
Y. Kitaoka
Nagoya Math. J.
Vol. 69 (1978), 117-120

REPRESENTATIONS OF QUADRATIC FORMS

YOSHIYUKI KITAOKA

0. We have shown in [1]

THEOREM A. Let L be a lattice in a regular quadratic space U over

Q; then L has a submodule M satisfying the following conditions 1),2):

1) dM Φ 0, rankM = rankL — 1, and M is a direct summand of L

as a module.

2) Let U be a lattice in some regular quadratic space TJf over Q sat-

isfying dU = dL, rank U = rank L, tp(U) > tp(L) for any prime p. If

there is an isometry a from M into U such that a{M) is a direct sum-

mand of U as a module, then U is isometric to L.

Our aim is to remove such a restriction in 2) that a(M) is a direct

summand of U as a module:

THEOREM B. Let L be a lattice in a regular quadratic space U

over Q then L has a submodule M with rank M = rank L — 1, dM Φ 0

which is a direct summand of L as a module and satisfies

(*) let U be a lattice in some regular quadratic space TJf over Q

satisfying dU = dL, rank U = rank L, tp(U) > tp(L) for any prime p if

there is an isometry a from M into Z/, then U is isometric to L.

1. Notations and some lemmas

We denote by Q, Z, Qp and Zp the rational number field, the ring of

rational integers, the p-aάic completion of Q, and the p-adic completion

of Z, respectively. For a quadratic space U we denote Q(x), B(x, y) the

quadratic form and the bilinear form associated with U (2B(x, y)

= Q(# + y) — Q(x) — Q(y))> and for a lattice L in U dL stands for the

discriminant of L. For two ordered sets (a19 a2, , an), (6X, b2, , & J ,

we define the order (al9 a2, , an) < (b19 &2, , bn) by either at = bt for

i < k and ak < bk for some k < n or at = bt for any i.
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Let L be a lattice in a regular quadratic space over Qp then L has

a Jordan splitting L = Lx _[_ L2 _]_ J_ Lfc, where Z^ is a pαί-modular

lattice and ax < a2 < < ak. We denote by tp(L) the ordered set (au a19

rank h\

• , ak, , α&). For a lattice L in a regular quadratic space over Q we
rank Ljc

abbreviate tp(ZpL) to ίp(L).

LEMMA 1. Let L be a lattice in a regular quadratic space U over

Qp; then L has a submodule M satisfying the following conditions:

1) dM Φ 0, rank If = rankL — 1, and M is a direct summand of L

as a module.

2) Let U be a lattice in U containing M then U = L if dU == dL

and tp{U) > tp(L).

This was proven in [1], and we called M a characteristic submodule

of L.

LEMMA 2. Let L be a lattice with the scale c Z in a regular quad-

ratic space U over Q with dim U > 3. If a direct summand M of L

satisfies

1) Mp is a characteristic submodule of Lp if p\2dL,

2) dM — qrm tvhere q is a prime with qJ(2dL and r > 0 , and p\2dL

if p\m,

then M satisfies the conditions 1), 2) in Theorem A.

This is a remark in § 1 in [1],

LEMMA 3. Let L be a lattice in a regular quadratic space U over

Q with dim U > 2, and let S be a finite set of finite primes such that

2eS, and Lp is unimodular for p gS. For a given up e Lp(p e S) there

is a prime q <£ S and a vector ueL such that u and up are sufficiently

near for p e S, and Q(u) e Zp for p Φ q,p g S, and Q(u) e qZ*.

Proof. We can take a vector v1 in L such that vx is sufficiently

near to up for p eS and Q(vt) Φ 0, and put T = {p p gS, QivJ gZp

x}.

