
7
Theory of complex angular momenta

This theory will allow us to keep track of analyticity and unitarity in the
t-channel when analysing s-channel phenomena.

The first step is to write down the amplitude expansion in terms of
t-channel partial waves f�(t) rather than f�(s) as we did before to derive
the Froissart theorem. We write

A(s, t) =
∞∑
n=0

(2n + 1)fn(t)Pn(z), (7.1a)

where now

z ≡ zt = cos Θt =
2 s

t− 4μ2
(7.1b)

stands for the cosine of the scattering angle in the t-channel process.
The unitarity condition in the t-channel limits the size of each partial

amplitude |fn(t)| = O(1). In the s-channel, we have obtained the growing
amplitude A(s, t) by summing up a large number of terms � <∼ �0(s) in the
partial-wave expansion in f�(s). Now we keep t finite and a finite number
of partial waves fn(t) with n <∼ n0(t) = O(1) will contribute.

How will the series (7.1a) behave in the s → +∞ limit? From the t-
channel point of view this region on the Mandelstam plane is absolutely
unphysical as it corresponds to large imaginary scattering angles (7.1b)
z � 1. We have mentioned before more than once that this unphysical
region bears information about high energies in the s-channel. So let us
try to imagine what sort of behaviour of the series at large z we could
expect.
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7.1 Sommerfeld–Watson representation 153

The partial wave expansion (7.1a) was written in the physical region
of the t-channel. Since partial-wave amplitudes are falling fast at large n,
we can split the sum into two pieces,

A(s, t) =
n0(t)∑
n=0

(2n + 1)fn(t)Pn(z) +
∞∑

n0(t)

· · · ,

and drop the infinite series term. (Formally speaking, this ‘tail’ will di-
verge for large z but there is no special reason for it to be large and,
more importantly, to change significantly when we will move from pos-
itive t = O

(
μ2

)
down to t < 0 as to reach the s-channel domain.) Then

for z → ∞ we will have a qualitative estimate

A(s, t) ∼ zn0(t) ∝ sn0(t). (7.2)

Being rather brutal, this estimate nevertheless tells us what we could
expect. Namely, that the large-s asymptote of the s-channel amplitude
is governed by the characteristic angular momentum n0(t) in the cross-
channel. What remains is to learn how to determine this characteristic
momentum.

7.1 Sommerfeld–Watson representation

This representation was applied by T. Regge to the problem of analytic
continuation of the partial-wave expansion.

The quest is, how to invent, in a more or less unique way, a function
f�(t) that would be analytic in � and would coincide with the partial waves
in (7.1a) in every integer point,

f�(t)|�=n = fn(t), n = 0, 1, 2, . . . ,∞.

If we succeeded, the problem of analytic continuation of the series (7.1a)
to large z would have been relatively easy to solve. Indeed, suppose we
knew how to construct such a function. Then I would write a simple
formula (the Sommerfeld–Watson integral)

A(s, t) =
1
2i

∫
C

d�

sinπ�
f�(t)P�(−z), (7.3)
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154 Theory of complex angular momenta

where the contour C encircles all integer points n ≥ 0 anti-clockwise:

=
C

The function P� is regular in �. Evaluating the residues of the singular
factor 1/ sinπ� at � = n and bearing in mind that Pn(−z) = (−1)nPn(z),
we recover the original sum (7.1a).

The idea is as follows. Imagine that we
managed to choose f� ‘good enough’ so
as the contour can be deformed as shown
here on the right. Then everywhere along
C

Re � ≤ �0 = const.

This gives us an upper bound

C
Re = 0

P�(z) ∝ z� = zRe �+i Im �, A(s, t) ∝ |P�(z)| <∼ z�0 , z → ∞.

Such an inequality does not make much sense since it depends on the
choice of the integration contour: the boundary gets stronger as we move
the contour to the left. What prevents us from strengthening the upper
bound indefinitely? The function f� has singularities somewhere in the
� plane. Shifting the contour in (7.3) is possible until we hit such a sin-
gularity at some point � = α(t). Thus it is the position of the rightmost
singularity of the partial wave f�(t) that will determine the asymptotic
behaviour of the amplitude,

A(s, t) ∼ zα(t) ∝ sα(t), s → ∞. (7.4)

Our qualitative expectation has been made precise: we gave definite mean-
ing to the ‘characteristic angular momentum’ n0 in (7.2) by having linked
it with analytic properties of the partial-wave amplitude considered as a
function of a complex variable �.

This is the key idea of the theory of complex angular momenta.
Two things were needed for this programme to succeed namely, that

(1) f� is analytic in the right half-plane, Re � > N ; and (7.5a)

(2) f� falls along each beam |�| → ∞ in this half-plane. (7.5b)
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7.2 Non-relativistic theory 155

Let us see how fast f� has to decrease with |�|. In the physical region
z = cos Θ ∈ [−1,+1] where (7.1a) was written,

P�(−z) ∼ J0(�[π − Θ]) ∼ 1√
�

[
ei�(π−Θ) + e−i�(π−Θ)

]
.

