ι span the lattice B ′. 2

Assume now that expL(vA)= expL(vB) for some vectors

vA = p1 f1 + · · · + pa fa ∈ VA

and

vB = q1g1 + · · · + qbgb ∈ VB

where pi , q j ∈ C. It follows that vA − vB ∈ ker expL = L . More precisely, we obtain

q j d j ∈ Z for j = 1, . . . , b

and

zi := pi −
∑
j=1,b

q jα j i ∈ Z for i = 1, . . . , a.

It follows that q j = k j/d j . We may and do assume that 0≤ k j < d j , since the value
of expL(vB) is not changed when the coefficients q j are modified by integers. Note
that with this choice one has k j = 0 for j = 1, . . . , m − 1. In this way we obtain a
surjective group homomorphism

θ : Z/dmZ⊕ Z/dm+1Z⊕ · · · ⊕ Z/dbZ→ expL(VA) ∩ expL(VB) (2.6)

given by

k̂ = (k̂m, . . . , k̂b) 7→ expL

(
km

dm
gm + · · · +

kb

db
gb

)
.

This morphism θ is indeed defined correctly since for any choice of the q j as above
we may use the defining equation of zi , set zi = 0 and determine the values for pi , that
is, find a vector vA such that expL(vA)= expL(vB).

To show that θ is injective, we have to show that ker θ = 0. Since B is primitive we
can take the set

{g1, . . . , gb, h1, . . . , hn−b}
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as a Z-basis of L , where h′1, . . . , h′n−b is a Z-basis for the lattice L/B. Let k̂ ∈ ker θ.
Then

θ(k̂)= expL

(
km

dm
gm + · · · +

kb

db
gb

)
= 1,

which implies that ((ki )/di ) ∈ Z, for all m ≤ i ≤ b. Therefore,

k̂ = (k̂m, . . . , k̂b)= (0̂, . . . , 0̂)

that is, ker θ = 0.

3. On the intersection of irreducible components of characteristic varieties

3.1. Local systems, characteristic and resonance varieties Let M be a quasi-
projective smooth complex algebraic variety. The rank-one local systems on M are
parameterized by the algebraic group

T(M)= Hom(H1(M), C∗). (3.1)

The connected component T0(M) of the unit element 1 ∈ T(M) is an algebraic torus,
that is, it is isomorphic to (C∗)n , where n ∈ N is the first Betti number of M , that is,
n = b1(M). It is clear that T0(M)= T(M) if and only if the integral homology group
H1(M) is torsion free. For ρ ∈ T(M), we denote the corresponding local system on M
by Lρ .

The computation of the twisted cohomology groups H j (M, Lρ) is one of the major
problems in many areas of topology. To study these cohomology groups, one idea is
to study the characteristic varieties defined by

V j
m(M)= {ρ ∈ T(M) | dim H j (M, Lρ)≥ m}. (3.2)

To simplify the notation, we set Vm(M)= V 1
m(M). It is known that the following

theorem holds, see Beauville [2] and Simpson [12] in the proper case and Arapura [1]
in the quasi-projective case.

THEOREM 3.2. The positive-dimensional irreducible components of Vm(M) are
subtori in T(M) translated by elements of finite order. More precisely, for each
positive-dimensional irreducible component W of Vm(M) we can write W = ρ ·
f ∗(T(S)), where f : M→ S is a surjective regular mapping to a curve S having a
connected general fiber and ρ ∈ T(M) is a finite-order character.

If 1 ∈W , then we can take ρ = 1 in the above equality. Let T1W denote the tangent
space to W at the identity 1 in such a case. The following theorem is taken from [6,
Theorem 2, (b)].

THEOREM 3.3. Let M be a quasi-projective smooth complex algebraic variety. Let
W1 and W2 be two distinct irreducible components of the characteristic variety V1(M)
such that 1 ∈W1 ∩W2. Then T1W1 ∩ T1W2 = 0.
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Note that any such tangent space T1W ⊂ H1(M, C) is rationally defined, that
is, there is a primitive lattice L ⊂ H1(M, Z) such that T1W = L ⊗Z C under
the identification

H1(M, C)= H1(M, Z)⊗Z C.

