REPRESENTATIONS OF QUADRATIC FORMS

YOSHIYUKI KITAOKA

0. We have shown in [1]

Theorem A. Let L be a lattice in a regular quadratic space U over \boldsymbol{Q}; then L has a submodule M satisfying the following conditions 1), 2):

1) $d M \neq 0, \operatorname{rank} M=\operatorname{rank} L-1$, and M is a direct summand of L as a module.
2) Let L^{\prime} be a lattice in some regular quadratic space U^{\prime} over \boldsymbol{Q} satisfying $d L^{\prime}=d L, \operatorname{rank} L^{\prime}=\operatorname{rank} L, t_{p}\left(L^{\prime}\right) \geq t_{p}(L)$ for any prime p. If there is an isometry α from M into L^{\prime} such that $\alpha(M)$ is a direct summand of L^{\prime} as a module, then L^{\prime} is isometric to L.

Our aim is to remove such a restriction in 2) that $\alpha(M)$ is a direct summand of L^{\prime} as a module:

Theorem B. Let L be a lattice in a regular quadratic space U over \boldsymbol{Q}; then L has a submodule M with $\operatorname{rank} M=\operatorname{rank} L-1, d M \neq 0$ which is a direct summand of L as a module and satisfies
(*) let L^{\prime} be a lattice in some regular quadratic space U^{\prime} over \boldsymbol{Q} satisfying $d L^{\prime}=d L, \operatorname{rank} L^{\prime}=\operatorname{rank} L, t_{p}\left(L^{\prime}\right) \geq t_{p}(L)$ for any prime p; if there is an isometry α from M into L^{\prime}, then L^{\prime} is isometric to L.

1. Notations and some lemmas

We denote by $\boldsymbol{Q}, \boldsymbol{Z}, \boldsymbol{Q}_{p}$ and \boldsymbol{Z}_{p} the rational number field, the ring of rational integers, the p-adic completion of \boldsymbol{Q}, and the p-adic completion of Z, respectively. For a quadratic space U we denote $Q(x), B(x, y)$ the quadratic form and the bilinear form associated with $U(2 B(x, y)$ $=Q(x+y)-Q(x)-Q(y))$, and for a lattice L in $U d L$ stands for the discriminant of L. For two ordered sets $\left(a_{1}, a_{2}, \cdots, a_{n}\right),\left(b_{1}, b_{2}, \cdots, b_{n}\right)$, we define the order $\left(a_{1}, a_{2}, \cdots, a_{n}\right) \leq\left(b_{1}, b_{2}, \cdots, b_{n}\right)$ by either $a_{i}=b_{i}$ for $i<k$ and $a_{k}<b_{k}$ for some $k \leq n$ or $a_{i}=b_{i}$ for any i.

Received February 18, 1977.

Let L be a lattice in a regular quadratic space over \boldsymbol{Q}_{p}; then L has a Jordan splitting $L=L_{1} \perp L_{2} \perp \cdots \perp L_{k}$, where L_{i} is a $p^{a_{i} \text {-modular }}$ lattice and $a_{1}<a_{2}<\cdots<a_{k}$. We denote by $t_{p}(L)$ the ordered set $\underbrace{\left(a_{1}, \cdots a_{1}\right.}_{\text {rank } L_{1}}$, $\cdots, \underbrace{a_{k}, \cdots, a_{k}}_{\text {rank } L_{k}})$. For a lattice L in a regular quadratic space over \boldsymbol{Q} we abbreviate $t_{p}\left(\boldsymbol{Z}_{p} L\right)$ to $t_{p}(L)$.

Lemma 1. Let L be a lattice in a regular quadratic space U over \boldsymbol{Q}_{p}; then L has a submodule M satisfying the following conditions:

1) $d M \neq 0, \operatorname{rank} M=\operatorname{rank} L-1$, and M is a direct summand of L as a module.
2) Let L^{\prime} be a lattice in U containing M; then $L^{\prime}=L$ if $d L^{\prime}=d L$ and $t_{p}\left(L^{\prime}\right) \geq t_{p}(L)$.

This was proven in [1], and we called M a characteristic submodule of L.