This means that the ratio

P�(−z)
sinπ�

(7.6)

in (7.3) falls exponentially for all angles but Θ = 0 where∣∣∣∣P�(−z)
sinπ�

∣∣∣∣ ∝ 1√
�
, |�| → ∞.

So it suffices to have

|f�| < �−3/2

to ensure the convergence of the integral and the possibility of the contour
deformation.

It is easy to show that the problem of extrapolating the function from
its values in integer points onto the entire complex plane has no more
than one solution under a much weaker condition, namely,

|f�| < e|�|π, |�| → ∞. (7.7)

This is known as the Carlson theorem. We will not prove it. Let us remark,
however, that the statement of the theorem is essentially trivial. Suppose
we found a solution f

(1)
� (t). To construct a different one we would have

to add a function that vanished in all integers � = n, that is something of
the form

f
(2)
� (t) = f

(1)
� (t) + δf�(t); δf�(t) = g�(t) · sinπ�.

But the factor sinπ� grows exponentially along the imaginary axis, ∝ e|�|π,
just violating the condition (7.7).

7.2 Non-relativistic theory

One may ask the same question of the behaviour of the amplitude at
cos Θ � 1 in the framework of the non-relativistic scattering theory,
though it makes not much sense here. Nevertheless, the programme that
we have outlined above can be carried out literally and rigorously.
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156 Theory of complex angular momenta

In the non-relativistic theory we have the Schrödinger equation at our
disposal, [

− �
2

2m
∇2 + U(r)

]
ψ(r) = Eψ(r).

The radial part, Fn(r), of the wave function ψ(r) = Fn(r)Yn,m(Θ, φ) sat-
isfies the equation[

− �
2

2m
∇2

r +
n(n + 1)

r2
+ U(r)

]
Fn = EFn(r). (7.8)

Among the two solutions of (7.8),

F (1)
n (r) ∝ rn, F (2)

n (r) ∝ r−n−1, r → 0, (7.9)

we choose the first one that is regular at r = 0. Having fixed the wave
function at the origin, at r → ∞ it behaves as

Fn(r) ∝ an(k)
e−ikr

r
+ bn(k)

eikr

r
. (7.10)

This corresponds to the S-matrix element Sn(k) = bn/an and to the scat-
tering amplitude

fn(k) =
1
2i

(
bn(k)
an(k)

− 1
)
. (7.11)

Why did we keep the angular momentum n to be an integer? In order to
have a non-singular angular dependence of the wave function. However,
as long as we are interested in the non-physical region cos Θ > 1, no-one
would forbid us to look upon n in the radial Schrödinger equation (7.8)
as an arbitrary continuous parameter.

So we substitute n → � and treat � as a complex number. Then we
will solve (7.8), choose F�(r) ∝ r� as before and find the functions a and
b from the large-r behaviour (7.10). The ratio b�/a� does not depend
on the normalization of the wave function and describes the ‘scattering
amplitude’ as a function of �.

Have we satisfied the necessary conditions (7.5) for deforming the con-
tour in the Sommerfeld–Watson integral? The condition (7.5a) is fulfilled
with N = 1

2 . Indeed, any solution of (7.8) will be an analytic function
of � since the parameter � enters the equation analytically. Where does
the restriction Re � > 1

2 come from in the first place? It emerges from the
choice of the solution proper in (7.9): for the prescription to be unique we
must impose

Re � > Re(−�− 1) =⇒ Re � > 1
2 .
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7.2 Non-relativistic theory 157

The second condition (7.5b) is satisfied as well. It is clear that the scat-
tering amplitude falls fast in the |�| → ∞ limit: due to the repulsive cen-
trifugal potential in (7.8), with � increasing, the wave function F�(r) gets
more and more suppressed at finite distances r < r0 where the scattering
potential U(r) is concentrated.

Thus a� and b� are regular analytic functions of �, together with the
wave function F�(r), in the right half-plane Re � > 1

2 . The amplitude f�
in (7.11) is then regular everywhere but the points a�(k) = 0 where it
acquires poles.

We know already that the poles of the amplitude correspond to reso-
nances. The position of such a pole, a complex energy E, is determined
by the equation

fn(E) = ∞

and depends, obviously, on n as a parameter of the Schrödinger equation,
E = E(n). The equation

f�(E) = ∞

will have solutions for non-integer values of � as well. In Lecture 3 we were
considering the position of the resonance in energy, E = E(�), keeping
� = n fixed. Now we are studying the same object but from a different
angle: we fix E and look at the position of the pole in the � plane, �̄ = �(E).

Having an analytic amplitude which falls properly with � in the right
half-plane and has no singularities but poles, we perform the Sommerfeld-
Watson trick. Closing the contour around the rightmost pole at � = α(t)
we will obtain

Apole(s, t) =
−r(t)

sinπα(t)
(2α(t) + 1)Pα(t)(−z), (7.12)

A(s, t) � Apole(s, t) ∝ zα(t), z → ∞. (7.13)

as was foreseen in (7.4).