Then there is a vector v2eL such that Q(v2) e Z* for p e T and ±dZ[v19 v2]

is not in Qx2 since Lp is unimodular for p &S. Put L = Z[v19 v2] C L,

and take a vector v in L such that v and vx (resp. v2) are sufficiently

near for p e S (resp. p e T). There is a basis {e19 e2} of L such that

(B(ei9 βj)) - d(b°j2

 b/

c

2\ where a, 6, c e Z, d e Q x, and (α, 6, c) = 1. Since

https://doi.org/10.1017/S0027763000017979 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000017979


REPRESENTATIONS OF QUADRATIC FORMS 119

Q(LP) Π Z* Φ φ for p β S, a prime p with d g Z* is contained in S.
Noting Q(v) e Z* for peT, we have only to prove Lemma in case that

L ^ I* &/2Y by scaling of 1/d, and up = v for p e S U Γ. Thus we

may assume that L = Z[e19 e2], (B(ei9 eό)) = ί,% 1 ) (α> 6, c) = 1, J9 = 62

— 4dc is not a square in Q, and p\Ώ if p g S. Moreover v e L is given.
By a classical theory we may suppose that a is a prime number gS by
scaling of ± 1 if necessary. Put k = Q(VS) and I = Z[α, (6 + V5)/2],
A = (α,(6 + VS)/2) (= the ideal generated by α and (6 + V5)/2); then
the norm of A is α and for a = ax + (b + VD)y/2 (x,y e Q),N(ά) = a(ax2

+ bxy + cy2). Hence Q(xe1 + ye2) — N(a)/a. Thus we may consider Ά,
N(ά)/a as L, Q(a) respectively, and are given an element v in A. Put
/ = (UpesP)*; then to complete the proof we need only show that there
is an element u in A and a prime number qeS such that u = v mod/,
and Q(u) e Z* for any prime p&S,p Φ q, and Q(u) e qZ*. Put (v) = BC
where B, C are integral ideals and for a prime ideal E\J9E\(v) if and
only if E\B. Hence (/, C) = 1. Take a prime ideal / with a prime norm
q <z S such that I = uCA~\ u = 1 modx J. Put tt = wy then (̂ ) = /AS
c A. Hence w e A, and ^ = v mod /. Moreover Q(u) = N(u)/a = ±NI-
NB, where NI = q is a prime gS and NB eZ*(p eS). We must show
^ e A. Put -D = /2d where cί is the discriminant of Q(VD); Since p | /
for p |/, % — v — (u — 1)^ e /A. v e A and NA\f imply π e A. This
completes a proof.

2. Proof of Theorem B

Without loss of generality we may assume that the scale of L is
contained in Z. If rank L = 2, then the proof of Theorem A in [1]
shows that Theorem B is true. Assume rank L > 3. Then take an ele-
ment Up in Lp for p\2dL such that u^ is a characteristic submodule of
Lp. From Lemma 3 follows that there is an element u in L and a
prime q\2dL such that u and %p are sufficiently near in Lp for p\2dL
and Q(^) e Zp

x for p g S, p Φ q, and Q(^) e qZ*. Since ^ and up are suffi-
ciently near, there is a unit ε p eZ p such that Q(u) = ε2

pQ(up). Hence
there is an isometry βp e O(LP) such that βp(u) = εpup. Put M = u1 in
L then Mp is a characteristic submodule of Lp (p \ 2dL), and dMq e qZ*,
and dMp e Z* for p &S,p Φ q. Therefore M satisfies the conditions 1),
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2) in Theorem A by Lemma 2. Thus we have only to prove that u(M)
is a direct summand of U for an isometry a from M into a lattice IS
in 2) in Theorem B. Extend a to an isometry from U to U', and put L"
= or\IS). Since Mp is a characteristic submodule of Lp9 Lp' = Lp for
p|2dL. If p)(2dL,L" is unimodular. Hence ikfp is a direct summand of
Lp since dMpeZ* or pZp

x. Therefore M is a direct summand of a~\U)
= L7/. This completes a proof of Theorem B.

REFERENCES

[ 1 ] Y. Kitaoka, Representations of quadratic forms and their application to Selberg's
zeta functions, Nagoya Math. J. vol. 63 (1976), 153-162.

[ 2 ] 0. T. O'Meara, Introduction to quadratic forms, Springer-Verlag, 1963.

Department of Mathematics
Nagoya University

https://doi.org/10.1017/S0027763000017979 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000017979