Lemma 2. Let L be a lattice with the scale $\subset Z$ in a regular quadratic space U over \boldsymbol{Q} with $\operatorname{dim} U \geq 3$. If a direct summand M of L satisfies

1) M_{p} is a characteristic submodule of L_{p} if $p \mid 2 d L$,
2) $d M=q^{r} m$ where q is a prime with $q \nmid 2 d L$ and $r \geq 0$, and $p \mid 2 d L$ if $p \mid m$,
then M satisfies the conditions 1), 2) in Theorem A.
This is a remark in § 1 in [1].
Lemma 3. Let L be a lattice in a regular quadratic space U over \boldsymbol{Q} with $\operatorname{dim} U>2$, and let S be a finite set of finite primes such that $2 \in S$, and L_{p} is unimodular for $p \notin S$. For a given $u_{p} \in L_{p}(p \in S)$ there is a prime $q \notin S$ and a vector $u \in L$ such that u and u_{p} are sufficiently near for $p \in S$, and $Q(u) \in \boldsymbol{Z}_{p}^{\times}$for $p \neq q, p \notin S$, and $Q(u) \in q \boldsymbol{Z}_{q}^{\times}$.

Proof. We can take a vector v_{1} in L such that v_{1} is sufficiently near to u_{p} for $p \in S$ and $Q\left(v_{1}\right) \neq 0$, and put $T=\left\{p ; p \notin S, Q\left(v_{1}\right) \notin \boldsymbol{Z}_{p}^{\times}\right\}$. Then there is a vector $v_{2} \in L$ such that $Q\left(v_{2}\right) \in \boldsymbol{Z}_{p}^{\times}$for $p \in T$ and $\pm d \boldsymbol{Z}\left[v_{1}, v_{2}\right]$ is not in $\boldsymbol{Q}^{\times 2}$ since L_{p} is unimodular for $p \notin S$. Put $\tilde{L}=\boldsymbol{Z}\left[v_{1}, v_{2}\right] \subset L$, and take a vector v in \tilde{L} such that v and v_{1} (resp. v_{2}) are sufficiently near for $p \in S$ (resp. $p \in T$). There is a basis $\left\{e_{1}, e_{2}\right\}$ of \tilde{L} such that $\left(B\left(e_{i}, e_{j}\right)\right)=d\left(\begin{array}{cc}a & b / 2 \\ b / 2 & c\end{array}\right)$ where $a, b, c \in \boldsymbol{Z}, d \in \boldsymbol{Q}^{\times}$, and $(a, b, c)=1$. Since
$Q\left(\tilde{L}_{p}\right) \cap \boldsymbol{Z}_{p}^{\times} \neq \phi$ for $p \notin S$, a prime p with $d \notin \boldsymbol{Z}_{p}^{\times}$is contained in S. Noting $Q(v) \in \boldsymbol{Z}_{p}^{\times}$for $p \in T$, we have only to prove Lemma in case that $L \cong\left(\begin{array}{cc}a & b / 2 \\ b / 2 & c\end{array}\right)$, by scaling of $1 / d$, and $u_{p}=v$ for $p \in S \cup T$. Thus we may assume that $L=Z\left[e_{1}, e_{2}\right],\left(B\left(e_{i}, e_{j}\right)\right)=\left(\begin{array}{cc}a & b / 2 \\ b / 2 & c\end{array}\right)(a, b, c)=1, D=b^{2}$ $-4 a c$ is not a square in \boldsymbol{Q}, and $p \nmid D$ if $p \notin S$. Moreover $v \in L$ is given. By a classical theory we may suppose that a is a prime number $\notin S$ by scaling of ± 1 if necessary. Put $k=\boldsymbol{Q}(\sqrt{D})$ and $\tilde{A}=\boldsymbol{Z}[a,(b+\sqrt{D}) / 2]$, $A=(a,(b+\sqrt{D}) / 2)(=$ the ideal generated by a and $(b+\sqrt{D}) / 2)$; then the norm of A is a and for $\alpha=a x+(b+\sqrt{D}) y / 2(x, y \in \boldsymbol{Q}), N(\alpha)=a\left(a x^{2}\right.$ $\left.+b x y+c y^{2}\right)$. Hence $Q\left(x e_{1}+y e_{2}\right)=N(\alpha) / a$. Thus we may consider \tilde{A}, $N(\alpha) / a$ as $L, Q(\alpha)$ respectively, and are given an element v in \tilde{A}. Put $J=\left(\prod_{p \in S} p\right)^{t}$; then to complete the proof we need only show that there is an element u in \tilde{A} and a prime number $q \notin S$ such that $u \equiv v \bmod J$, and $Q(u) \in \boldsymbol{Z}_{p}^{\times}$for any prime $p \notin S, p \neq q$, and $Q(u) \in q \boldsymbol{Z}_{q}^{\times}$. Put $(v)=B C$ where B, C are integral ideals and for a prime ideal $E|J, E|(v)$ if and only if $E \mid B$. Hence $(J, C)=1$. Take a prime ideal I with a prime norm $q \notin S$ such that $I=\tilde{u} C A^{-1}, \tilde{u} \equiv 1 \bmod ^{\times} J$. Put $u=\tilde{u} v$; then $(u)=I A B$ $\subset A$. Hence $u \in A$, and $u \equiv v \bmod J$. Moreover $Q(u)=N(u) / a= \pm N I$. $N B$, where $N I=q$ is a prime $\notin S$ and $N B \in \boldsymbol{Z}_{p}^{\times}(p \notin S)$. We must show $u \in \tilde{A}$. Put $D=f^{2} d$ where d is the discriminant of $Q(\sqrt{D})$; Since $p \mid J$ for $p \mid f, u-v=(\tilde{u}-1) v \in f A . \quad v \in \tilde{A}$ and $N A \nmid f$ imply $u \in \tilde{A}$. This completes a proof.