This is a remarkable result.

We have two particles interacting via potential U . In an attractive po-
tential, U < 0, there may be bound states or resonance states in vari-
ous partial waves. Their energies depend on the angular momentum n
of the state, t = t(n). By simply inverting this dependence, � = �(t), we
get information about the large-z asymptotics: at a given energy t, the
behaviour of the amplitude in the z → ∞ limit is determined by the res-
onance that has maximal angular momentum �(t) corresponding to this
energy.
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E = E( )

= 0 = 1

 = 1

 = 2

Fig. 7.1 Energy level in a shallow potential well changes continuously with
orbital momentum �.

Take not too deep a potential well, such that there exists a level for � = 0
but not for � = 1 when the centrifugal repulsion switches on. Imagine
that we change � continuously. With � increasing, the energy level will
be pushed up until at some � = �1 < 1 it will cross E = E(�1) = 0 and
move into the continuum, E > 0. For � > �1 there is no bound state (a
discrete energy level) in our potential any more. However, the level as
a solution of the Schrödinger equation will not vanish in thin air. What
will be its fate then? It can neither belong to the continuous spectrum
(by unitarity), nor have a complex energy on the physical sheet (which is
forbidden by causality). The only option for the level is to dive onto the
unphysical sheet and acquire a complex mass there. That is, to become a
resonance as displayed in Fig. 7.1.

Redraw the picture now. Let us change the energy and see what will
happen to the angular momentum of the level.

At E = E(0) we have a pole in the partial wave � = 0. Increasing the
energy, we will find the corresponding value of �. At E = 0 we will have
� = �1. If we want to continue keeping � real, we would have to lead E
into the complex plane. If instead we continue to keep the energy real
and increasing, then the pole in the �-plane will move onto the upper
half-plane as shown in Fig. 7.2.

It suffices to draw this curve in order to determine the asymptotics of
the amplitude at large z. And this was first realized in the framework of
a non-relativistic theory. T. Regge (1959) found the way to quantify the
value of the characteristic angular momentum n0 in (7.2),

A(s, t) ∝ Pn0(t)(z).

We may say that in the quantum-mechanical context n0 measures the
strength of the potential. It tells us, what the maximal value of the angular
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21

=   (E )

E = E0

1
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E = E1

E = E2

Fig. 7.2 Movement of the pole in the �-plane in non-relativistic theory.

momentum is for which the attraction is still stronger than the centrifugal
repulsion and the wave function is still concentrated at small distances so
that the partial waves with n ≤ n0(t) are large and contribute significantly
to the partial-wave expansion (7.1a).

7.3 Complex � in relativistic theory

It was not at all clear whether this programme could be carried out
in a relativistic theory where the potential (if any) depends on parti-
cle velocities. Nevertheless, it turned out that the results that we have
obtained for potential scattering are almost correct in the relativistic
framework.

7.3.1 u-channel and a problem with analytic continuation

Why ‘almost’? As we have discussed above in Section 7.1, the very sup-
position that an analytic function f� existed, immediately allowed me to
analytically continue the series (7.1a), originally defined for z ∈ [−1,+1],
to arbitrary |z| > 1. We saw that for any complex value of z (but real
positive z corresponding to Θ = 0) the ratio (7.6) of P�(−z) and sinπ�
falls exponentially along the integration contour. In particular, for z < 0
(Θ = π) the Legendre function P�(−z) does not increase at all along the
imaginary �-axis. The Sommerfeld–Watson integral for A then converges
(and so do integrals for its derivatives over z). But this contradicts the
fact that A(z) must have singularities at z < −1 since we know that our
relativistic amplitude has a cut at s < 0 corresponding to the u-channel
scattering!

Nevertheless, let us try to approach the problem constructively to see
where the problem lies and how we might overcome it. So, we start again
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from two complementary formulae for integer n:

A(s, t) ≡ A(z, t) =
∑
n

(2n + 1)fn(t)Pn(z), (7.14a)

fn(t) =
1
2

∫ 1

−1
dz Pn(z)A(z, t), (7.14b)

and search for a way of continuing (7.14) to complex angular momenta �.
The task of defining f� seems easy at the first glance. A straightforward

generalization of (7.14b) by a simple substitution n → � will, however, not
satisfy us. Indeed, since the z-integral involves all points in the interval
[−1,+1], including z = −1, it is this end-point corresponding to Θ = π
that will make f�, so defined, behave as exp(iπ�). But this behaviour
violates Carlson’s theorem (uniqueness of the analytic continuation) thus
forcing us to abandon this bold attempt.