Indeed, one can take L to be the primitive sublattice f ∗(H1(S, Z)), in view of the
functoriality of the exponential mapping

exp : T1T(M)= H1(M, C)→ T(M)

and of the following lemma.

LEMMA 3.4. Let f : M→ S be a surjective regular mapping to a curve S, having a
connected general fiber. Then f ∗(H1(S, Z)) is a primitive sublattice in H1(M, Z).

PROOF. Under these conditions, it is well known that the morphism

f∗ : H1(M, Z)→ H1(S, Z)

is surjective. Let L0 be a primitive sublattice in H1(M, Z) such that

H1(M, Z)= ker f∗ ⊕ L0.

Then f ∗(H1(S, Z)) can be identified with the dual

L∨0 = Hom(L0, Z)= {u ∈ Hom(H1(M, Z), Z); u |ker f∗= 0}.

Moreover

H1(M, Z)= H1(M, Z)∨ = (ker f∗)
∨
⊕ L∨0 ,

which completes the proof of the claim. 2

Applying Theorem 1.1 to this setting, we obtain the following corollary.

COROLLARY 3.5. Let W1 and W2 be two distinct irreducible components of the
characteristic variety V1(M) such that 1 ∈W1 ∩W2. Let L1 and L2 be the primitive
sublattices in H1(M, Z) associated to W1 and W2, respectively, by the above
construction. Then there is a group isomorphism

Tors(H1(M, Z)/(L1 + L2))=W1 ∩W2.

REMARK 3.6. Let W1 and W2 be two distinct irreducible components of the
characteristic variety V1(M), where at least one of them, say W1, is translated, that is,
1 /∈W1, and that meet at a point ρ. Then we may write W1 = ρ ·W ′1 and W2 = ρ ·W ′2,
where W ′j are subtori in T(M).

Assume that dim W j > 1 for j = 1, 2 (the claim is obvious when one of the
two components is one dimensional) and that M is a hyperplane arrangement
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complement. Then T1W ′1 ∩ T1W ′2 = 0, since W ′1 and W ′2 are again two distinct
irreducible components of the characteristic variety V1(M), see [5]. Moreover,
the tangent spaces T1W ′j are rationally defined and the above corollary yields a
set bijection

Tors(H1(M, Z)/(L ′1 + L ′2))=W1 ∩W2

where L ′j is the primitive sublattice associated to W ′j by the above construction.
Note that any character in such an intersection W1 ∩W2 has finite order. Indeed,

let W1 = ρ1 ·W ′1 and W2 = ρ2 ·W ′2, where ρ1 and ρ2 are finite-order characters, that
is, ρm1

1 = 1 and ρm2
2 = 1. Then ρ ∈W1 ∩W2 implies that ρ = ρ1w1 = ρ2w2, where

w j ∈W ′j . Let m = lcm(m1, m2). Then ρm
= ρm

1 w
m
1 and ρm

= ρm
2 w

m
2 which implies

that

ρm
= wm

1 = w
m
1 ⇒ ρm

∈W ′1 ∩W ′2

so, by Corollary 3.5, ρm is of finite order. Thus, ρ is a finite-order character.
A completely different proof of the finiteness of the intersection W1 ∩W2 of two

distinct irreducible components of the first characteristic variety was given in [7].

Let H∗(M, C) be the cohomology algebra of the variety M with C-coefficients.
Right multiplication (cup-product) by an element z ∈ H1(M, C) yields a cochain
complex (H∗(M, C), µz). The resonance varieties of M are the jumping loci for
the cohomology of this complex, namely

R j
m(M)= {z ∈ H1(M, C) | dim H j (H∗(M, C), µz)≥ m}. (3.3)

To simplify the notation, we set Rm(M)=R1
m(M).