2. Proof of Theorem B

Without loss of generality we may assume that the scale of L is contained in Z. If $\operatorname{rank} L=2$, then the proof of Theorem A in [1] shows that Theorem B is true. Assume $\operatorname{rank} L \geq 3$. Then take an element u_{p} in L_{p} for $p \mid 2 d L$ such that $u_{p}^{\frac{1}{p}}$ is a characteristic submodule of L_{p}. From Lemma 3 follows that there is an element u in L and a prime $q \nmid 2 d L$ such that u and u_{p} are sufficiently near in L_{p} for $p \mid 2 d L$ and $Q(u) \in \boldsymbol{Z}_{p}^{\times}$for $p \notin S, p \neq q$, and $Q(u) \in q \boldsymbol{Z}_{q}^{\times}$. Since u and u_{p} are sufficiently near, there is a unit $\varepsilon_{p} \in \boldsymbol{Z}_{p}$ such that $Q(u)=\varepsilon_{p}^{2} Q\left(u_{p}\right)$. Hence there is an isometry $\beta_{p} \in O\left(L_{p}\right)$ such that $\beta_{p}(u)=\varepsilon_{p} u_{p}$. Put $M=u^{\perp}$ in L; then M_{p} is a characteristic submodule of $L_{p}(p \mid 2 d L)$, and $d M_{q} \in q \boldsymbol{Z}_{q}^{\times}$, and $d M_{p} \in Z_{p}^{\times}$for $p \notin S, p \neq q$. Therefore M satisfies the conditions 1),
2) in Theorem A by Lemma 2. Thus we have only to prove that $\alpha(M)$ is a direct summand of L^{\prime} for an isometry α from M into a lattice L^{\prime} in 2) in Theorem B. Extend α to an isometry from U to U^{\prime}, and put $L^{\prime \prime}$ $=\alpha^{-1}\left(L^{\prime}\right)$. Since M_{p} is a characteristic submodule of $L_{p}, L_{p}^{\prime \prime}=L_{p}$ for $p \mid 2 d L$. If $p \nmid 2 d L, L_{q}^{\prime \prime}$ is unimodular. Hence M_{p} is a direct summand of $L_{p}^{\prime \prime}$ since $d M_{p} \in \boldsymbol{Z}_{p}^{\times}$or $p \boldsymbol{Z}_{p}^{\times}$. Therefore M is a direct summand of $\alpha^{-1}\left(L^{\prime}\right)$ $=L^{\prime \prime}$. This completes a proof of Theorem B.

References

[1] Y. Kitaoka, Representations of quadratic forms and their application to Selberg's zeta functions, Nagoya Math. J. vol. 63 (1976), 153-162.
[2] O. T. O’Meara, Introduction to quadratic forms, Springer-Verlag, 1963.

Department of Mathematics
Nagoya University