To find a smarter way let us make use of the knowledge of the analytic
structure of the amplitude:

A(z, t) =
1
π

∫ ∞

z0

dz′
A1(z′, t)
z′ − z

+
1
π

∫ ∞

z0

dzu
A2(−zu, t)
zu + z

, (7.15)

where we represented the contribution of the left cut in terms of a positive
integration variable zu = −z. I wrote the dispersion relation without sub-
tractions. They are necessary in principle to have the integrals convergent.
‘Subtraction’ in the dispersion integral means extracting a polynomial in
z of some degree N . However, I am now going to study partial waves with
sufficiently large n. If I take n > N , then, due to the orthogonality of Pns,
the subtracted polynomial will not affect my partial waves fn. So we may
substitute our ‘analytic wisdom’ (7.15) into (7.14b) to obtain

fn(t) =
1
π

∫ ∞

z0

dz A1(z, t)Qn(z) − 1
π

∫ ∞

z0

dzuA2(−zu, t)Qn(−zu), (7.16)

where

Qn(z) ≡ 1
2

∫ 1

−1
dz′

Pn(z′)
z − z′

. (7.17)

The new expression (7.16) better suits our purpose; it is tempting to try

Qn(z) =⇒ Q�(z)

with Q�(z) the second solution of the Legendre equation that is regular
at infinity:

Q�(z) ∝ z−�−1, |z| → ∞ .
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Such a behaviour is perfectly satisfactory for continuing the first term in
(7.16). In the second term, however, we get

Q�(−z) ∝ (−z)−�−1 = −e−iπ�|z|−�−1 ,

and the second part of the partial wave again acquires too fast an expo-
nential increase with Im �.

So what’s the way out? Using the relation

Qn(−z) = (−1)n+1Qn(z)

valid for integer n, we can rewrite (7.16) as

fn(t) =
1
π

∫ ∞

z0

dz A1(z, t)Qn(z) +
(−1)n

π

∫ ∞

z0

dz A2(−z, t)Qn(z). (7.18)

This way we localize the problem before attempting the analytic continua-
tion to complex n. Actually, we have already derived an analogous formula
for s-channel partial-wave amplitudes in Lecture 5 when we discussed the
relativistic phenomenon of the appearance of the backward peak in the
differential angular cross section, cf. (5.18).

7.3.2 Continuing separately even and odd angular momenta

We have to abandon the idea of constructing an analytic continuation of
fn from all integer points anyway: as we already know such an attempt is
bound to fail because of the existence of the u-channel singularities. We
are led to try to continue even and odd angular momenta separately,

f
(+)
�

∣∣∣
�=2n

= f2n, f
(−)
�

∣∣∣
�=2n+1

= f2n+1.

By so doing we get rid of the oscillating factor in (7.18) and obtain two
functions,∗ both behaving nicely at large |�|:

f
(±)
� (t) =

1
π

∫ ∞

z0

dz Q�(z)A1(z, t) ± 1
π

∫ ∞

z0

dz Q�(z)A2(−z, t). (7.19)

Now for the analytic continuation to be unique, a stronger condition than
(7.7) must be imposed: ∣∣∣f (±)

�

∣∣∣ < exp
(

1
2 |�|π

)
.

It is easy to verify that the functions defined by (7.19) do satisfy this
condition easily (along the imaginary axis they don’t increase at all).

∗ Equation (7.19) is known as the Gribov–Froissart projection (ed.).
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Thus the price we pay for solving the problem of continuation is the
introduction of two analytic functions in place of one. What is the reason
for that?

In a relativistic theory one ‘potential’ is not enough. There is always
another diagram corresponding to what is known in nuclear physics under
the name of exchange potential Vexch:

a

Vexch+V

a a

b b b

a b

The two graphs differ by the transposition a ↔ b which, for spinless par-
ticles, introduces the factor (−1)�. Therefore for even and odd orbital
momenta we have

V =⇒ V + Vexch (� = 2n) and V =⇒ V − Vexch (� = 2n+1),

correspondingly. Having two different full potentials means that there isn’t
any analytic relation between partial waves with even and odd angular
momenta.

7.3.3 Sommerfeld–Watson representation for f
(±)
�

Let us split the amplitude into symmetric and anti-symmetric parts with
respect to s ↔ u,

A(z, t) = A+(z, t) + A−(z, t), A±(z, t) ≡ A(z, t) ±A(−z, t)
2

, (7.20)

and treat these two amplitudes separately:

A±(z, t) =
∑

n=even/odd

(2n + 1)f (±)
n (t)Pn(z). (7.21)

Recall that above we wrote the dispersion relation without subtractions,
which was fine for the purpose of analysing partial waves with n > N .
The integrals (7.19) for f

(±)
� are defined also for sufficiently large angu-

lar momenta. This is necessary to ensure convergence: if the amplitude
behaves at large z as |A(z)| = O

(
zN

)
, then

f
(±)
� ∼

∫ ∞
dz Q�(z)A(z) ∼

∫ ∞
dz · z−�−1 · zN < ∞ =⇒ Re � > N.