One of the main results relating the characteristic and resonance varieties is the
following theorem.

THEOREM 3.7. Let M be a hypersurface arrangement complement. The map exp :
H1(M, C)→ T0(M) induces, for any m, j ≥ 1,

(R j
m(M), 0)' (V j

m(M), 1).

This equality of germs implies that the resonance variety R j
m(M) is exactly the

tangent cone at one of the characteristic varieties V j
m(M), a fact established by Cohen

and Suciu [4] and which can also be derived from [8]. (See also [3, Theorem 3.7].)
It was claimed by Libgober that this property holds for any smooth quasi-projective
variety [9] but now there are counter-examples to this claim [6].

REMARK 3.8. According to Arapura [1, Theorem 1.1 in Section V], under the
assumption that H1(M,Q) has a pure Hodge structure, the positive-dimensional
irreducible components of all characteristic varieties V j

m(M) are (translated) subtori.
Our Theorem 1.1 applies to this more general setting as well. The major difference
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with the case of first characteristic varieties is that distinct components do not
necessarily meet only at the origin. In the following we give an example, for which
we are grateful to Professor A. Suciu.

Consider the central hyperplane arrangement in C4 defined by the equation

xyzw(x + y + z)(y − z + w)= 0.

Then the corresponding resonance variety R2
1(M) has two three-dimensional

components, say E1 and E2, defined respectively by the ideals

I1 = (x1 + x2 + x3 + x6, x4, x5)

and

I2 = (x1, x2 + x3 + x4 + x5, x6).

These two components intersect in the line D = (x1, x2 + x3, x4, x5, x6). This implies
that the irreducible components W1 = exp(E1) and W2 = exp(E2) of the characteristic
variety V 2

1 (M) intersect along the one-dimensional subtorus exp(D).

The fact that M has a simply connected compactification implies the following.

COROLLARY 3.9. The irreducible components of R1(M) are precisely the maximal
linear subspaces E ⊂ H1(M, C), isotropic with respect to the cup product on M

∪ : H1(M, C)× H1(M, C)→ H2(M, C)

PROOF. Let E be a component of R1(M). By the above theorem there is a component
W in V1(M) such that 1 ∈W and T1W = E . By Arapura’s results in [1] we can
write W = f ∗E (T(S)), where fE : M→ S is a regular mapping to a curve S. (Such
a mapping fE is said to be associated with the subspace E .) Since in our case S is
rational, T1W = f ∗E (H

1(S, C)) is isotropic with respect to the cup product, since the
cup product on H1(S, C) is trivial. Maximality of E comes from the fact that E is a
component of R1(M). The restriction dim E ≥ 2 comes from [1]. 2

3.2. An example: the deleted B3-arrangement Let A be the deleted B3-arrange-
ment which is obtained from the B3 reflection arrangement by deleting the plane
x + y − z = 0. A defining polynomial for A is

Q = xyz(x − y)(x − z)(y − z)(x − y − z)(x − y + z).

The decone d A is obtained by setting z = 1. Let

L1 : `1 = x = 0, L2 : `2 = y = 0, L3 : `3 = x − y = 0, L4 : `4 = x − 1= 0,

L5 : `5 = y − 1= 0, L6 : `6 = x − y − 1= 0, L7 : `7 = x − y + 1= 0

be the lines of the associated affine arrangement in A2. Let L8 : `8 = z = 0 be the line
at infinity and let M be the complement of d A in A2. The resonance variety R1(d A)
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has 12 irreducible components of dimension two and three. These components E and
their associated maps fE : M→ S are given below, see [13, 14]. Denote by e1, . . . , e7
the Z-basis of H1(M, Z) given by

e j =
1

2π i

d` j

` j
,

see [11]. Then each of the components E is the C-vector space spanned by a primitive
lattice denoted by E0, that is, E = E0

⊗Z C, so it is enough in each case to indicate a
Z-basis of E0.

