MAXIMUM GRAPHS NON-HAMILTONIAN-CONNECTED FROM A VERTEX

by G. R. T. HENDRY

(Received 30 September, 1982)

A path (cycle) in a graph G is called a hamiltonian path (cycle) of G if it contains every vertex of G. A graph is hamiltonian if it contains a hamiltonian cycle. A graph G is hamiltonian-connected if it contains a $u-v$ hamiltonian path for each pair u, v of distinct vertices of G. A graph G is hamiltonian-connected from a vertex v of G if G contains a $v-w$ hamiltonian path for each vertex $w \neq v$. Considering only graphs of order at least 3 , the class of graphs hamiltonian-connected from a vertex properly contains the class of hamiltonian-connected graphs and is properly contained in the class of hamiltonian graphs.

Our present object is to determine the maximum possible number of edges in a graph of order $p \geqslant 3$ which is not hamiltonian-connected from a vertex and to describe the graphs which attain this maximum. The proof of Theorem 1 leans heavily on the following 3 results (Theorems A and B are due to Ore and Bondy and Theorem C is due to Chartrand and Nordhaus).

Theorem A. If G is a non-hamiltonian graph of order $p \geqslant 3$, then (i) $|E(G)| \leqslant$ $\frac{1}{2}\left(p^{2}-3 p+4\right)$ and (ii) if equality holds in (i) then G is $K_{2}+\bar{K}_{3}$ or, for $p \geqslant 3, K_{2} \cdot K_{p-1}$ (i.e. the graph of order p having 2 blocks: K_{2} and K_{p-1}).

Theorem B. If G is a non-hamiltonian-connected graph of order $p \geqslant 4$ then (i) $|E(G)| \leqslant \frac{1}{2}\left(p^{2}-3 p+6\right)$ and (ii) if equality holds in (i) then G is $K_{6}-K_{3}$ or, for $p \geqslant 4$, $K_{\mathrm{p}}-K_{1, \mathrm{p}-3}$.

Theorem C. Let G be a hamiltonian graph of order p. If there exists a vertex u such that

$$
\operatorname{deg}(u)+\operatorname{deg}(v) \geqslant p+1
$$

for each vertex v not adjacent to u, then G is hamiltonian-connected from at least 2 vertices.
Theorem 1. If G is a graph of order $p \geqslant 3$ which is not hamiltonian-connected from a vertex then (i) $|E(G)| \leqslant \frac{1}{2}\left(p^{2}-3 p+4\right)$ and (ii) if equality holds in (i) then G is $C_{4}, K_{2}+\bar{K}_{3}$ or, for $p \geqslant 3, K_{2} . K_{\mathrm{p}-1}$.

Proof. If $p=3$ the result is obvious; therefore assume $p \geqslant 4$.
(i) Since G is not hamiltonian-connected from a vertex, it is not hamiltonianconnected and so, by Theorem $\mathrm{B}(\mathrm{i}),|E(G)| \leqslant \frac{1}{2}\left(p^{2}-3 p+6\right)$. If $|E(G)|=\frac{1}{2}\left(p^{2}-3 p+6\right)$ then, by Theorem B(ii), G is either $K_{6}-K_{3}$ or, for $p \geqslant 4, K_{\mathrm{p}}-K_{1, p-3}$. But neither of these is possible since $K_{6}-K_{3}$ is hamiltonian-connected from any of its vertices of degree 3 and $K_{\mathrm{p}}-K_{1, \mathrm{p}-3}$ is hamiltonian-connected from the vertex at the centre of the $K_{1, \mathrm{p}-3}$. Therefore, $|E(G)| \leqslant \frac{1}{2}\left(p^{2}-3 p+4\right)$.
(ii) Now suppose that G has exactly $\frac{1}{2}\left(p^{2}-3 p+4\right)$ edges. If G is not hamiltonian then, by Theorem A (ii), G is either $K_{2}+\bar{K}_{3}$ or, for $p \geqslant 4, K_{2} . K_{\mathrm{p}-1}$. From now on suppose that G is hamiltonian. If $p=4$ then clearly G must be C_{4}. Therefore, suppose $p \geqslant 5$ and that $v_{1}, v_{2}, \ldots, v_{p}, v_{1}$ is a hamiltonian cycle of G. If G has a vertex, say v_{1}, of degree $p-1$ then G is hamiltonian-connected from both v_{2} and v_{p} which is a contradiction. However, G must have a vertex of degree $p-2$ since, if it doesn't, then it has at most $\frac{1}{2}\left(p^{2}-3 p\right)<$ $\frac{1}{2}\left(p^{2}-3 p+4\right)$ edges. Suppose, without loss of generality, that $\operatorname{deg}\left(v_{1}\right)=p-2$ and that v_{i} is the vertex not adjacent to v_{1}. If $\operatorname{deg}\left(v_{j}\right) \geqslant 3$ then it follows from Theorem C that G is hamiltonian-connected from at least 2 vertices which is a contradiction. Therefore, $\operatorname{deg}\left(v_{i}\right)=2$ and we have

$$
\begin{aligned}
\frac{1}{2}\left(p^{2}-3 p+4\right) & =|E(G)| \\
& =\frac{1}{2} \sum_{i} \operatorname{deg}\left(v_{i}\right) \\
& \leqslant \frac{1}{2}(2+(p-1)(p-2)) \\
& =\frac{1}{2}\left(p^{2}-3 p+4\right) .
\end{aligned}
$$

Equality must hold throughout so that every vertex of G, except v_{i}, has degree $p-2$. In particular, $\operatorname{deg}\left(v_{j-1}\right)=p-2$ and if v_{k} is the single vertex not adjacent to v_{i-1} then, since $k \neq j, \operatorname{deg}\left(v_{k}\right)=p-2$. If $2 p-4=\operatorname{deg}\left(v_{j-1}\right)+\operatorname{deg}\left(v_{k}\right) \geqslant p+1$ then, by Theorem C, G is hamiltonian-connected from at least 2 vertices. Therefore, $2 p-4<p+1$, i.e. $p<5$. This is a contradiction which completes the proof.

REFERENCES

1. J. A. Bondy, Variations on the Hamiltonian theme, Canad. Math. Bull. 15 (1972), 57-62.
2. G. Chartrand and E. A. Nordhaus, Graphs Hamiltonian-connected from a vertex, The theory and applications of graphs, edited by G. Chartrand et al. (John Wiley, 1981), 189-201.
3. O. Ore, Hamilton connected graphs, J. Math. Pures Appl. 42 (1963), 21-27.
4. O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960), 55.

University of Aberdeen

Present address:
12 Cliff Terrace
Buckie
Banffshire
Scotland
AB5 1LX