This means that the series (7.21) for the amplitude A± can be repre-
sented by the Sommerfeld–Watson integral only partially. Namely, it is
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the infinite series of partial waves with n ≥ N in

A =
N∑

n=0

(2n + 1)fnPn +
∞∑

n=N+1

(2n + 1)fnPn

that can be combined into an analytic function of �, while a few first
partial waves remain, generally speaking, arbitrary.

Why did a few partial waves remain unaccounted for? In a non-
relativistic language, we may imagine adding to the potential a singular
term δ0V (r) = const · δ(r). It contributes to the S-wave scattering only
and as a result f0 would fall out of the family. Introducing δ1V (r) ∝ ∇δ(r)
we would analogously spoil the P -wave f1. If we continue these singular
series by summing up an infinite number of derivatives we may violate
causality (polynomial boundary |A| <∼ sN ). As we shall see soon from the
s-channel unitarity condition, the number of ‘special’ partial waves that
remain unaccounted for in fact cannot be larger than two: � = 0 and � = 1.
Now that we have removed the oscillating fac-
tor (−1)� that used to cause too fast an expo-
nential increase, we can deform the contour C in
the Sommerfeld–Watson representation embrac-
ing the points n ≥ N+1 by straightening it and
sending along the imaginary axis at Re � = �0 so
that N < �0 < N + 1:

A±(s, t) =
N∑

n=0

(2n + 1)fn(t)Pn(z) · 1
2 [1 ± (−1)n]

+
i

4

∫ �0+i∞

�0−i∞

d� (2� + 1)
sinπ�

f
(±)
� (t)[P�(−z) ± P�(z)] .

(7.22)

When the contour transformation is done, we are ready to leave the physi-
cal region of the t-channel and to study the large-s regime. Taking z → ∞
will affect only the oscillating factor exp(i Im � · ln z) but not the conver-
gence of the integral.

Let us verify that the formula (7.22) is what we have been looking for.
To this end, examine the analytic properties of A±. They obviously must
be those that we put in. Namely at positive s > 4μ2 we should encounter
a non-zero absorptive part which appears with the opening of the first
s-channel threshold:

A±
1 =

A(s + iε) −A(s− ıε)
2i

= 1
2 [A1(s) ±A2(s)], (7.23a)

as it follows directly from the definition of the amplitudes (7.20). Also,
if we decrease s, starting from u > 4μ2 we should see the cross-channel
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absorptive part

A±
2 ≡ A(u + iε) −A(u− ıε)

2i
= 1

2 [A2(u) ±A1(u)];

A±
2 (z, t) = ±A±

1 (−z, t). (7.23b)

Taking s > 0 we have z > 1, and the first Legendre function under the
integral in (7.22) becomes complex since P�(z) with non-integer � has a
logarithmic cut running from −1 to −∞. The phase of the argument in
P�(−z) starts to matter. Comparing two ways of defining (−z),

1
2i

[
P�(eiπz) − P�(e−iπz)

]
= sinπ� · P�(z),

and substituting into (7.22) we derive the absorptive part

A±
1 (s, t) =

1
4i

∫
C
d�(2� + 1)f (±)

� (t)P�(z). (7.24)

The complexity of P�(−z) has, however, nothing to do with physics.
Therefore at s > 0 the amplitude must stay real until we meet its first
physical singularity. Let us see how it happens in our formula.

In (7.24) the poles in the integer points have disappeared inviting us
to move the contour back to the right and close it at +∞. If |z| < 1 we
can always do so to obtain A±

abs ≡ 0 as expected. As for z > 1, closing
the contour will be still possible as long as the integrand falls in the right
half-plane.

We have studied the large-� asymptote of f� in Section 5.3. Applying
(5.26) to the t-channel partial waves,

f�(t) ∝ exp(−�χ0), coshχ0 ≡ z0 = 1 +
2 · 4μ2

t− 4μ2
, (7.25a)

and comparing with the asymptote of the Legendre functions (5.25),

P�(z) ∝ exp(�Θ), cosh Θ = z, (7.25b)

we immediately see that the absorptive part A1 = 0 as long as Θ < χ0,
that is up to s = 4μ2 when we hit the s-channel threshold singularity and
the partial-wave expansion (7.14a) diverges.

Considering analogously z < 0, it is easy to obtain the u-channel ab-
sorptive part independently,

A±
2 (z, t) = ± 1

4i

∫
C
d�(2� + 1)f (±)

� (t)P�(−z) = ±A±
1 (−z, t), (7.26)

in accord with the expectation (7.23b).
Thus we have derived two formulae relating partial waves with a definite

signature to the absorptive part of the amplitude with a definite s ↔ u
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symmetry:

A±
abs(s, t) =

1
4i

∫
C
d�(2� + 1)f (±)

� (t)P�(z); (7.27a)

f
(±)
� (t) =

2
π

∫ ∞

z0

dz Q�(z)A±
abs(z, t), (7.27b)

with z0 defined in (7.25a). Remember, z in these formulae is a cosine of
the t-channel scattering angle,

z ≡ zt(s, t) = 1 +
2 s

t− 4μ2
=

s− u

t− 4μ2
. (7.27c)

Let us note an attractive feature of (7.27a): the expression for Aabs is
free from an undetermined sum of few ‘non-analytic’ terms present in
the Sommerfeld–Watson representation for the amplitude A itself. More-
over, Aabs is a valuable thing: continuing to t < 0, we will get hold of the
imaginary part of the s-channel amplitude which interests us much.