(1) The local components There are seven local components, corresponding to six
triple points and one quadruple point.
(i) For the triple L1 ∩ L2 ∩ L3,

E0
1 = 〈e1 − e3, e2 − e3〉 and fE1(x, y)=

x

y
,

where S = C \ {0, 1}.
(ii) For the triple L3 ∩ L4 ∩ L5,

E0
2 = 〈e4 − e5, e4 − e3〉 and fE2(x, y)=

x − 1
y − 1

,

where S = C \ {0, 1}.
(iii) For the triple L2 ∩ L4 ∩ L6,

E0
3 = 〈e4 − e2, e6 − e2〉 and fE3(x, y)=

x − 1
y

,

where S = C \ {0, 1}.
(iv) For the triple L1 ∩ L5 ∩ L7,

E0
4 = 〈e1 − e7, e5 − e1〉 and fE4(x, y)=

x

y − 1
,

where S = C \ {0, 1}.
(v) For the triple L1 ∩ L4 ∩ L8,

E0
5 = 〈e1, e4〉 and fE6(x, y)= x,

where S = C \ {0, 1}.
(vi) For the triple L2 ∩ L5 ∩ L8,

E0
6 = 〈e5, e2〉 and fE7(x, y)= y,

where S = C \ {0, 1}.
(vii) For the quadruple L3 ∩ L6 ∩ L7 ∩ L8,

E0
7 = 〈e3, e6, e7〉 and fE5(x, y)= x − y,

where S = C \ {0,±1}.
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(2) The non-local components There are five non-local components, corresponding
to braid subarrangements.
(viii) For X = (L1L6|L3L4|L2L8),

E0
8 = 〈e1 − e3 − e4 + e6, e2 − e3 − e4〉 and fE8(x, y)=

x(x − y − 1)
(x − y)(x − 1)

,

where S = C \ {0, 1}.
(ix) For Y = (L4L8|L2L3|L5L6),

E0
9 = 〈−e2 − e3 + e5 + e6, e2 + e3 − e4〉 and fE9(x, y)=

x − 1
y(x − y)

,

where S = C \ {0, 1}.
(x) For Z = (L1L5|L2L4|L3L8),

E0
10 = 〈e1 − e2 − e4 + e5, e2 − e3 + e4〉 and fE10(x, y)=

x(y − 1)
y(x − 1)

,

where S = C \ {0, 1}.
(xi) For W = (L1L3|L4L7|L5L8),

E0
11 = 〈e1 + e3 − e5, e5 − e7 − e4〉 and fE11(x, y)=

x(x − y)

(x − y + 1)(x − 1)
,

where S = C \ {0, 1}.
(xii) For V = (L1L8|L2L7|L3L5),

E0
12 = 〈e1 − e2 − e7, e3 + e5 − e2 − e7〉 and fE12(x, y)=

x

y(x − y + 1)
,

where S = C \ {0, 1}.

One way to obtain these 12 irreducible components E j is to compute the cup-
product

H1(M, C)× H1(M, C)→ H2(M, C)

and then to use the computer program SINGULAR to list the irreducible components
of the determinantal variety corresponding to R1(d A); for details see [10].

For each fE in the list above we can use the method described in [5] to show that
there is no translated component in V1(d A) associated to such an fE .

It was discovered by A. Suciu (again by using computer computations) that V1(d A)
has one one-dimensional translated component W associated with the mapping f :
M→ C∗ defined in affine coordinates as

f (x, y)=
x(y − 1)(x − y − 1)2

(x − 1)y(x − y + 1)2
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and with

ρW = (1,−1,−1,−1, 1, 1, 1) ∈ (C∗)7.

(See [13, 14].) In other words,

W = ρW · {(t, t−1, 1, t−1, t, t2, t−2) | t ∈ C∗}.

Let Vi be the component of V1(d A) corresponding to each Ei for i = 1, . . . , 12,
that is, Vi = exp(Ei ). Then it is known [13, 14] that

W ∩ V8 ∩ V9 ∩ V10 = ρW

and

W ∩ V10 ∩ V11 ∩ V12 = ρ
′

W ,

where

ρ′W = (−1, 1,−1, 1,−1, 1, 1) ∈ (C∗)7.