On its own, the expression (7.27a) for the absorptive part is sort of triv-
ial, something resembling the Mellin transformation. It is complementary
to (7.27b) for f

(±)
� which expression is slightly less obvious as it exploits

analytic properties of the amplitude. Still, if not for the unitarity con-
dition, the translation of Aabs into f�, and back again, would have had
not much value (although performing Mellin transform may be sometimes
useful). The essence of the issue lies in that the singularities in � of f (±)

�
are determined by the physical spectrum of particles and resonances.

7.4 Analytic properties of partial waves and unitarity

In order to determine the character of the large-s asymptotics of the
scattering amplitude, we need to learn what singularities f

(±)
� (t) has in

the �-plane. Moreover, till now we were sitting at t > 4μ2 while it is the
physical region of the s-channel, t < 0, that really interests us. In non-
relativistic quantum mechanics we saw how the unitarity condition has
translated the poles of the amplitude on the unphysical sheet (resonances)
into singularities in � of the partial wave f� – the Regge trajectories �=
�(t). We are about to try the same path in the relativistic theory.

7.4.1 Redefining partial waves

So we will keep Re � > N and discuss the properties of f�(t) defined by
(7.27b). We have introduced partial waves with complex � at t > 4μ2.
There f

(±)
� are complex, because so are A1 and A2 (see the path 1 in
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Fig. 7.3). Below the t-channel threshold the absorptive parts are real and
it would have been nice if the partial waves at t < 4μ2 were real too.
However when the sign of t− 4μ2 in the expression (7.27c) changes, z
becomes negative. We have then to watch for Q�(z) = z−�−1 F (z), with F
a regular even function of z, which acquires an �-dependent phase. This
phase will provide f� with a ‘kinematical’ complexity which has nothing to
do with analyticity (since Aabs is real!). Let us have a look at the vicinity
of the threshold, 0 < t− 4μ2 � μ2. Here we have z � 2 s/(t− 4μ2) � 1,
and (7.27b) gives

f
(±)
� ∝ (t− 4μ2)� ·

∫ ∞

4μ2

ds

s�+1
[A1 ±A2 ] .

For integer n this is nothing but the usual threshold behaviour, fn ∝ k2n
c .

To get rid of the trivial phase factor it is convenient to redefine partial
waves by introducing

f
(±)
� (t) ≡ (t− 4μ2)� · φ(±)

� (t). (7.28)

The new partial wave φ� is given by the integral

φ
(±)
� (t) =

2
π

∫ ∞

4μ2

2 ds
(t− 4μ2)�+1

Q�(z)A±
abs,

where we choose to integrate over s rather than z as in the original formula
(7.19). Moving to t < 4μ2, we reflect the argument of Q�(z → −z) and
write down a more convenient expression,

φ
(±)
� (t) =

4
π

∫ ∞

4μ2

ds

(4μ2 − t)�+1
Q�

(
2s

4μ2 − t
− 1

)
A±

abs(s, t), (7.29)

which makes it clear that φ� stays real in the interval 0 < t < 4μ2. If we
decrease t further, at t < 0 the Legendre function Q�(z) becomes com-
plex (|z| < 1) when 4μ2 < s < 4μ2 − t (interval [a, b] on the path #2 in
Fig. 7.3). A physical singularity will emerge later, when the integration
line on the Mandelstam plane crosses the Karplus curve where ρsu �= 0
and the absorptive part becomes complex (interval [c, d] on the line #3 in
Fig. 7.3).

7.4.2 Two-particle unitarity condition for φ�

Recall how we have used the two-particle unitarity condition to find the
discontinuity on the right cut of the partial wave with integer n:

Im fn(t) = τfn(t)f∗
n(t), 4μ2 < t < 16μ2,

https://doi.org/10.1017/9781009290227.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290227.008


7.4 Analytic properties of partial waves and unitarity 167

a

a

b

b

u
t s

3

2

1

c d

z = 1
s = 4μ2
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Fig. 7.3 Integration paths in the representation (7.29) for φ�(t). For t < 0, on
the interval [a, b] the Legendre function Q�(z) is complex. When t < t1, the third
spectral function contributes to complexity of φ� along the [c, d] interval.

or, in terms of φ,

1
2i

[φn(t + iε) − φn(t− iε) ] = Cnφn(t + iε)φn(t− iε),

Cn ≡ τ · (t− 4μ2)n.

Now we can state that the same relation holds for arbitrary complex �:

1
2i

[φ�(t + iε) − φ�(t− iε) ] = C� φ�(t + iε)φ�(t− iε),

C� ≡ τ · (t− 4μ2)�.
(7.30)

Why? Thanks to the Carlson theorem. Indeed, as it is easy to see from the
properties of φ�, the difference between the l.h.s. and the r.h.s. of (7.30)
does not increase at infinity faster than exp(1

2π|�|) and equals zero in all
even (odd) points. Therefore it is zero on the entire �-plane.

The unitarity condition (7.30) applies to 4μ2 < t < 16μ2. Above the
four-pion threshold in the unitarity condition there appear integral terms
the continuation of which to complex angular momenta is not so easy.
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168 Theory of complex angular momenta

Now that we briefly described the singularities in t for fixed �, it is time
to turn to the question which really interests us – that of the structure of
singularities in � for fixed t.

Where may they come from? From the divergence of the integral

φ� ∼
∫ ∞

dz Q�(z)Aabs(z)

at some sufficiently small Re �. It is difficult to say anything starting from
nothing. Therefore we will begin with the classification.

(1) ‘Fixed singularity’ whose position � = �0 does not depend on t.

(2) ‘Moving singularity’, � = �0(t).

For the time being we will discuss only the rightmost singularity in the
�-plane, the one with the maximal Re �0.

7.4.3 Fixed singularities in the � plane

The first statement we can make about the fixed singularity (should it
happen to be the rightmost one) is that it may occur only on the real
axis. Indeed, whatever the nature of the singular point, its contribution
to the asymptote of Aabs(z) is proportional to z�0 . If Im �0 �= 0, this factor
oscillates fast at large z. But this would contradict the positivity of the
cross section, σtot ∝ Aabs (in the next lecture we will verify that the t-
derivative of Aabs(s, t) must also be positive in the interval 0 < t < 4μ2).

Now, since �0 �= �0(t), we can choose 4μ2 < t < 16μ2 to see what the
unitarity condition would tell us. The r.h.s. of (7.30), for real �0, reduces
to |φ�|2 and we have

Imφ� = C� · |φ�|2 =⇒ |φ�| < C−1
� . (7.31)

Therefore the singularity may be only a weak one, namely such that in the
singular point the partial-wave amplitude stays finite like, for example,
φ� ∼

√
�− �0. But this is exactly the case when, as we have discussed in

the previous lecture, the cross section must fall at large s.
Let us check that, indeed, |φ�0 | < ∞ implies a falling cross section.

Dropping irrelevant factors we write

Aabs(s) ∼
∫
C
d� φ� · s�

and shift the contour to the left in search for singularity. If φ� had a pole
we would have taken the residue and obtained a power asymptote

Apole
abs = const · s�0 .
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The pole is, however, forbidden by the t-channel unitarity restriction
(7.31). (By the way, a particular case of this veto is the familiar classical
diffraction picture, Aabs(s, t) = sF (t), which corresponds to the fixed pole
singularity at �0 =1.) Therefore φ� may only have a branch cut starting at

0

�0 and running to the left. Integrating the
discontinuity Δφ� along the cut we get

Aabs � s�0 ·
∫ ∞

0
dx Δφ(x) e−x ln s,

where we have introduced x = �0 − � > 0 as
an integration variable. When s is large,
the integral converges at 〈x〉 ∼ 1/ln s � 1 so
that only the very tip of the cut matters.

Parametrizing the discontinuity of the partial wave as Δφ(x) ∝ xγ and
evaluating the integral we obtain

Aabs ∝ s�0

(ln s)γ+1
. (7.32)

The finiteness condition (7.31) tells us that γ ≥ 0. As a result

σ ∝ s−1Aabs ∼
s�0−1

(ln s)γ+1
<

1
ln s

, (7.33)

where we have used the maximal power value �0 = 1 allowed by the Frois-
sart theorem.

Fixed singularities in NQM. Do fixed singularities exist in quantum me-
chanics? Yes, and they are related to the ‘falling on the centre’ phe-
nomenon, with the behaviour of the potential at small distances. As we
have already discussed, in non-relativistic quantum mechanics a singu-
larity appears in � when the choice between the two solutions of the
Schrödinger equation at the origin, r=0, becomes ambiguous. When dis-
cussing NQM scattering, we have tacitly implied that the interaction
potential was less singular than the centrifugal barrier, r2 · V (r) → 0 at
r → 0, in which case the singularity was at �0 = −1

2 (when r−� ∼ r�+1). In
the opposite case V (r) itself will govern the r → 0 asymptotic behaviour
of the wave function ψ�(r), and a fixed singularity may emerge at any �0.

It is important to stress that such fixed singularities correspond to
definite physics, namely a super-singular behaviour of the interaction at
small distances. It seems they are very unlikely to have any relation with
the approximate constancy of the total cross section.