Since these results were obtained as a result of computer computations, it is useful to
provide a direct proof based on Corollary 3.5.

Let A = E0
8 and B = E0

9 be the primitive lattices in H1(M, Z) introduced above
and apply the construction explained in Section 2 to them with L = H1(M, Z). Here
n = 7, a = b = 2. The basis e′1, . . . , e′5 can be chosen as given by the following
equivalence classes

e′1 = [e1 − e3 − e4 + e6], e′2 = [e3], e′3 = [e2], e′4 = [e5], e′5 = [e7].

Then m = 1 and d2 = 2. Let f1 = e2 + e3 − e5 − e6 and f2 = e4 − e2 − e3. Then

B = {e1 − e3 − e4 + e6, e3, e2, e5, e7, f1, f2}

is a Z-basis of L (the coefficient matrix is unimodular) and we can take

g1 = e1 − e3 − e4 + e6 and g2 = 2e3 + f2.

Therefore

Tors(H1(M, Z)/(E0
8 + E0

9))= Z2.

Now, by the morphism θ : Z2→ V8 ∩ V9 used in Section 2,

1̂ 7→ expL(
1
2 (g2))= expL(

1
2 (−e2 + e3 + e4))= (1,−1,−1,−1, 1, 1, 1)= ρW .

By Corollary 3.5, it follows that

V8 ∩ V9 = θ(Z2)= {1, ρW }.

In exactly the same way one can show that V8 ∩ V10 = V9 ∩ V10 = {1, ρW }. Since
clearly ρW ∈W , it follows that the four components V8, V9, V10 and W meet exactly
in one point.

Similarly one can show that W ∩ V10 ∩ V11 ∩ V12 = ρ
′

W and that all of the other
intersections of two irreducible components are trivial.

https://doi.org/10.1017/S1446788708000372 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000372


[11] On the intersection of rational transversal subtori 231

References

[1] D. Arapura, ‘Geometry of cohomology support loci for local systems. I’, J. Algebraic Geom. 6
(1997), 563–597.

[2] A. Beauville, ‘Annulation du H1 pour les fibrés en droites plats’, in: Complex Algebraic Varieties
(Bayreuth, 1990), Lecture Notes in Mathematics, 1507 (Springer, Berlin, 1992), pp. 1–15.

[3] D. C. Cohen and P. Orlik, ‘Arrangements and local systems’, Math. Res. Lett. 7 (2000), 299–316.
[4] D. C. Cohen and A. I. Suciu, ‘Characteristic varieties of arrangements’, Math. Proc. Cambridge

Philos. Soc. 127 (1999), 33–54.
[5] A. Dimca, ‘Pencils of plane curves and characteristic varieties’, Preprint, 2006, math/0606442.
[6] A. Dimca, S. Papadima and A. Suciu, ‘Formality, Alexander invariants, and a question of Serre’,

Preprint, 2005, math/0512480.
[7] , ‘Alexander polynomials: essential variables and multiplicities’, Int. Math. Res. Not. 2008

(2008), 36.
[8] H. Esnault, V. Schechtman and E. Viehweg, ‘Cohomology of local systems on the complement of

hyperplanes’, Invent. Math. 109 (1992), 557–561. Erratum, Invent. Math. 112 (1993) 447.
[9] A. Libgober, ‘First order deformations for rank one local systems with a non-vanishing

cohomology’, Topology Appl. 118(1–2) (2002), 159–168.
[10] S. Nazir, ‘Hyperplane arrangements’, PhD Thesis, Abdus Salam School of Mathematical Sciences,

GC University Lahore, 2007.
[11] P. Orlik and H. Terao, Arrangements of Hyperplanes (Springer, Berlin, 1992).
[12] C. Simpson, ‘Subspaces of moduli spaces of rank one local systems’, Ann. Sci. École Norm. Sup.
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