Strictly speaking, the question of a possible rôle of fixed singularities
remained unsolved.
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7.4.4 Moving singularities

More difficult to analyse are moving singularities. At the same time they
are much more interesting. Given the function � = �0(t), we might invert
it and consider t = t0(�) as a singularity on the t-plane about which we
have already learned a thing or two!

Above we have described all singularities
of the partial wave amplitude on the t-plane:
there is nothing but the right cut, t > 4μ2

and the left cut, t < 0. So where are then
these new �-dependent singularities?

φ(±) (t)

0t0 4μ2

Recall that our analysis of φ(±)
� (t) was carried out for Re � > N . New

singularities show up at smaller �. How can this happen? It is clear that
a singularity cannot just ‘pop up’ suddenly with � decreasing. Our am-
plitude has cuts on the complex t-plane, and the possibility arises for
the singularity to move from beneath a cut and appear on the physical
sheet at some � < N . This means that such a moving singularity is always
present but ‘hidden’ on the unphysical sheets of the amplitude at large
Re �. Therefore, in order to learn which singularities the partial wave with
Re � < N may have on the t-plane, it suffices to find out (as we did before
when we studied resonances in Lecture 3) what the singularities are on
the unphysical sheets at Re � > N .

Left cut. The first important statement: No moving singularities emerge
from the sheets linked to the left cut.

We take t < 0, write

φ
(±)
� (t + iε) = φ

(±)
� (t− iε) + Δφ

(±)
� (t)

and move the argument t + iε down under the cut to explore the corre-
sponding sheet. The amplitude φ

(±)
� (t− iε) on the r.h.s. of the equation

stays on the physical sheet. Since it is regular there, the partial wave on
the l.h.s. diving under the cut will exhibit singularities of the discontinuity
over the left cut, Δφ

(±)
� (t). The latter, however, cannot have any (mov-

ing) singularities. This is a consequence of a simple fact that, as we have
repeatedly stressed before, it is given by integrals over finite intervals. In-
deed, one contribution to Δtφ comes from the complexity of Q� at t < 0:
ΔtQ�(−z) = −π

2P�(−z) (for −1 < z < 1); the other one appears at t < t1
due to the discontinuity of A±

abs: Imt ImsA
± ≡ ρ±su. From (7.29) we obtain

Δφ
(±)
� (t) = − 2

∫ sb

sa

ds

(4μ2 − t)�+1
P�

(
2s

4μ2 − t
−1

)
A±

abs(s, t + iε)

+
4
π

∫ sd

sc

ds

(4μ2 − t)�+1
Q�

(
2s

4μ2 − t + iε
−1

)
ρ±su(s, t).

(7.34)
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Fig. 7.4 Resonances on Regge trajectories �±(t) and the movement of a Regge
pole onto the physical sheet.

The integrals run over finite regions; they converge and cannot produce
singularities. As for an explicit �-dependence of the integrands, P� is
regular on the entire � plane; Q� is ‘almost regular’: strictly speaking, it
has poles in negative integers, � = −1,−2, . . ., but these do not concern
us here as they are not related to moving singularities.

Right cut. Exactly as it was the case of integer angular momenta that
we have explored in Lecture 3, on the unphysical sheet linked to the two-
particle cut there may be only poles:

φ
(±)
� (+) =

φ
(±)
� (−)

1 − 2iC� φ
(±)
� (−)

, φ
(±)
�0

(t) =
1

2iC�0(t)
=⇒ �0 = �±(t).

A remarkable thing! We knew that resonances with different spins n live on
the unphysical sheet. Now not only have we got the statement about the
large-s behaviour but also about the resonances themselves. In Lecture 3
we had independent equations for resonance masses,

φ(±)
n (t) = [ 2iCn(t) ]−1 =⇒ m2

n = t(n).

Now we see that all these resonances are analytically linked to each other
as shown in Fig. 7.4. This discovery laid the basis for the classification
of all hadrons according to ‘Regge trajectories’ they belong to. Real and
imaginary parts of the position of the pole on the t-plane give the squared
mass and the width of the resonance.

Moreover, two (generally speaking different) analytic curves �±(t) that
combine together resonances with even spins and those with odd spins,
are those very same curves that determine the asymptotic behaviour of
the symmetric and anti-symmetric parts of the scattering amplitude, cor-
respondingly.

What sort of information may this give us in practice? By studying
t-channel particle scattering at relatively small energies t, experimenters
find resonances, measure their masses, decay widths and determine their
spins. Imagine that we put ‘many points’ on a Regge trajectory and in
so doing approximately found Re �(t). This is a mere classification at this
point. Now, let us extrapolate the curve to t = 0, and below. This will
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tell us the characteristic angular momentum, �±(t1), corresponding to a
given value of the momentum transfer t1 < 0 and immediately give the
energy behaviour of the scattering amplitude,

A±(s, t1 ≤ 0) ∝ sRe �±(t1),

in a completely different – crossing – channel! Understanding this cross-
channel relation constitutes the main achievement of the theory of com-
plex angular momenta.
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